اثر کاربرد پساب و لجن فاضلاب صنعتی بر غلظت برخی عناصر و عملکرد گندم، چو و ذرت

محمدعلی نظری، حسین اشعرتداری، مجید افیونی، مصطفی ملی و شهرام رحیلی

چکیده
پساب و لجن فاضلاب می توانند نیاز آب و غذایی گیاه را تأمین نمایند. به همین علت به عوامل مختلف از این امکانات مورد توجه قرار گرفته‌اند. البته وجود فلزات سنگین در پساب و لجن باعث افزایش نیاز آنها به سیلای کیاهان و افزایش اکسیژن و حیوان نیگدین از نظر دوربین زیست‌شناس و بالینی و همچنین افزایش میزان ثانویه و مصرف ویاکینه به دست می‌آید (Zea mays) (Hordeum vulgare) (Triticum aestivum) (جور چو) (خیار چیپه) والصدایی توسط دو مورد مراقبت از این مطالعات در شرایط مختلف و از طریق اکتشافی در چهار محقق و پنج تیمار شامل آب‌چاه، آب‌چاه، آب‌چاه، آب‌چاه و چهار چاه، آب‌چاه به شکل معنی‌داری، پساب سروری تصفیه پساب و پساب خروجی به رودخانه تراکم گرفته. البته پساب‌ها و لجن نشان داد که غلظت عناصر مختلف آنها در محدوده مجاز استاندارد‌های مربوط به آتش. هنگامی که جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه هنگام نیز در محدوده جریان از پساب در گیاه زیست و تیمار پساب خروجی ها در گیاه به آب چاه H
پاسداز دیگر مقداری از عناصر غذایی است که
می‌تواند در کشاورزی مورد استفاده قرار گیرد. افزایش عملکرد محصول نیز گردیده.

اگری در این مقاله نشان داده شده است که
۰.۹کیلوگرمی نان خارج شده بود. خواص بیشتری از
۱۰.۹۵ بهترین گروه دیگری که در نوسک
در آزمایشی که روی دستور گرفت شده است.

یکی از این دستورات گسترشی‌ترین همراه با
پاسداز راهبردی که با آب شربی که در این مقاله بررسی شده است.

(۱۸). در مطالعه‌های که در هندوستان برای بررسی تأثیر
کاربرد فاضلاب و پاسداز بر عملکرد چند محصول زراعی
مصرف و فلاتس سبزگی نیز می‌باشد. هنگامی که این مواد به
ازمین اضافه می‌شوند، یک استفاده را تن‌گذار می‌کند.
جذب عناصر کم مصرف و فلاتس سبزگی به مقادیر زیادی به
ویژه در یکی از گیاه‌های زیر که به‌طور
گیاهی نشسته است که با آب زیست
و سازمان بهداشت جهانی و مراکز و
نسبت به آنها نیز پیش از
ورود به سیستم‌های ویژه‌شده یا محیط زیست
هوموس خاک و در نهایت به‌طور
هسته‌دار و در کاربردی برای فضای
حاصب‌بخشی خاکی شوند (۷ و ۸).

اپتی‌میاداری از کاهش
عملکردها محسوس در اختیار‌های
نوسکی، یا از این مقاله بررسی
در آزمایشی که روی دستور گرفت
است. کاهش عملکرد نیز می‌تواند در اثر افزایش غلظت
املاح موجود شود، و یا تجمیع عناصر سمن در خاک و گیاه
باشد (۳ و ۲۱).
جدول 1. تعدادی از ویژگی‌های شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>ECe</td>
<td>dS/m</td>
<td>16/2</td>
</tr>
<tr>
<td>OM</td>
<td>%</td>
<td>1/21</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>0/15</td>
</tr>
<tr>
<td>فاصل جذب K</td>
<td>%</td>
<td>2/7</td>
</tr>
<tr>
<td>فاصل جذب P</td>
<td>%</td>
<td>3/5</td>
</tr>
<tr>
<td>DTPA</td>
<td>mg/kg</td>
<td>2/1</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/kg</td>
<td>2/5</td>
</tr>
<tr>
<td>Zn</td>
<td>mg/kg</td>
<td>3/7</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/kg</td>
<td>7/8</td>
</tr>
<tr>
<td>Cu</td>
<td>mg/kg</td>
<td>0/89</td>
</tr>
<tr>
<td>Co</td>
<td>mg/kg</td>
<td>0/89</td>
</tr>
<tr>
<td>Ni</td>
<td>mg/kg</td>
<td>0/89</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/kg</td>
<td>0/89</td>
</tr>
</tbody>
</table>

سنسن در 15 کیلومتری جنوب غربی کارخانه پل اکریل برداشت شد. برخی از ویژگی‌های شیمیایی خاک مورد استفاده در جدول 1 نشان داده شده است.

خاک مذکور در گلدان‌های به کیلوگرمی برای کشت گندم، جو و ذرت مورد استفاده قرار گرفت. آزمایش فلورنتیک به صورت طرح آماری کاملاً تصادفی در چهار تکرار و یک تیمار برای هر کیه در گلدان‌های تحقیقاتی دانشکده کشاورزی، دانشگاه صنعتی اصفهان انجام شد. با استفاده از آبیاری سطحی رطوبت خاک گلدان‌ها در طول دوره رشد گیاه در حدود طرفیت زراعی 70 تأمین شد. نمونه برداری از گندم و ذرت 55 روز از جو روز بعد از کاشت انجام گرفت. پس از برداشت کاشته‌ها، اندازه‌های ویژه از هم جدا شدند. سپس نمونه‌ها به مدت 48 ساعت در دمای 75 درجه سانتی‌گراد در آب خشک شده و وزن آنها اندازه گیری شد. نمونه‌های تجربی به مدت چهار ثانیه در دمای 35 درجه سانتی‌گراد خاک‌کش شدند. سپس خاک‌کش به دست آمدند به وسیله 10 میلی لیتر سد کاری‌شده دو مولار عصاره گیاهی شد و جهت

در منطقه‌ای از اهمیت زیادی برخوردار می‌باشد مورد مطالعه قرار گرفت.

مواد و روش‌ها

پسابها و لجن مورد استفاده در این طرح مربوط به کارخانه پل اکریل ایران واقع در 15 کیلومتری جنوب غربی شهر اصفهان می‌باشند. پساب‌ها شامل پساب خروجی مورد استفاده مربوط به پرخان نخک کندنه (Colling tower) با دی بی 10 مترمکعب در ساعت، پساب سریز تصفیه پساب باندی 80 تا 100 مترمکعب در ساعت و پساب خروجی به روندی با دیپ 100 مترمکعب در ساعت بودند. لجن فاضلاب نیز از نوع صنعتی و هضم شده به روش الکتریکی است. در این طرح آب جهت تیمار شاهد مورد استفاده قرار گرفت. تیمارهای اعمال شده شامل آب آب، آب چهار + لجن (50 تن در هکتار) و پساب‌های خروجی هاوامی، سریز تصفیه پساب و خروجی به روندی اکریلیک به مدت تجربه انجام شده است. در این طرح، منطقه‌ای از نظر رده‌بندی فلورنتیک هاوامی‌بند (Fluventic haplocambids) می‌باشد و منطقه‌ای به نام (Colling tower (Fluventic haplocambids)
صدایی و هموگلیوس خروجی به روده‌ها دارای محدودیت می‌باشد که در استفاده از آنها به علائم آبای یا به مشکلات ناشی از تجمیع املاح در خانه توجه داشته است. غلظت عناصر غذاهای حیوانی و سانسی متغیر و با تذکر در بین‌ها قابل توجه بوده، ضمن این که بطور استاندارد سازمان مطبوعاتی به مصرف و سنگین در لجن از مخلوط اسید و کلسیم و سنگین محلول نه بنده دریابد. این نتایج به جای اثرهای یک به پنج لجن و اب استفاده شد. به منظور عصاره‌گیری غلظت کل عناصر کم مصرف و سنگین در لجن از مخلوط اسید و کلسیم و سنگین محلول در دریابد و اسید نتریک غلظت به سنتی دو به یک استفاده گردید. (12). غلظت عناصر کم مصرف و سنگین در گیاه، پسابهای و لجن به وسیله دستگاه جدید ایمنی پرکینه‌ی مری مدل ۲۰۲۰ به سیستم روش‌های سنجش با استفاده از دستگاه‌های اسکیمتریک فیلامنت فтор، کربن در دو لحیافت و پتانسیم آنها توسط دستگاه فیلامنت ۲۱۸۰ لحیافت گردید (16). برای اندازه‌گیری مواد آهن از روش اکسیداسیون نیترای به استفاده شد. کلرید پسابه، لجن و خاک از روش تیتراسیون با محلول ۲۰۲۵ مولار نیترات نبود در مجاورت عفون مکرات پتانسیم و کربنات و بی‌کربنات به تیتراسیون به وسیله اسید سولفوریک ۵۰ مولار در مجاورت عفون مکرات فیلم فیلامنتان اندازه‌گیری گردید. سولفات موجود در پسابه به روش دوکرت سنجی و نیترات نیز به وسیله کلرید نیترات اندازه‌گیری شد (11).

نتایج و بحث

وزیگه‌های شیمیایی لجن مورد استفاده برخی از وزیگه‌های شیمیایی رابطه ترکیبی می‌باشد که با تغییرات مطلوبی بر وزیگه‌های فیزیکی و شیمیایی حاکم و بهبود عملکرد گیاه داشته باشند (۱۳). معکوس و ۲۵ و دو لحیافت مواد مولکولی به ترتیب دارای ۷۲٫۱۸ و ۱۴۹ لحیافت فیلامنت، سفرکل، و پتانسیم محلول است. بی‌پسابه با اضافه کردن ۵۰ لجن در هکتار به ترتیب حدود ۵۸۰۰ و ۲۵ کیلوگرم در هکتار از این عناصر به خانه اضافه می‌گردید. که می‌تواند سه به سه‌گیاه نامناسب نیازمند باشد. این انتظار می‌رود به غلظت عناصر سنگین محلول به علت تغییرات بی‌پسابه‌های گیاهی به تدریج معمولی‌شده و در انتها گیاهان قرار می‌گیرند (۷۷). در کاربرد لجن فاضلاب به عنوان کود، غلظت عناصر اندازه‌گیری عناصر کم مصرف و سنگین، فسفر و پتاسیم و سدیم مورد استفاده قرار گرفت (۲۷). جهت اندازه‌گیری سدیم، کلسیم، میزیم، پتاسیم، کلوی درون‌لوله لجن به دلیل جاذبه رطوبه بودن این ابزار از چاه‌های یک به پنج لجن و اب استفاده شد. به منظور عصاره‌گیری غلظت کل عناصر کم مصرف و سنگین در لجن از مخلوط اسید و کلسیم و سنگین محلول در دریابد و اسید نتریک غلظت به سنتی دو به یک استفاده گردید. (12). غلظت عناصر کم مصرف و سنگین در گیاه، پسابه‌های و لجن به وسیله دستگاه جدید ایمنی پرکینه‌ی مری مدل ۲۰۲۰ به سیستم روش‌های سنجش با استفاده از دستگاه‌های اسکیمتریک فیلامنت فтор، کربن در دو لحیافت و پتانسیم آنها توسط دستگاه فیلامنت ۲۱۸۰ لحیافت گردید (16). برای اندازه‌گیری مواد آهن از روش اکسیداسیون نیترای به استفاده شد. کلرید پسابه، لجن و خاک از روش تیتراسیون با محلول ۲۰۲۵ مولار نیترات نبود در مجاورت عفون مکرات پتانسیم و کربنات و بی‌کربنات به تیتراسیون به وسیله اسید سولفوریک ۵۰ مولار در مجاورت عفون مکرات فیلم فیلامنتان اندازه‌گیری گردید. سولفات موجود در پسابه به روش دوکرت سنجی و نیترات نیز به وسیله کلرید نیترات اندازه‌گیری شد (11).

نتایج و بحث

وزیگه‌های شیمیایی بسیار به منظور بررسی کیفیت پسابه‌ها یا جهت پرورش گیاه، برخی از وزیگه‌های شیمیایی مانند وزیگه‌های مربوط به شور و قلیاییت، برخی از عناصر غلظی اصلی و کم مصرف و همچنین فلاتر سنگین آن اندازه‌گیری شد که نتایج آن در جدول‌های ۲ و ۳ نشان داده شده است. از نظر باشگاه وزیگه‌های مربوط به USEPA (United States Environmental Protection Agency) و پسابه‌های (Food and Agriculture Organization) FAO مورد آزمایش در محدوده‌های مجاز و قابل استفاده قرار دارد (۲۵). به تدریج غلظت کل املاح، پسابه‌های سررسی
جدول ۲. برخی از ویژگی‌های شیمیایی آب و پساب‌های مورد آزمایش

<table>
<thead>
<tr>
<th>نوع آب یا پساب</th>
<th>pH</th>
<th>(mM)^{1/2}</th>
<th>dS/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>8/4</td>
<td>1</td>
<td>4/5</td>
</tr>
<tr>
<td>خروجی هواگرد</td>
<td>8/6</td>
<td>3/1</td>
<td>7/3</td>
</tr>
<tr>
<td>سریز تصفیه پساب</td>
<td>7/9</td>
<td>3/2</td>
<td></td>
</tr>
<tr>
<td>خروجی به رودخانه</td>
<td>7/9</td>
<td>3/9</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳. میانگین غلظت (mg/L) عناصر کم مصرف و فلزات سنگین آب چاه و پساب‌های مورد آزمایش

<table>
<thead>
<tr>
<th>نوع آب یا پساب</th>
<th>Co</th>
<th>Cd</th>
<th>Pb</th>
<th>Ni</th>
<th>Zn</th>
<th>Mn</th>
<th>Cu</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>خروجی هواگرد</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>سریز تصفیه پساب</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>خروجی به رودخانه</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

1. میانگین چهار نویت نمونه برداری

4. کمتر از حد تشخیص دستگاه
جدول ۲. ترکیب شیمیایی لجن فاضلاب کارخانه پلی اکریل ایران

<table>
<thead>
<tr>
<th>واحد</th>
<th>کمیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>۶/۷</td>
</tr>
<tr>
<td>dS/m</td>
<td>۸/۳</td>
</tr>
<tr>
<td>نیتروژن کل</td>
<td>۷/۴</td>
</tr>
<tr>
<td>فسفر</td>
<td>۱/۱۵</td>
</tr>
<tr>
<td>پتاسیم</td>
<td>۰/۷۵</td>
</tr>
<tr>
<td>سدیم</td>
<td>۰/۲۰</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>مگنزیم</td>
<td>۰</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۰</td>
</tr>
<tr>
<td>کربنات</td>
<td>۱/۲</td>
</tr>
<tr>
<td>مواد آلی</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>pH</td>
<td>۴/۸۰</td>
</tr>
<tr>
<td>mg/kg</td>
<td>۸/۴</td>
</tr>
<tr>
<td>ee</td>
<td>۳/۴</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۳/۵</td>
</tr>
<tr>
<td>مگنزیم</td>
<td>۱/۰</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۱/۰</td>
</tr>
<tr>
<td>نیتروژن کل</td>
<td>۲/۵</td>
</tr>
<tr>
<td>روی کل</td>
<td>۵/۵</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۵/۵</td>
</tr>
<tr>
<td>مگنزیم</td>
<td>۸/۵</td>
</tr>
</tbody>
</table>

غلظت عناصر در گیاه

اکسین نیتروژن

غلظت نیتروژن کل ماده خشک اندام هوایی گیاهان گندم، جو و ذرت به ترتیب در جدول‌های ۵ و ۷ نشان داده شده است. حد بحرانی کمبود نیتروژن در گندم و جو حدوداً ۲/۴ و در ذرت ۲ درصد بیشتر شده است. حد بحرانی کمبود نیتروژن کل در گندم برای بیمار پساب خروجی هوامدها و خروجی به رودخانه کمی پایین‌تر از حد بحرانی آن است ولی در سه بیمار دیگر بالاتر از حد بحرانی می‌باشد (جدول ۵). در جو فقط بیمار پساب خروجی هوامدها از لحاظ میزان نیتروژن کمی پایین‌تر از حد بحرانی است، ولی در ذرت در تمام بیمارها سنگین و کم مصرف مورد توجه بیشتری قرار دارد. زیرا استفاده دراز مدت از این ماده می‌تواند موجب جمع‌آوری این عناصر و در نهایت آلودگی خاک و بسیاری آن به سنگین‌شدن بافت‌های انسان و حیوان گردد. مقایسه غلظت عناصر مذکور در لجن مورد آزمایش (جدول ۴) با استاندارد سازمان حفاظت محیط زیست آمریکا (۹) نشان می‌دهد که غلظت این عناصر در لجن فاضلاب مورد آزمایش در محدوده مناسب بوده و کیفیت آن مشکلی نیامده بود. از طرفی با اضافه کربن ۲۰ تن لجن در هکتار به ترتیب حدود ۱۴۲، ۱۸، ۸۷ و ۴ کیلوگرم از عنصر اهن، روزی، مکاننگ و کلسیم به خاک اضافه شده که انتظار می‌رود حداقل بخشی از نیاز کیاه را تأمین نماید.
جدول 5. غلظت (‰) بخش عناصر پر مصرف و سدیم در ماده خشک اندام هوایی گندم

<table>
<thead>
<tr>
<th>Na</th>
<th>K</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.25</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

جدول 6. غلظت (‰) بخش عناصر پر مصرف و سدیم در ماده خشک اندام هوایی جو

<table>
<thead>
<tr>
<th>Na</th>
<th>K</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.25</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

جدول 7. غلظت (‰) بخش عناصر پر مصرف و سدیم در ماده خشک اندام هوایی ذرت

<table>
<thead>
<tr>
<th>Na</th>
<th>K</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.25</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

می‌تواند نقش بسزایی در تأمین نیتروژن گیاه داشته باشد. نتایج نشان داد که بکارگیری کودهای

شفاف‌ترین نتایج و بهترین نتایج در مطالعه در مورد بکارگیری کودهای

نیتروژن به نظر می‌رسد برای شرایط آزمایشی. کاربرد کودهای

شفاف‌ترین نتایج و بهترین نتایج در مطالعه در مورد بکارگیری کودهای

نیتروژن به نظر می‌رسد برای شرایط آزمایشی. کاربرد کودهای

نیتروژن به نظر می‌رسد برای شرایط آزمایشی. کاربرد کودهای

نیتروژن به نظر می‌رسد برای شرایط آزمایشی. کاربرد کودهای

نیتروژن به نظر می‌رسد برای شرایط آزمایشی. کاربرد کودهای
کاهش دهه که این پدیده نیز همیشه کاربرد پساب و لجن در کشاورزی را بهتر از سایر این امر باشد. این آن‌چه سلام است بیماری از فاصله‌های گینه به‌طور یک‌جا گیاهان را به‌عنصر مریمی گیر یاد می‌گردد. بیماری‌ای در این کشور موارد کاربرد آنها نمی‌تواند مهاجرت گیاه‌های کاهش نیاز غذایی گیاه‌های این کشور و نیروز در کاهش گیاهان از دسترسی به صورت تنها تأمین شده است.

ب) فسفر

غلظت فسفر کل ادامه کاهش در جدول‌های ۵ و ۶ نشان داده شده است. در سه گیاه مورد کشت احترام معنی‌داری در سطح ۵٪، ۵ درصد و در دو ۰/۵ درصد در تاپسی در از بین ۱۵۰۰ مواد شناخته شده است (۶). غلظت فسفر گینه از نظر عصاره و بنابراین نیاز به خوراکی فسفری نیاز به خوراکی فسفر در کاهش برای هر گیاه در این گیاهان تحت تيار کاهش پساب هورا مربوط به رودخانه و در دو ۰/۵ درصد در تاپسی در از بین ۱۵۰۰ مواد شناخته شده است (۶). غلظت فسفر گینه از نظر عصاره و بنابراین نیاز به خوراکی فسفری نیاز به خوراکی فسفر در کاهش برای هر گیاه در این گیاهان تحت تيار کاهش پساب هورا مربوط به رودخانه و در دو ۰/۵ درصد در تاپسی در از بین ۱۵۰۰ مواد شناخته شده است (۶). غلظت فسفر گینه از نظر عصاره و بنابراین نیاز به خوراکی فسفری نیاز به خوراکی فسفر در کاهش برای هر گیاه در این گیاهان تحت تيار کاهش پساب هورا مربوط به رودخانه و در دو ۰/۵ درصد در تاپسی در از بین ۱۵۰۰ مواد شناخته شده است (۶). غلظت فسفر گینه از نظر عصاره و بنابراین نیاز به خوراکی فسفری نیاز به خوراکی فسفر در کاهش برای هر گیاه در این گیاهان تحت تيا
نتیجه‌گیری

پساب‌ها و لجن مورد آزمایش‌ها و در اندازه‌های آدینه مقداری نباید توجه تعیینی باشد. همچنین پساب‌ها مورد آزمایش از نظر شرایط و FAO و USEPA مجاز و قابل استفاده می‌باشد. غلظت این مصرف توسط FAO و USEPA استانداردهای از سه مقدار کدی به بیش از سه ماه گزارش می‌شود. غلظت این مصرف توسط FAO و USEPA استانداردهای از سه مقدار کدی به بیش از سه ماه گزارش می‌شود. غلظت این مصرف توسط FAO و USEPA استانداردهای از سه مقدار کدی به بیش از سه ماه گزارش می‌شود. غلظت این مصرف توسط FAO و USEPA استانداردهای از سه مقدار کدی به بیش از سه ماه گزارش می‌شود.
جدول 8. غلظت (mg/kg) عناصر کم مصرف و ستگین در ماده خشک اندام هواپیمای گندم

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1/8b</td>
<td>3b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/5a</td>
<td>1a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/8b</td>
<td>3b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* خروجی هواپدید
* آب چاه
* آب چاه + لجن
* سریز تصفیه پساب
* نمونه‌هایی که در هر ستون دارای خروج و مشترک هستند در سطح 5% آزمون دانکن اختلاف معنی‌دار ندارند.

جدول 9 غلظت (mg/kg) عناصر کم مصرف و ستگین در ماده خشک ریشه گندم

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>7/6a</td>
<td>1/5c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11/4b</td>
<td>1a</td>
<td>51</td>
<td>110</td>
<td>56,3</td>
<td>3495</td>
<td>67</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>12/3c</td>
<td>ND</td>
<td>51</td>
<td>116,3</td>
<td>64</td>
<td>380</td>
<td>66</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

* خروجی به رودخانه
* آب چاه
* آب چاه + لجن
* سریز تصفیه پساب
* نمونه‌هایی که در هر ستون دارای خروج و مشترک هستند در سطح 5% آزمون دانکن اختلاف معنی‌دار ندارند.

جدول 10. غلظت (mg/kg) عناصر کم مصرف و ستگین در ماده خشک اندام هواپیمای جو

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3b</td>
<td>0/5c</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>5a</td>
<td>5a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/5a</td>
<td>ND</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/3b</td>
<td>ND</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/5b</td>
<td>ND</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* خروجی به رودخانه
* آب چاه
* آب چاه + لجن
* سریز تصفیه پساب
* نمونه‌هایی که در هر ستون دارای خروج و مشترک هستند در سطح 5% آزمون دانکن اختلاف معنی‌دار ندارند.

* کمتر از حد تشخیص دستگاه
جدول 11. غلظت (mg/kg) عناصر کم مصرف و سنگین در ماده خشک ریشه جو

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8</td>
<td>16</td>
<td>2/8ab</td>
<td>36</td>
<td>95</td>
<td>805</td>
<td>514</td>
<td>آب چاه</td>
</tr>
<tr>
<td>7/3</td>
<td>14</td>
<td>3/8ab</td>
<td>111</td>
<td>32</td>
<td>33</td>
<td>572</td>
<td>آب چاه + لجن</td>
</tr>
<tr>
<td>12/5</td>
<td>5/3</td>
<td>7/8ab</td>
<td>131</td>
<td>40</td>
<td>588</td>
<td>515</td>
<td>خروجی هرودهها</td>
</tr>
<tr>
<td>7</td>
<td>165</td>
<td>3/8ab</td>
<td>47</td>
<td>47</td>
<td>249</td>
<td>574</td>
<td>سررزی تصفیه پساب</td>
</tr>
<tr>
<td>10/8</td>
<td>25</td>
<td>7/8ab</td>
<td>156</td>
<td>47</td>
<td>58</td>
<td>574</td>
<td>خروجی به رودخانه</td>
</tr>
</tbody>
</table>

: میانگین‌هایی که در هر ستون دارای حروف مشترک هستند در سطح 5/ آزون دانک اختلاف معنی‌دار ندارند.

---

جدول 12. غلظت (mg/kg) عناصر کم مصرف و سنگین در ماده خشک اندام هواپیمای خرید

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>آب چاه</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1/10</td>
<td>1/10</td>
<td>ND</td>
<td>ND</td>
<td>آب چاه + لجن</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>12</td>
<td>41</td>
<td>38</td>
<td>268</td>
<td>خروجی هرودهها</td>
</tr>
<tr>
<td>ND</td>
<td>1/3b</td>
<td>2/5a</td>
<td>17</td>
<td>49</td>
<td>75</td>
<td>215</td>
<td>سررزی تصفیه پساب</td>
</tr>
<tr>
<td>2/5</td>
<td>2/5a</td>
<td>77</td>
<td>20</td>
<td>77</td>
<td>30</td>
<td>289</td>
<td>خروجی به رودخانه</td>
</tr>
</tbody>
</table>

: میانگین‌هایی که در هر ستون دارای حروف مشترک هستند در سطح 5/ آزون دانک اختلاف معنی‌دار ندارند.

: کمتر از حد تشخیص دستگاه

---

جدول 13. غلظت (mg/kg) عناصر کم مصرف و سنگین در ماده خشک ریشه ذرت

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>Mn</th>
<th>Zn</th>
<th>Fe</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/3</td>
<td>11/8</td>
<td>1</td>
<td>29</td>
<td>59</td>
<td>285</td>
<td>350</td>
<td>آب چاه</td>
</tr>
<tr>
<td>1/3</td>
<td>14</td>
<td>2/3ab</td>
<td>31/5</td>
<td>94</td>
<td>26</td>
<td>427</td>
<td>آب چاه + لجن</td>
</tr>
<tr>
<td>1/3</td>
<td>14</td>
<td>2/3ab</td>
<td>31/5</td>
<td>94</td>
<td>26</td>
<td>427</td>
<td>آب چاه + لجن</td>
</tr>
<tr>
<td>5/3</td>
<td>14</td>
<td>2/3ab</td>
<td>31/5</td>
<td>94</td>
<td>26</td>
<td>427</td>
<td>آب چاه + لجن</td>
</tr>
<tr>
<td>8</td>
<td>19/5</td>
<td>3/8ab</td>
<td>40</td>
<td>935</td>
<td>34</td>
<td>539</td>
<td>سررزی تصفیه پساب</td>
</tr>
<tr>
<td>4/8</td>
<td>14/5</td>
<td>7/8ab</td>
<td>61</td>
<td>841</td>
<td>34</td>
<td>539</td>
<td>سررزی تصفیه پساب</td>
</tr>
<tr>
<td>4/8</td>
<td>14/5</td>
<td>7/8ab</td>
<td>61</td>
<td>841</td>
<td>34</td>
<td>539</td>
<td>سررزی تصفیه پساب</td>
</tr>
</tbody>
</table>

: میانگین‌هایی که در هر ستون دارای حروف مشترک هستند در سطح 5/ آزون دانک اختلاف معنی‌دار ندارند.
جدول 14. غلظت (mg/kg) معمول بعضی از فلزات در ماده خشک اندام هواپیمای گیاهان

<table>
<thead>
<tr>
<th>عنصر</th>
<th>کمیت (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0.05-0.10</td>
</tr>
<tr>
<td>Co</td>
<td>0.01-0.05</td>
</tr>
<tr>
<td>Cu</td>
<td>0.05-0.10</td>
</tr>
<tr>
<td>Mn</td>
<td>0.05-0.10</td>
</tr>
<tr>
<td>Ni</td>
<td>0.05-0.10</td>
</tr>
<tr>
<td>Pb</td>
<td>0.05-0.10</td>
</tr>
<tr>
<td>Zn</td>
<td>0.05-0.10</td>
</tr>
</tbody>
</table>

جدول 15. اثر تیمارها بر عملکرد وزن خشک (گرم در گلدان)

<table>
<thead>
<tr>
<th>کیا تیمار</th>
<th>گندم</th>
<th>چربان</th>
<th>اندام هواپی</th>
<th>اندام هواپی</th>
<th>اندام هواپی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3 a</td>
<td>15/4 a</td>
<td>15/4 a</td>
<td>15/4 a</td>
<td>15/4 a</td>
<td></td>
</tr>
<tr>
<td>3/3 a</td>
<td>16/4 a</td>
<td>16/4 a</td>
<td>16/4 a</td>
<td>16/4 a</td>
<td></td>
</tr>
<tr>
<td>4/3 a</td>
<td>16/4 a</td>
<td>16/4 a</td>
<td>16/4 a</td>
<td>16/4 a</td>
<td></td>
</tr>
</tbody>
</table>

نداشت که احتمالاً به دلیل مصرف کافی این عنصر در خاک و همچنین غلظت نسبتاً کم آنها در پساب و لجن مورد آزمایش می‌باشد. کاربرد پساب‌ها غلظت سدیم گیاهان را به طور معنی‌داری افزایش داده که در هر گونه نتیجه‌گیری قرار دارد. آب‌زایی گیاهان حساس به شورای باید مورد توجه قرار گیرد. غلظت عنصر Cu در گیاهان آزمایشی در اثر کاربرد پساب‌ها و لجن افزایش یافت. بیشترین غلظت غلظت این عنصر در تیمار آب چاه + لجن مشاهده شد که احتمالاً به دلیل افزایش قابلیت جذب این فلزات توسط مواد آلی لجن در خاک می‌باشد. غلظت عنصر Co و Pb نیز تا 10% کاهش یافت.

108
سپاسگزاری

بند۲ و ۳ مسئول محرمان کارخانه پلی اکریل ایران برای تأیم نخستی از هرچه‌یا و مواد این پژوهش و نیز خانم مهندس

متابع مورد استفاده

1. بهنزی، ر. (ترجمه). ۱۳۷۲. مطالعه اثر زمان در برخی تری‌تکرارهای بر مجموعه‌یا در بسیاری تصفیه فاضلاب. آب و فاضلاب

۲. دلیایی، م. ۱۳۷۵. اصول طراحی تصفیه خانه‌های فاضلاب شهری. انتشارات شهر آب و فاضلاب

۳. صدری سنجانی، غ. ۱۳۷۳. پیامد آپاراری بر بخشهای ویژه‌یا ایشیای خاک‌های ناحیه برخوار اصفهان و انتخاب‌گر

۴. علیزاده، م. ۱۳۷۵. استفاده از پساب تصفیه خانه‌های فاضلاب در آیلاری محصولات کشاورزی. هفته نامه شهر آب و فاضلاب

۵. معاونت یک‌پاره‌سازی آبادان خط زمینی. ۱۳۸۱. استاندارد خروجی فاضلاب‌ها. انتشارات دفتر آموزش زیست محیطی.

۶. ملکی، م. و نئیسی، م. (ترجمه). ۱۳۷۳. مصرف کود در اراضی زراعی. انتشارات دانشگاه تربیت مدرس، تهران.


