تأثیر سطح ایستایی کم عمق و شوری آب زیرزمینی بر کمک آب زیرزمینی به تبخیر و تعرق
گلرگن (Carthamus tinctorius L.)

خداکرم بارگاهی و سیدعلی اکبر موسوی

چکیده
محدودیت‌های مناسبی از عوامل مختلف تغییر نظریه و مشکلات کشاورزی در ایران می‌باشد. با توجه به بارش بودن سطح ایستایی و شوری آب زیرزمینی در بخش‌های مختلف کشور، و مکانیزم‌های استفاده از آب زیرزمینی می‌تواند قند مؤثری در استفاده بهینه از آب در زراعت گلرگن باشد. در این راستا در این پژوهش تأثیر سطح مختلف ایستایی، شوری و شوری آب زیرزمینی بر تبخیر و تعرق گلرگن در شرایط دم و ایب در یک آزمایش گلخانه‌ای صورت گرفت. نتایج این‌تئوریاتی سنجش گلرگن و زمان‌سنجش گلرگن (0001،90 و 120 سانتی‌متر)، سطح شوری آب زیرزمینی، سطح آب زیرزمینی (1/4 و 10 دسیمتر بر متر) و سطح آب آبیاری (آبیاری به میزان 75 درصد تبخیر از سطح آزاد آب و باد دور 5 روز و بدون آبیاری) بودند. آزمایش به صورت فاکتور قابل طرح بلوک‌های کاملاً تصادفی به شکل تکرار انجام شد. برای ثابت‌گذاری اهمیت سطح ایستایی در گلرگن، یکی از سطح‌های دستگاه ساخته شد که بر اساس اصول بطور مارپیچ کار می‌گردید و میزان کمک آب زیرزمینی به تبخیر و تعرق و با تخلیه از سطح خاک به وسیله آن قابل اندازه‌گیری شد. نتایج نشان داد که شوری آب زیرزمینی، شرایط آبیاری و برهمکنش شوری و شرایط آبیاری بر تبخیر و تعرق گلرگن اثر محسوسی داشت. اثر سطح ایستایی، شوری، شرایط آبیاری، برهمکنش سطح ایستایی و شرایط آبیاری بر تبخیر و تعرق گلرگن، به‌ویژه سطح ایستایی و شرایط آبیاری، برهمکنش شوری و شرایط آبیاری با افزایش سطح ایستایی و شرایط آبیاری به تبخیر و تعرق گلرگن افزایش می‌یابد. در حالی که سطح ایستایی با درصد شوری در شرایط آب زیرزمینی 0/5 تا 10/7 درصد متوسط شد و این تغییر با تبخیر و تعرق نیز بین 0/4 تا 5/7 درصد تغییر کرد. به طور کلی شوری آب زیرزمینی باعث کاهش معناداری در تبخیر و تعرق گیاه و تبخیر از سطح خاک، تعرق گیاه و کمک آب زیرزمینی به تبخیر و تعرق گدرد.

واژه‌های کلیدی: سطح ایستایی، کم عمق، تبخیر و تعرق، گلرگن، شوری آب زیرزمینی

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار آبیاری، دانشکده کشاورزی، دانشگاه شیراز

59
مقدمه
ایران کشوری با توریسم رژیم‌های آسیایی است که در زمینه مناطق خشک و ترمه شخش جهان طبقه‌بندی می‌شود. محدودیت‌های ناپی住房和 عمده‌ترین تغییرات و مشکلات کشاورزی از این کشور می‌باشند. از طرف دیگر افزایش روزافزون جمعیت نیاز به تولید مواد غذایی بیشتر را ایجاد می‌کند. بنابراین یافتن راه‌کارهای برای غلبه بر کمبود آب در مناطق همواره از اولویت‌های مطالعاتی و پژوهشی بوده است تا بتوانی محصولات کشاورزی را به یاران جمعیت رو به تعداد تولید نمود.

سازمان ملل متحد در برنامه جمعیت و محیط زیست خود ایران را در رتبه ۱۰۰ کشور قرار داده که در سالانه آب شیرین تجدید شونده آنها پایین است. بر پایه این بررسی، سرانه آب در سال ۱۹۵۵ متر مکعب بوده که در سال ۱۹۵۷ به ۳/۲۵ متر مکعب رسیده و پیشینی می شود در سال ۱۹۰۵ به حدود ۰/۷۴ متر مکعب رسیده که حدود ۳/۵ درصد کمتر از سرانه آب در خط فقر (۳۰۰۰ متر مکعب) می باشد. بنابراین بر پایه معاینه‌های زيرو می‌خواهد کذشت که ایران بر مرحّل‌های کمبای‌ا را بررسی و در زمینه کشورهای بزرگترین کبیرین آب قرار گرفت (11).

در زمان‌های که گزارشگان از کشورهای جهان به عنوان گیاهی به حاصل‌برهنه شکست می‌شود، از جمله این خواص می‌توان به درست سازگاری بالا، مقاومت به سرما، مقاومت سبب خشکی، شوری و قلبی‌یابی بالا، هوا، و موارد مصرف متمرکز آن شاکر کرد (8). این گیاه از نظر مقاومت به شوری نیز که ایران نیمه مقالم می‌باشد (15).

گزارشگان در ایران در مصاحبه‌های محدود و پر کننده در استانهای همدان، یزد، اصفهان، فارس، آذربایجان شرقی، بوشهر، کردستان، مرکزی، کرمان، ایلام و خراسان کشت می شود. میزان برداشت محصول در کشور از گل‌ها و گیاهان ۲۰ کیلوگرم در هکتار و در مورد دانه حداکثر ۲۰۰ تن در هکتار در منطقه اصلی‌های کنارش شده است (3).
مواد و روش‌ها

آزمایش در ناپایان سال 1381 در گلخانه بخش آبیاری دانشگاه کشاورزی دانشگاه شیراز واقع در 16 کیلومتری شمال شیراز، با طول و عرض جغرافیایی به ترتیب ۵۲ درجه و ۳۲ دقیقه شرقی و ۲۴۲۵ دقیقه شمالی و ۱۸۱۰ متر ارتفاع از سطح دریا، انجام شد. گلخانه‌هایی به ارتفاع ۱۲۰ سانتی‌متر از سطح دریا، انجام شد. گلخانه‌ها از خاک مورد نظر اشیاء ۳۰–۴۰ سانتی‌متر خاک سری کوش استیاد دانشگاه کشاورزی (پر) شد. ضعفاً خاک از انک ۲ میلی‌متری کاذبانه شد تا سگرزی‌هویه آنجا جدید شود. برخی از مشخصات خاک مورد استفاده در جدول ۱ آن را است. میزان

پس از آماده کردن گلخانه‌ها به هر گیاه از آنها بر اساس میزان ۶۰ کیلوگرم در هکتار، کود فسفاته‌های داده شد و برای رسالدن رطوبت گلخانه‌ها به حالت طوفانی زراعی در تاریخ ۱۳۸۱/۵/۱ آبیاری انجام گردید. آغازه هنست بعد بدار گل‌کنگ رقم LSP به مساحتی شده برای کشی تولید گلخانه شد. میزان ۲۵۰ سانتی‌متری خاک کاذبانه شد که در تاریخ ۱۳۸۱/۵/۱۵ تقریباً تهیه می‌شد. این گلخانه به سیستم صورتی درد. در تاریخ ۱۳۸۱/۵/۲۸ بر اساس ۶۰ کیلوگرم در هکتار حیدرود ۵۰ درصد کود از همراه آب آبیاری به گیاهان داده شد. در تاریخ ۱۳۸۱/۶/۴ عملیات تنک گلدن صورت گرفت و تعداد گیاهان به ۴ عدد در هر گیاه کاذبانه داده شد. آغازه‌ها به تاریخ ۱۳۸۱/۶/۴ بهبود گیاهان و به‌خاطر ذکرالاحده در تاریخ ۱۳۸۱/۶/۱۷ تبیین می‌شد.

در این پژوهش از چهار عمل سطح ایستاکی (0-10، 10-20، 20-30 سانتی‌متر) در مساحت شری آبیاری (آب شرب با جهات بیشتر) و میزان ۶۰ سانتی‌متر به میزان ۷۵ درصد مقدار تبخیر از کاذبانه‌ها می‌شود و به سطح آب آبیاری برای دور آب آبیاری ۵ ور، عمل سطحی در سمت آبیاری ۵ ور، عمل سطحی در سمت خاک کاذبانه‌ها اضافه می‌شد. قیل از آن برای است کسری گیاهان آب‌زیمی می‌شود.

۶۱
جدول 1. برخی از ویژگی‌های خاک مورد مطالعه در ابتداي آزمایش

<table>
<thead>
<tr>
<th>رس (%)</th>
<th>سیلیت (%)</th>
<th>شن (%)</th>
<th>ماده آلی (%)</th>
<th>ECE(dS/m)</th>
<th>FC (درصد وزنی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>33/2</td>
<td>28/1</td>
<td>2/4</td>
<td>22</td>
<td>3</td>
</tr>
</tbody>
</table>

غلظت عناصر موجود در عصاره اشباع خاک (میلی‌گرم/وایان در لیتر)

<table>
<thead>
<tr>
<th>نسبت جلذی سدیم</th>
<th>کلسیم</th>
<th>سدیم</th>
<th>کلسیم</th>
<th>متریم</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/25</td>
<td>0/24</td>
<td>0/25</td>
<td>0/24</td>
<td>0/24</td>
</tr>
</tbody>
</table>

ا. ابطحی و همکاران (2010)

شکل 1. نمایی از سیستم مورد استفاده برای ثابت نگه‌داری سطح استیایی و مشخصات آن

1. لوله پلاستیکی شفاف به قطر ۶ میلی‌متر
2. لوله پلاستیکی شفاف به قطر ۶ میلی‌متر
3. لوله پلاستیکی شفاف به قطر ۱۲ میلی‌متر
4. چهار پایه فلزی
5. لوله پی. وی‌سی به قطر ۱۰۰ میلی‌متر
6. انتهای لوله ورودی هوای
7. لوله پی. وی‌سی به قطر ۷۵ میلی‌متر
8. رابط برنجی ۶ میلی‌متر
9. در بوش انتهایی
10. رابط برنجی ۶ میلی‌متر
أتیر سطح ایستاپی کم عمق و شهری آب زیرزمینی بر...

جدول 2. تجزیه آماری منابع مربوط به کنترل از آنادازه گیری شده

<table>
<thead>
<tr>
<th>منابع خطا</th>
<th>درجه آزادی</th>
<th>تبعیض و تعرق</th>
<th>کمک آب زیرزمینی به تبعیض و تعرق</th>
<th>میانگین</th>
<th>درجه سطح</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح ایستاپی شهری</td>
<td>3</td>
<td>257**</td>
<td>257**</td>
<td>3</td>
<td>251175</td>
</tr>
<tr>
<td>برهمکش سطح ایستاپی و شهری</td>
<td>3</td>
<td>944**</td>
<td>944**</td>
<td>3</td>
<td>211575</td>
</tr>
<tr>
<td>شرایط آبیاری</td>
<td>3</td>
<td>262**</td>
<td>262**</td>
<td>3</td>
<td>2237</td>
</tr>
<tr>
<td>برهمکش سطح ایستاپی و شرایط آبیاری</td>
<td>3</td>
<td>156**</td>
<td>156**</td>
<td>3</td>
<td>271</td>
</tr>
<tr>
<td>برهمکش شوری و شرایط آبیاری</td>
<td>1</td>
<td>271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>برهمکش سطح ایستاپی، شوری و شرایط آبیاری</td>
<td>3</td>
<td>271</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: معنی‌دار در سطح 1%, **: معنی‌دار در سطح 5%

آب‌بری انجام می‌شود.

برای اندازه‌گیری تبخیر، از لوله‌هایی با شرایط مشابه تیمارها (سطح ایستاپی، شهری آب زیرزمینی و شرایط دم و آبی) و لیون بدون کشت گیاه استفاده شد (جمعه 16 ۱۳۹۵). با مکمل بودن مقادیر تبخیر (از گلدان به دوستان گیاه) و تبخیر و تعرق (از گلدان، دام‌دار گیاه) و با استفاده از معادله پیل آب به سه‌گانه و آب زمین در شرایط گلدان‌ها صفر مستطیل‌شده‌اند. میزان تعرق در طول دوره آزمایش به دست آمده. توضیحات بشر در زمینه روش انجام آزمایش‌ها در بخش‌هایی (4) آمده است.

با توجه به تأثیر تیمارها از تاریخ ۱۳۹۵/۸/۱۷ تا ۱۳۹۵/۸/۳۱ به ترتیب خشک شدن گیاهان اقدام به برداشت آنها شد. در نهایت با استفاده از نرم‌افزارهای MSTATC و SAS تجزیه و تحلیل آماری و شد.

نتایج و بحث

تجزیه آماری مربوط به تأثیر عمق سطح ایستاپی، شرایط آبیاری، شهری، برهمکش عمق سطح ایستاپی و شهری، برهمکش شوری و شرایط آبیاری، برهمکش سطح ایستاپی و شرایط آبیاری آبیاری و بالاخره برهمکش عمق سطح ایستاپی، شهری و شرایط آبیاری بر تبخیر و تعرق گیاه، تبخیر از سطح خاک،
جدول ۳ تأثیر سطح استیلی و شوری آب زیرزمینی در حالت دم و آب بی‌خش و تعرق گیاه (سانتی‌متر)

<table>
<thead>
<tr>
<th>سطح استیلی (cm)</th>
<th>دم (dS/m)</th>
<th>استیلی</th>
<th>آبی</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری آب (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td>۰۸۵۵</td>
<td>۸۷.۹</td>
<td>۱۰۰</td>
<td>۰۸۵۵</td>
</tr>
<tr>
<td>۷۰</td>
<td>۷۰</td>
<td>۲۲۲</td>
<td>۰۶۹</td>
<td>۷۰</td>
</tr>
<tr>
<td>۱۲۰</td>
<td>۱۸۰</td>
<td>۱۲۰</td>
<td>۰۶۲</td>
<td>۱۸۰</td>
</tr>
</tbody>
</table>

میانگین

جدول ۴ میزان کمک آب زیرزمینی به بی‌خش و تعرق از آب زیرزمینی معمول

<table>
<thead>
<tr>
<th>میزان کمک آب زیرزمینی (cm)</th>
<th>میزان کمک آب زیرزمینی (cm)</th>
<th>میزان کمک آب زیرزمینی (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری آب (cm)</td>
<td>شوری آب (cm)</td>
<td>شوری آب (cm)</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰۸۵۵</td>
<td>۸۷.۹</td>
</tr>
<tr>
<td>۷۰</td>
<td>۷۰</td>
<td>۲۲۲</td>
</tr>
<tr>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td>۱۲۰</td>
</tr>
</tbody>
</table>

میانگین

امیدوارم این مطالب به شما کاربرد داشته باشد. لطفاً هر گونه سوال یا درخواست را به من بفرستید.
جدول ٤. تأثیر سطح ایستایی و شوری آب زیرزمینی در حال حاضر دم و آب بر میزان کمک آب زیرزمینی به تبخیر و تعرق گیاه (سانتی‌متر)

<table>
<thead>
<tr>
<th>میزان‌های میانگین</th>
<th>دم (d/m)</th>
<th>شوری آب (cm)</th>
<th>(cm)</th>
<th>سطح ایستایی</th>
<th>(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۴/۵ m</td>
<td>۵۵/۵ m</td>
<td>۱۰</td>
<td>۶۵</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۱۸۴</td>
<td>۶۰</td>
<td>۶۵</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۲۰</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۵۸/۵ m</td>
<td>۵۴/۹ m</td>
<td>۱۰</td>
<td>۶۵</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۸۴</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۲۰</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۴۹/۳ m</td>
<td>۳۳/۵ m</td>
<td>۱۰</td>
<td>۶۵</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۷۸</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۱۱</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۵۰/۸ m</td>
<td>۵۱/۸ m</td>
<td>۱۰</td>
<td>۶۵</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۸۴</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۱۷</td>
<td>۶۰</td>
<td>۷۰</td>
<td>۱۲۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

جدول ٥. تأثیر سطح ایستایی و شوری آب زیرزمینی در حال حاضر دم و آب بر میزان تبخیر و تعرق از آب زیرزمینی بر حسب درصد از کل تبخیر و تعرق گیاه در دوره اعمال تبمار

<table>
<thead>
<tr>
<th>دم (d/m)</th>
<th>شوری آب (cm)</th>
<th>سطح ایستایی (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۵۲/۱۴</td>
<td>۶۵</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۸۷/۷۲</td>
<td>۶۵</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۵۴/۹۲</td>
<td>۷۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۸۲/۳</td>
<td>۶۵</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۵۴/۸</td>
<td>۷۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۸۱/۱۴</td>
<td>۶۵</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۵۲/۵۱</td>
<td>۷۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۸۲/۵۸</td>
<td>۷۰</td>
</tr>
</tbody>
</table>

است. در کلیه سطوح انستایی و در شرایط آبی تغییر شوری آب زیرزمینی از ۴/۰ به ۱۰ دسیمتر سطح به متر کاهش چشمگیری در میزان کمک آب زیرزمینی به تبخیر و تعرق همراه بوده است. در شرایط یک مخلوط سطوح انستایی تغییر چندانی در میزان کمک آب زیرزمینی به تبخیر و تعرق ایجاد شد.
جدول 6. تأثیر سطح ایستگاه و شوری آب زیرزمینی در حال حاضر دیم و آب بر هیأت تبخیر از سطح خاک هر تیمار به تاخیر و تعرق گیاه در همان شرایط (بر حسب درصد) در دوره اعمال تیمار

<table>
<thead>
<tr>
<th>سطح ایستگاه (cm)</th>
<th>شوری آب (ds/m)</th>
<th>دیم</th>
<th>آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>50</td>
<td>52/8</td>
<td>17/1</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
<td>24/7</td>
<td>16/7</td>
</tr>
<tr>
<td>200</td>
<td>90</td>
<td>31/5</td>
<td>34/3</td>
</tr>
<tr>
<td>250</td>
<td>120</td>
<td>53/6</td>
<td>183</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>27/6</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td>187</td>
<td></td>
</tr>
</tbody>
</table>

در شرایط آب بیشتر از دیم انفاض می‌افتد. جدول 7 میزان تبخیر در سطوح مختلف ایستگاهی از شرایط آب و دیم با آب زیرزمینی و شوری نشان می‌دهد. نتایج نشان می‌دهد، همان‌طور که انتظار می‌رفت تأثیر سطح ایستگاه، شوری و شرایط آب و دیم برهمکنش سطح ایستگاه و شرایط آب و دیم، برهمکنش شرایط آب و دیم با هم اثراتی بر همکنش سطح ایستگاه، شوری و شرایط آب و دیم دارد. برخی از دلایل ذکری در میزان تبخیر در سطح خاک معنادار است (جدول 2).

(جدول 6)

(ب) متوسط تعرق گیاهی

تأثیر سطح ایستگاه با آب زیرزمینی و شوری و دیم در شرایط آب و دیم بر هیأت تبخیر و میزان تعرق گیاه در جدول 6 درج شده است. نتایج نشان می‌دهد که هر یک از آب و دیم تبخیر به کاهش معناداری در میزان تعرق گیاهی می‌انجامد. برهمکنش دو عامل فوق عنصر شوری و شرایط آب و دیم، برهمکنش سطح ایستگاه و شرایط آب و دیم با هم اثراتی بر همکنش سطح ایستگاه و شرایط آب و دیم دارد. این آزمایش نشان می‌دهد که میزان آب آبیاری مناسب 52/50 گزارش کرده.

(ج) تبخیر از دیم در کل همکنش سطح ایستگاه میزان تبخیر از سطح خاک از آب زیرزمینی شرایط آبیاری از شوری می‌باشد. همچنین تبخیر
جدول 7. تأثیر سطح ایستایی و شوری آب زیرزمینی در حالت دیم و آبی بر تبخیر از سطح خاک تیمارها (سانتی متر)

<table>
<thead>
<tr>
<th>مایه‌گی</th>
<th>سطح ایستایی</th>
<th>شوری آب (dS/m)</th>
<th>شوری آب (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دیم</td>
<td>آبی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37/1 A</td>
<td>75/6 A</td>
<td>51/6 A</td>
<td>50</td>
</tr>
<tr>
<td>7/32 A</td>
<td>15/1 A</td>
<td>28/4 A</td>
<td>50</td>
</tr>
<tr>
<td>35/1 F</td>
<td>7/4 A</td>
<td>14/1 G</td>
<td>90</td>
</tr>
</tbody>
</table>

*ءاعداد و مایه‌گی هایی که در هر ستون در یک حرف کوچک و یا در هر رنگ در یک حرف بزرگ و یا یک حرف کوچک مشترک هستند طبق آزمون دانک در سطح 5 درصد تفاوت معنی‌داری ندارند.

جدول 8. تأثیر سطح ایستایی و شوری آب زیرزمینی در حالت دیم و آبی بر تبخیر گیاه (سانتی متر)

<table>
<thead>
<tr>
<th>مایه‌گی</th>
<th>سطح ایستایی</th>
<th>شوری آب (dS/m)</th>
<th>شوری آب (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دیم</td>
<td>آبی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39/5 A</td>
<td>31/5 A</td>
<td>48 A</td>
<td>10</td>
</tr>
<tr>
<td>18/4 A</td>
<td>15/3 B</td>
<td>27/2 A</td>
<td>50</td>
</tr>
<tr>
<td>7/4/1 C</td>
<td>127 A</td>
<td>14/1 G</td>
<td>90</td>
</tr>
</tbody>
</table>

*ءاعداد و مایه‌گی هایی که در هر ستون در یک حرف کوچک و یا در هر رنگ در یک حرف بزرگ و یا یک حرف کوچک مشترک هستند، طبق آزمون دانک در سطح 5 درصد تفاوت معنی‌داری ندارند.

ایستایی تغییر شوری از 6/4 به 6/2 به 10 دسی زیمنس بر متر باعث کاهش معنی‌داری در میزان تعرق گیاه شده است. بیشترین تعرق در سطح ایستایی 70 سانتی متر با آب زیرزمینی با شوری 6/4 دسی زیمنس بر متر و در شرایط آبی به دم باعث کاهش معنی‌داری در میزان تعرق گیاه شده است. همچنین در کلیه سطوح ایستایی، جری عمق 120 سانتی متر تغییر شرایط از
نتیجه‌گیری
در این پژوهش ملاحظه‌گرده که شوری آب زیرزمینی، شرایط آبیاری و سطح زیرزمینی، اثر معمولی آب در دانسته، اثر سطح ایستاپی و شرایط آبیاری، شرایط زیرزمینی و شرایط آبیاری، شرایط ایستاپی و شرایط آبیاری، شرایط زیرزمینی و شرایط آبیاری، شرایط ایستاپی و شرایط آبیاری، بر پایه شرایط سطح‌های آبیاری، شرایط زیرزمینی و شرایط آبیاری
برای میزان تبخیر از سطح خاک معمولی دارای بوده است. با اواخر عمق

منابع مورد استفاده
1. ابطحی ع. ن. کریمیان و م. صلحی. 1370. گزارش مطالعات خاکشناسی نیمه تفصیلی اراضی منطقه با گنگ‌های - استان فارس. دانشگاه شکاوزی، دانشگاه شیراز.
2. افونیه، د. م. ملحویه. ک. رشمه‌کریم. 1378. اختلافات آب در دانسته، اثر سطح ایستاپی و شرایط آبیاری، شرایط زیرزمینی و شرایط آبیاری، شرایط ایستاپی و شرایط آبیاری، بر پایه شرایط سطح‌های آبیاری، شرایط زیرزمینی و شرایط آبیاری، شرایط ایستاپی و شرایط آبیاری، برای میزان تبخیر از سطح خاک معمولی دارای بوده است. با اواخر عمق
5. گل‌گرده. 1371. تأثیر شرایط نقل و صرف روی رشد و تربیت شیمیایی گل‌گرده. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه شیراز.
تأثیر سطح استخوانی کم عمق و شوری آب زیرزمینی بر... سیاسخواره، ع. ر. ۱۹۸۰. راهکارهای دیگر در مدیریت مزروعه برای مقابله با خشکسالی. چکیده سیستانها، ارایه شده در سمیانه‌ای اعضای هیئت علمی دانشکده کشاورزی، دانشگاه شیراز.

۶. شهدی کوشک، ع. ۱۳۷۳. تأثیر عمق و سطحی و شوری آب به شیب و ترکیب شمالی و مرکزی و رنگ پرینج (Oryza sativa L.) پایان نامه کارشناسی ارشد آبیاری و زراعت، دانشگاه کشاورزی، دانشگاه شیراز.

۷. فروردین، ک. ۱۳۷۸. گرایش. انتشارات شرکت دانه‌های رهگی، تهران.

۸. گریمی گوئری، ش. ۱۳۷۸. بررسی تأثیر سطح استخوانی کم عمق و شوری آب به شیب و مرکزی یا برق (رقم با امکان زندگی) در شرایط دم و سرد در گلخانه، پایین نامه کارشناسی ارشد آبیاری و زراعت، دانشگاه کشاورزی، دانشگاه شیراز.

۹. محمدی محمدآبادی، ا. ۱۳۷۴. بررسی مقاومت پایه‌های متعادل بسته به سطح مختلف شوری آب پایین نامه کارشناسی ارشد آبیاری و زراعت، دانشگاه شیراز.

۱۰. نجات پور، ح. ۱۳۶۹. پایه‌های بسته به شرایط دم و سرد در گلخانه، پایین نامه کارشناسی ارشد شاخص در اقتصاد کشاورزی، دانشگاه کشاورزی، دانشگاه شیراز.

۱۱. واژر، ا. ۱۳۷۵. دانه‌های رهگی. ترجیح گرایش ناصله. موسسه چاب و انتشارات آستان قدس رضوی، مشهد.

