بررسی سرریزه‌های چند وجهی با پلان مستطیلی و U شکل

متوهه حیدریور، سید فرهاد موسوی و علی رضا روشان زرمهری

چکیده

سرریزه‌های چند وجهی به دلیل تغییرات جزئی بر اساسیکی روش‌های تجربی در شرایط نوسانات زیاد شدت چوبان، در مقایسه با انواع دیگر سرریز، سازه‌های اقتصادی برای کنترل سطح آب در شیکه‌های آبیاری محصول می‌شوند. این سرریزه‌ها از وجوه مصالحه می‌شوند. در این تحقیق، سرریزه‌های چند وجهی که در قلاع به شکل مستطیلی و U می‌باشند، مورد بررسی قرار گرفتند. آزمایش‌های روزی 20 مدل آزمایش‌گاهی سرریز انجام گرفته است. مدل‌ها شامل 8 سرریز چند وجهی مستطیلی و 6 سرریز چند وجهی U شکل با طول و ارتفاع مختلف و یک مدل سرریز خشک می‌باشد.

این نتایج هم‌چنین بررسی شدند که در مدل 12 و ارتفاع 240 متر آزمایشگاهی با ده کیلو سرریزه‌های چند وجهی، ضریب دینی نسبت به H2/H1 افزایش یافته و در این مدل نسبت به 8 کیلو سرریزه‌های چند وجهی شکل U افزایش یافت. نتایج همچنین نشان می‌دهد که افزایش طول مایع با چهت جریان در سرریزه‌های چند وجهی بهبود آبکشی و تریب دیب و افزایش طول عمود بر جهت جریان باعث افزایش آن می‌شود. همچنین، ضریب دیب در سرریزه‌های چند وجهی U شکل پیشرفت از سرریزه‌های چند وجهی که در این مدل شکل یافته با ده کیلو سرریزه‌ها با زاویه α برای 8 و 12 درجه بهبود و همچنین ضریب دیب در سرریزه‌های U شکل افزایش یافته است.

واژه‌های کلیدی: سرریز چند وجهی، سرریز خشک، ضریب دیب، مدل آزمایش‌گاهی

مقدمه

یکی از مشکلاتی که شیکه‌های آبیاری با آن مواجه هستند، تغییر میزان دیب عبوری از سازه آبیاری به واسطه نوسانات شدت سطح آب در مجري‌ها و اصلی است. با توجه به رابطه 1

1. به ترتیب استادیار، استاد و دانشجوی سابق کارشناسی ارشد آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
اختلاف وجود دارد. این اختلاف ناشی از کاربرد بالای بیزومتری به جای استفاده از بار آبی کل توسط محققین اخیر بوده است.

لذاک (5) باید آبی کل را به جای بیزومتری مورد استفاده قرار داده و در فرمول‌های تجربی برای بد بیور استفاده شود. از آنجایی که دقت و سادگی بیشتری باید به روش‌های بالاتری داشته، تولیس و همکاران (11) سریرزهای چند و جهگی به شکل ذوزنقه می‌باشند بررسی کردند و برای زاویه‌های مختلف (شکل 1) روش‌هایی را برای طراحی ارائه دادند. روش طراحی آنها به‌طوری است که در یک سریرز چند و جهگی، زاویه و تعادل بسیار تغییر می‌یابد. نتایج آزمایشگاهی مدال سریرز چند و جهگی سدهای ورودی و آنون واقع در استرالیا را مورد استفاده قرار داده و منحنی‌هایی پایین‌تر از نوع سریرزهای ارائه‌شده استفاده کردند. این نتایج نشان می‌دهد که عضایق گاهی به وسیله یادآوری مورد استفاده قرار می‌گرفته است. این سریرزهای چند و جهگی به‌طور بسیار بالاتری استفاده می‌شوند و حتی بیشتر از بار مورد استفاده قرار می‌گیرند.

در این پژوهش بررسی عملکرد هیدرولیکی سریرزهای چند و جهگی مستقل و 1+2 شکل (در پلاس) و مقایسه آنها با یکدیگر و با سریرزهای ذوزنقه‌ای شکل (در پلاس) است.
ب) اندکارگری‌ها

به منظور تعیین ضریب دی بزری لازم است دبی عبوری از سریز و همچنین بار هیدرولیکی روى آن اندکارگری محاسبه شده است. اندکارگری عمق آب در بالادست و پایین دست به وسیله یک کولس وریچه که به انتهای یک ارتقاء سنج نصب شده است و با دقت 1/10 میلیمتر صورت گرفت. این ارتقا سنج قادر بود که در طول و عرض کانال حركت کند.

پرپس سریزهای چند وجهی با پلان مستطیلی و یک شکل

چ) مدل‌های آزمایشگاهی

در این تحقیق 15 مدل آزمایشگاهی مورد استفاده قرار گرفت، با توجه به محدودیت عرض کانال آزمایشگاهی و پرهیز از کوچک شدن ابعاد مدل، تمامی مدل‌ها به صورت تک سیکلی ساخته شده‌اند. مدل‌هایی استفاده شده در پلان به صورت مستطیلی و یک شکل می‌باشند. شکل 3 نمایش مدل‌های آزمایشگاهی مورد استفاده و جدول 1 مشخصات کامل آن‌ها را نشان می‌دهد. مدل‌ها تعریف‌می‌شوند در وسیله کانال آزمایشگاهی که جریان کامل توسط پایه بوده و جریان آب در بالادست کامل آزموده و موج‌های سطحی کوچک نیز از بین رفته بودند نصب گردیدند.

مطالعات آزمایشگاهی پژوهش حاضر در یک فلوم آزمایشگاهی به طول 7 عرض 30/2 و ارتقا 3/5 متر انجام گرفت. این فلوم به وسیله یک موتور پمپ با حداکثر دبی 11 لیتر بر ثانیه تغذیه می‌گردد. تغییرات دبی در این فلوم به وسیله یک شیر کنترل که بالافصله بعد از پمپ و در ابتدا دهانه ورودی قرار گرفته است انجام می‌گیرد. نحوه تغذیه فلوم به این ترتیب است که آب در یک سیکل بسته از یک منبع اصلی، پمپ شده و از آن در پس از عبور از یک آرم کنترل که در ابتدا فلوم قرار دارد، وارد فلوم می‌شود. آب پس از عبور از فلوم آزمایشگاهی به داخل یک مخزن اندکارگری دیب حجمی وارد شده و سپس به مخزن

شکل 1 نمایش یک سیکل و برش عمودی از سریز چند وجهی

با پلان ذخیره

مواد و روش‌ها

الف) تجهیزات آزمایشگاهی

همانگونه که از جدول 1 مشخص است چهار ارتقا 8-5 برای بررسی اثر ارتقا، سه طول W4 و W3 10 و 12 سانتی‌متری W1 و W2 15 و 25 سانتی‌متری W2 و W3. برای بررسی اثر طول مداوم کاری جریان و سه طول W6 برای بررسی اثر طول عمودی بر W8 و W7 سانتی‌متری W3.
شکل 2. نمای فلز آزمایشگاهی مورد استفاده

شکل 3. شماتی سرعت‌های بند و جهت با پلان U و مستطیلی شکل

جریان بر سرپیچ دیس یا سرعت چند جهت مستطیلی مورد آزمایش قرار گرفته است. همچنین جهات ارتفاع ۱۰ و ۱۲ سانتی متری (U1, U2, U3, U4) برای بررسی اثر ارتفاع و سه طول ۴۲ و ۱۲۲ سانتی متری (U5, U6) برای بررسی اثر طول بر سرپیچ دیس سرعت چند جهت U شکل مورد آزمایش قرار گرفته است. مدل سرعت خطی به ارتفاع ۱۰ و طول ۳۲ سانتی متر به منظور مقایسه ضریب دیس این سرپیچ با

\[C_d = \frac{Q}{\frac{r}{3} \sqrt{g LH_1^2}} \]
جدول 1. مشخصات هندسی مدل‌های آزمایشگاهی (با توجه به پارامترهای تعیین شده در شکل 1)

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>L (cm)</th>
<th>P (cm)</th>
<th>CD (cm)</th>
<th>BC=ED (cm)</th>
<th>AB=EF (cm)</th>
<th>شکل باند</th>
<th>شکل بالا</th>
<th>نام سروری</th>
<th>شکل بالا</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>92</td>
<td>6</td>
<td>14</td>
<td>30</td>
<td>9</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W1</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>W2</td>
<td>92</td>
<td>8</td>
<td>14</td>
<td>30</td>
<td>9</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W2</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>W3</td>
<td>92</td>
<td>10</td>
<td>14</td>
<td>30</td>
<td>9</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W3</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>W4</td>
<td>92</td>
<td>12</td>
<td>14</td>
<td>30</td>
<td>9</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W4</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>W5</td>
<td>122</td>
<td>8</td>
<td>14</td>
<td>25</td>
<td>9</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W5</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>W6</td>
<td>152</td>
<td>8</td>
<td>14</td>
<td>60</td>
<td>9</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W6</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>W7</td>
<td>92</td>
<td>10</td>
<td>24</td>
<td>30</td>
<td>5</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W7</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>W8</td>
<td>92</td>
<td>10</td>
<td>18</td>
<td>30</td>
<td>7</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>W8</td>
<td>مستطیلی</td>
</tr>
<tr>
<td>U1</td>
<td>92</td>
<td>6</td>
<td>14</td>
<td>26</td>
<td>9</td>
<td>U شکل</td>
<td>U شکل</td>
<td>U1</td>
<td>U شکل</td>
</tr>
<tr>
<td>U2</td>
<td>92</td>
<td>8</td>
<td>14</td>
<td>26</td>
<td>9</td>
<td>U شکل</td>
<td>U شکل</td>
<td>U2</td>
<td>U شکل</td>
</tr>
<tr>
<td>U3</td>
<td>92</td>
<td>10</td>
<td>26</td>
<td>9</td>
<td>9</td>
<td>U شکل</td>
<td>U شکل</td>
<td>U3</td>
<td>U شکل</td>
</tr>
<tr>
<td>U4</td>
<td>92</td>
<td>12</td>
<td>26</td>
<td>9</td>
<td>9</td>
<td>U شکل</td>
<td>U شکل</td>
<td>U4</td>
<td>U شکل</td>
</tr>
<tr>
<td>U5</td>
<td>92</td>
<td>14</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>U شکل</td>
<td>U شکل</td>
<td>U5</td>
<td>U شکل</td>
</tr>
<tr>
<td>U6</td>
<td>122</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>U شکل</td>
<td>U شکل</td>
<td>U6</td>
<td>U شکل</td>
</tr>
<tr>
<td>U7</td>
<td>32</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>مستطیلی</td>
<td>مستطیلی</td>
<td>U7</td>
<td>مستطیلی</td>
</tr>
</tbody>
</table>

ارتفاع‌های مختلف نشان می‌دهد. همان‌گونه که از این شکل مشخص است روند تغییرات ضریب دی نسبت به بهره H/P بهبود کلی ارتفاع‌ها مشاهده می‌شود و کلیه محدوده‌ها دو محدوده قابل تفکیک وجود دارد. این محدوده‌ها شباه شاخه صعودی منحنی و شاخه نزولی آن می‌باشد. در شاخه صعودی منحنی، مشاهده می‌گردد که با افزایش H/P مقادیر ضریب دی نسبت به H/P می‌یابد. روند صعودی این بخش از منحنی نشان دهنده آن است که در این محدوده تداخل سفره‌های اشکی چندان قابل توجه نبوده و تقریباً در کل طول تاج سروری جریان به صورت آزاد و بدون تداخل جدی ثانی و نهایتاً به مورد می‌گردد. به مرور، با افزایش ارتفاع آب روی سروری تداخل سفره‌های اشکی عموری از روی سروری به صوص در منطقه رأس آن افزایش می‌یابد. بر اثر تداخل سفره‌های اشکی آب، نوعی حالت استغراق در

ضریب دی = C\(_d\) = \(Q / D\) (دبی جریان، متر مکعب در ثانیه)
طول مولت‌نل (تاج) = L (متر)
بار گیرنده ولولیکی = Bar\(H_i\) (میلی‌متر، هرمیک یک بار)
کم‌ترین دیمانیک = Bar\(H_i\) (شکل 1)

\(g\) = شدت نقل، متر بر میلی‌متر ثانیه

نتایج و بحث
الف) سروری‌های جند و جنگی با پانل مستطیلی شکل

1. تأثیر ارتفاع سروری بر ضریب دی
براحای بررسی تأثیر ارتفاع سروری بر ضریب دی، سروری‌های W1، W2، W3، W4 و W5 (جدول 1) مورد استفاده قرار گرفته‌اند.

2. نحوه تغییرات ضریب دی را نسبت به برای H/P شکل 1
مقدار کمتری \(H_p/P \) و یا در دبی‌های کمتر اتفاق می‌افتد.

همان‌گونه که در شکل ۱ مشخص است با افزایش ارتفاع سرریز، منحنی‌های حرارتی به یکدیگر نزدیک می‌شوند به گونه‌ای که منحنی مربوط به ارتفاع‌های ۱۰ و ۱۲ سانتی‌متر بیشتر به یکدیگر نزدیک می‌باشند. این مثال به این خاطر است که در ارتفاع‌های زیاد داخل سفره‌های ریزشی با دبی‌های کمتر می‌باشد. همان‌گونه که از این شکل مشخص است، به طور کلی با افزایش ارتفاع سرریز، برای \(H_p/P \) ثابت، ضرب دی افزایش می‌یابد. ولی این افزایش ضرب دی، در بخش نزولی منحنی به این جایی که داخل سفره‌های ریزشی وجود دارد بیشتر از بخش صعودی منحنی به این جایی که داخل سفره‌های ریزشی وجود ندارد می‌باشد.

۲- تأثیر طول موازی جهت جریان بر ضرب دی

به منظور بررسی تأثیر طول سرریز بر ضرب دی، تغییرات ضرب دی سرریز در حالتی که طول موازی جهت جریان یکه‌ای باشد (طول‌های \(ED \) و \(BC \) در شکل ۱) تغییر کند مطالعه شده است.

بدین ترتیب داشت که تغییر در طول‌های \(AB \) و \(EF \) تغییری در طول کل سرریز ایجاد نمی‌کند زیرا به همان اندازه افزایش تغییر در طول \(CD \) انجام خواهد داشت. همچنین تغییر در طول \(CD \) انجام شده است به همین منظور تغییر در طول‌های \(AB \) و \(EF \) و انجام خواهد داشت. به همین منظور تغییر در طول‌های \(W6 \) و \(W5 \) مورد استفاده قرار گرفتند.

همان‌گونه که از جدول ۱ مشخص است سرریزهای AB دارای بلان مستطیلی بوده و در آن‌ها ارتفاع و طول‌های \(P = 8 \) cm \(\epsilon \) ثابت و نظر گرفته شده است ED و BC و تغییرات طول در مقادیر \(AB = EF = 9 \) cm صورت گرفته است. به این ترتیب سه طول \(92, 94 \) و ۱۵۲ سانتی‌متر به منظور مقایسه به کار گرفته شدند.

شکل ۵ تغییرات ضرب دی را نشان می‌دهد. همان‌گونه که از این شکل مشخص است روند تغییرات ضرب دی نسبت به برای \(H_p/P \) مشخص می‌شود.

شکل ۲- تغییرات ضرب دی سرریز مستطیلی به طول ۹۲ سانتی‌متر و ارتفاع‌های مختلف

محدوده تغییر طول سرریز و در پایین دست ایجاد خواهد شد. حدوث این استخراج به طور جمع‌گیری در کاهش عملکرد سرریز مؤثر خود و بریده از محل موقت در کاهش ضرب اکیدی می‌باشد.

از طرف دیگر داخل سفره‌های ریزشی آب در پایین دست سرریز سبب کاهش هواهای در این محدوده می‌گردد. در نتیجه فشارهای منفی موجود در زیر لایه جریان مستحکم می‌شود. با افزایش داخل لایه‌های جریان، بخش شاخه نزولی منحنی شروع شده و با افزایش مقدار ضرب دی شروع به کاهش می‌نماید. در شاخه نزولی کلی، منحنی‌ها در ابتدا دارای شیب تنها می‌باشد. ولی با افزایش ارتفاع سرریز در یک به طوری که مقدار ضرب دی بسته به ارتفاع سرریز در یک به مقدار تقریباً ثابت می‌رسد. به علت اینکه در طول سرریز به طول \(H_p/P \) با ارتفاع سانتی‌متر، ضرب دی در برای \(4/6 \) به مقدار \(H_p/P \) ثابت می‌رسیده است.

همان‌گونه که بیان گردید شاخص نزولی منحنی نشان‌های داخل سفره‌های ریزشی است. با ادامه داخل سفره‌های ریزشی و افزایش بیشتر \(H_p/P \) جهت استخراج کامل در سرریز اتفاق می‌افتد و منحنی حالت ثابت به خود می‌گردد. بررسی شکل ۳ نشان می‌دهد که با افزایش ارتفاع سرریز، ثابت شدن ضرب دی در مقادیر بیشتر از \(H_p/P \) اتفاق می‌افتد. این نتایج را به این صورت می‌توان توجیه نمود که ثابت شدن ضرب دی در حدود حالت استخراج کامل در ارتفاع‌های کم سرریز، در
شکل ۵. تغییرات ضرب دیزسیریز در طولهای مختلف و ارتفاع ۸ سانتیمتر

در طول مشاهده می‌باشد و توضیحاتی که در بخش قبلی برای توصیف روند تغییرات ضرب دیزسیریز در دی‌بی‌پی (H/p) ذکر شد در انتهای جزء صادق است. نتایج نشان می‌دهد که در یک بار هیدرولوژی مشخص (و یا یک) افزایش طول سیریز، ضرب دیزسیریز دی‌بی می‌یابد. این کاهش ضرب دیزسیریز در شاخته صعودی منحنی قابل ملاحظه‌ی می‌باشد، ولی در بخش شاخته نزولی با همین هپ/پ افزایش وصلی‌ی هپ/پ افزایش در هپ/پ می‌باشد. دلیل این مسئله‌ها این‌گونه می‌باشد که در شاخته صعودی هپ/پ تداخل سیرهای ریزشی جمیان به صورت آزاد تخلیه می‌گردد. بنابراین طول سیریز تأثیر‌گذار بر ضرب دی‌بی می‌باشد. دلیل این‌گونه می‌باشد که در بخش نزولی منحنی، تداخل سیرهای ریزشی وجود نخواهد داشت و بنابراین افزایش طول سیریز باعث افزایش طول تداخل سیرهای ریزشی شده و در نهایت باعث کاهش ضرب دیزسیریز می‌باشد.

شکل ۶. منحنی تغییرات ضرب دیزسیریز در مقادیر مختلف

هر سه طول مشاهده می‌باشد و توضیحاتی که در بخش قبلی برای توصیف روند تغییرات ضرب دی‌بی‌پی (H/p) ذکر شد در انتهای جزء صادق است. نتایج نشان می‌دهد که در یک بار هیدرولوژی مشخص (و یا یک) افزایش طول سیریز، ضرب دیزسیریز دی‌بی می‌یابد. این کاهش ضرب دیزسیریز در شاخته صعودی منحنی قابل ملاحظه‌ی می‌باشد، ولی در بخش شاخته نزولی با همین هپ/پ افزایش وصلی‌ی هپ/پ افزایش در هپ/پ می‌باشد. دلیل این مسئله‌ها این‌گونه می‌باشد که در شاخته صعودی هپ/پ تداخل سیرهای ریزشی جمیان به صورت آزاد تخلیه می‌گردد. بنابراین طول سیریز تأثیر‌گذار بر ضرب دی‌بی می‌باشد. دلیل این‌گونه می‌باشد که در بخش نزولی منحنی، تداخل سیرهای ریزشی وجود نخواهد داشت و بنابراین افزایش طول سیریز باعث افزایش طول تداخل سیرهای ریزشی شده و در نهایت باعث کاهش ضرب دیزسیریز می‌باشد.

شکل ۶. منحنی تغییرات ضرب دیزسیریز در مقادیر مختلف

هر سه طول مشاهده می‌باشد و توضیحاتی که در بخش قبلی برای توصیف روند تغییرات ضرب دی‌بی‌پی (H/p) ذکر شد در انتهای جزء صادق است. نتایج نشان می‌دهد که در یک بار هیدرولوژی مشخص (و یا یک) افزایش طول سیریز، ضرب دیزسیریز دی‌بی می‌یابد. این کاهش ضرب دیزسیریز در شاخته صعودی منحنی قابل ملاحظه‌ی می‌باشد، ولی در بخش شاخته نزولی با همین هپ/پ افزایش وصلی‌ی هپ/پ افزایش در هپ/پ می‌باشد. دلیل این مسئله‌ها این‌گونه می‌باشد که در شاخته صعودی هپ/پ تداخل سیرهای ریزشی جمیان به صورت آزاد تخلیه می‌گردد. بنابراین طول سیریز تأثیر‌گذار بر ضرب دی‌بی می‌باشد. دلیل این‌گونه می‌باشد که در بخش نزولی منحنی، تداخل سیرهای ریزشی وجود نخواهد داشت و بنابراین افزایش طول سیریز باعث افزایش طول تداخل سیرهای ریزشی شده و در نهایت باعث کاهش ضرب دیزسیریز می‌باشد.

شکل ۶. منحنی تغییرات ضرب دیزسیریز در مقادیر مختلف

هر سه طول مشاهده می‌باشد و توضیحاتی که در بخش قبلی برای توصیف روند تغییرات ضرب دی‌بی‌پی (H/p) ذکر شد در انتهای جزء صادق است. نتایج نشان می‌دهد که در یک بار هیدرولوژی مشخص (و یا یک) افزایش طول سیریز، ضرب دیزسیریز دی‌بی می‌یابد. این کاهش ضرب دیزسیریز در شاخته صعودی منحنی قابل ملاحظه‌ی می‌باشد، ولی در بخش شامته نزولی با همین هپ/پ افزایش وصلی‌ی هپ/پ افزایش در هپ/پ می‌باشد. دلیل این مسئله‌ها این‌گونه می‌باشد که در شامته صعودی هپ/پ تداخل سیرهای ریزشی جمیان به صورت آزاد تخلیه می‌گردد. بنابراین طول سیریز تأثیر‌گذار بر ضرب دی‌بی می‌باشد. دلیل این‌گونه می‌باشد که در بخش نزولی منحنی، تداخل سیرهای ریزشی وجود نخواهد داشت و بنابراین افزایش طول سیریز باعث افزایش طول تداخل سیرهای ریزشی شده و در نهایت باعث کاهش ضرب دیزسیریز می‌باشد.

شکل ۶. منحنی تغییرات ضرب دیزسیریز در مقادیر مختلف

هر سه طول مشاهده می‌باشد و توضیحاتی که در بخش قبلی برای توصیف روند تغییرات ضرب دی‌بی‌پی (H/p) ذکر شد در انتهای جزء صادق است. نتایج نشان می‌دهد که در یک بار هیدرولوژی مشخص (و یا یک) افزایش طول سیریز (EF و AB) و (CD) تغییری در طول کلی سیریز ایجاد نمی‌کند ولی این تغییر ضرب دی‌بی را تحت تأثیر قرار می‌دهد. به منظور بررسی تأثیر طول دمانه و گوشه‌ورها بر
 echoing and 4

سایین متبرکه، که در مورد صادق می‌باشد. همچنین
باید افزایش ارتقاء سری‌زایی که یک
افرازی‌سی می‌باشد. در این مسأله همان گونه که در مورد
سری‌زایی با پلاک مستطیلی پان‌گردید تنظیم‌های
ریزشی است که در مورد سری‌زایی با ارتقاء یک
سیعی افزایش سری‌زایی دامنه تغییرات ضریب دبی به ازای
تغییرات ضریب دبی به ازای H_0/P نژادی شده‌اند. افزایش می‌باشد و نیز شبیه شاخه صعودی و شاخه
باید در این افزایش به‌کار گرفته شود. شاخص
ارتفاع سری‌زایی به دلیل دلالال بالای تغییرات ضریب
دبی تغییرات ضریب دبی کم شده و حالت تعاونی سیر
این اتفاق می‌افتد.

شکل 8. تغییرات ضریب دبی سری‌زایی U شکل به طول 42
مختلف و ارتفاع 8 سانتی متر

2. تأثیر طول سری‌زایی بر ضریب دبی
برای بررسی تأثیر طول سری‌زایی و همان گونه با پلاک
دبی سری‌زایی U7 و U2 مورد استفاده قرار گرفته‌اند.

شکل 7. تغییرات ضریب دبی را نسبت به برای
ارتفاع‌های مختلف سری‌زایی نشان می‌دهد. همان گونه که
شکل مشخص است روند تغییرات ضریب دبی نسبت به
شیبی به سری‌زایی با پلاک مستطیلی بوده و موارد بیان شده در
توریزد تغییرات پای 14 سانتی‌متر و دو طول EF و AB در
مورد سری‌زایی با پلاک U شکل ثابت می‌باشد. همچنین
با افزایش ارتقاء سری‌زایی یک
اضافه می‌باشد. دلیل این مسأله همان گونه که در مورد
سری‌زایی با پلاک مستطیلی بیان گردید تنظیم‌های
ریزشی است که در مورد سری‌زایی با ارتقاء کمتر
سیری افزایش ارتقاء سری‌زایی دامنه تغییرات ضریب دبی به ازای
تغییرات ضریب دبی به ازای H_0/P نژادی شده‌اند. افزایش می‌باشد و نیز شبیه شاخه صعودی و شاخه
باید در این افزایش به‌کار گرفته شود. شاخص
ارتفاع سری‌زایی به دلیل دلالال بالای تغییرات ضریب
دبی تغییرات ضریب دبی کم شده و حالت تعاونی سیر
این اتفاق می‌افتد.

شکل 8. تغییرات ضریب دبی سری‌زایی U شکل به طول 42
مختلف و ارتفاع 8 سانتی متر

2. تأثیر طول سری‌زایی بر ضریب دبی
برای بررسی تأثیر طول سری‌زایی و همان گونه با پلاک
دبی سری‌زایی U7 و U2 مورد استفاده قرار گرفته‌اند.

شکل 7. تغییرات ضریب دبی را نسبت به برای
ارتفاع‌های مختلف سری‌زایی نشان می‌دهد. همان گونه که
شکل مشخص است روند تغییرات ضریب دبی نسبت به
شیبی به سری‌زایی با پلاک مستطیلی بوده و موارد بیان شده در
توریزد تغییرات پای 14 سانتی‌متر و دو طول EF و AB در
مورد سری‌زایی با پلاک U شکل ثابت می‌باشد. همچنین
با افزایش ارتقاء سری‌زایی یک
اضافه می‌باشد. دلیل این مسأله همان گونه که در مورد
سری‌زایی با پلاک مستطیلی بیان گردید تنظیم‌های
ریزشی است که در مورد سری‌زایی با ارتقاء کمتر
سیری افزایش ارتقاء سری‌زایی دامنه تغییرات ضریب دبی به ازای
تغییرات ضریب دبی به ازای H_0/P نژادی شده‌اند. افزایش می‌باشد و نیز شبیه شاخه صعودی و شاخه
باید در این افزایش به‌کار گرفته شود. شاخص
ارتفاع سری‌زایی به دلیل دلالال بالای تغییرات ضریب
دبی تغییرات ضریب دبی کم شده و حالت تعاونی سیر
این اتفاق می‌افتد.
بررسی سربریزش‌های چند و جهشی با پلان مستطیلی و U شکل

۱۰. تغییرات ضرب دی ۴ سربریز خطی مستطیلی و U شکل به ارتفاع ۲۲ سانتی‌متر

سربریزش‌های چند و جهشی باید گردد وجود دارد. در دلبل برای این موضوع می‌توان اعضا نمود. اما در این سربریز به عنوان کانال‌های انقباضی بین طول‌های ذکر شده و دیاپراهی جانی کانال به شکل که برابر سایر سربریز‌های جابجای وجود دارد، ایجاد نخواهد شد. نتایج به دلیل شکل خاص سربریز و تداخل سفره‌های رژیمی و وجود ندارد. مقایسه این ماهیت با منحنی سربریز خطی نشان می‌دهد که عملکرد این سربریز شبیه به سربریز خطی می‌باشد.

همان‌گونه که از شکل ۸ مشخص است برای طول‌های ۹۲ و ۱۲۲ سانتی‌متر روند تغییرات ضرب دی به دنبال به سربریزش چند و جهشی با پلان مستطیلی می‌باشد. به این صورت که ضرب دی تا مقدار مشخصی از افزایش و سپس به دلیل تداخل سفره‌های رژیمی و وجود کانال‌های انقباضی کاهش می‌یابد. در این‌گونه سربریز نیز شبیه به سربریزهای مستطیلی از افزایش طول سربریز ضرب دی در یک مشخص کاهش می‌یابد. همان‌گونه که باید گردد نتیجه H/P طول سربریز در این حالت، در طول موازی با چهت جریان صورت گرفت (زیرا افزایش بر طول افزایش و به تداخل سفره‌های رژیمی و به‌هیچ‌گونه افزایش طول کانال‌های انقباضی شده و در نتیجه باعث کاهش ضرب دی به شکل به شکل ۹ مشخص می‌گردد که ضرب دی
همکاران مطالعه شده، تانی می‌دهد. سریره‌های ذوزنقه‌ای
بررسی شده در مطالعات تولیس و همکاران درای از وابه
(شکل ۱) از ۸ تا ۳۵ درجه بوده که در این پژوهش ذوزنقه‌ای ۸
و ۱۲ درجه به منظور مقایسه، سریره‌های ذوزنقه‌ای
همان‌گونه که در شکل ۱۰ مشخص است تولیس و همکاران
این تحقیق را تریدند که در وابه سریره‌های چند و چند
بیشتر زاویه α، ضرب
دبی افزایش می‌یابد. نتایج توان دهده در شکل ۱۲ بیانگر
است که روند تغییرات ضرب دی یا تغییر
در مطالعات Hr/P شکل شبیه به مطالعات U
حااضر برای سریره‌های مستطیلی و شکل شبیه به مطالعات
تولیس و سریره‌های ذوزنقه‌ای است (۱۲).
همچنین عامل سریره‌های مستطیلی کنتر از سریره‌های ذوزنقه‌ای
با زاویه α برابر ۸ و ۱۲ درجه می‌باشد. همان‌گونه که نتایج
تانی می‌دهد عامل سریره‌های U
شکل بیشتر از سریره‌های ذوزنقه‌ای با زاویه α برابر ۸ و ۱۲ درجه می‌باشد. این مسئله را
می‌توان این که تنها توجه نمود که سریره‌های مستطیلی را می‌توان
یک سریره ذوزنقه‌ای در نظر گرفت که در این زاویه α
برای ضریب
بوده و در این حالات داخل سرفه‌های بزرگی شديد می‌باشد و
همین داخل شدید در رأس باعث کاهش ضرب دی می‌شود.
و لب با افزایش زاویه α این داخل کمتر شده و ضرب دی
افزایش می‌یابد. نتایج توان دهده این که
همکاران سریره‌ای انجام شده و سریره به صورت U
شکل ساختمانی، شد. به هم داخل سرفه‌های بزرگی کاهش یافته و
عملکرد سریره بهبود می‌یابد.

۱. روشن زمینی. ۱۳۸۹. بررسی سریره‌های چند و چند
وجود در شیکه‌های آبیاری نکوآباد، آبشار و روستات و مقایسه
عملکرد آنها بر رویت بوته‌های آبیاری نکوآباد، آبشار و روستات و مقایسه
عملکرد آنها با روانی بوته‌های آبیاری نکوآباد. انتشار، اولت، دانشکده، کشاورزی، دانشگاه
صحیح است. تحصیلات

۲۵۵.

شکل ۱۰: مقایسه عملکرد سریره‌های چند و چند با پلان مستطیلی
و U شکل با عملکرد سریره‌ای پلان ذوزنقه‌ای
سریره‌های چند و چند U شکل بیشتر از سریره‌های مستطیلی
می‌باشد. این تفاوت در تعداد نسبتی، کنترل و با
بکار کردن Hr/P افزایش می‌گردد. دلیل این امر به این خاطر می‌باشد
که تداخل سرفه‌های ریزشی آب در رأس سریره‌های
مستطیلی بیشتر از سریره‌های U شکل است.

۱۲) مقایسه نتایج مطالعه حاضر با نتایج سایر محققین
همان‌گونه که در پنجم مقدمه ذکر گردید، سریره‌های چندوجهی
که تا کنون مورد مطالعه قرار گرفته‌اند سریره‌هایی با پلان
ذوزنقه‌ای و یا مثله مستطیل و سریره‌های با پلان مستطیلی و یا
شکل کمتر مورد توجه قرار گرفته‌اند. سهکل ۱۰ مقایسه‌ای را
بین عملکرد سریره‌های چند و چند با پلان مستطیلی و U شکل
که در این تحقیق مورد بررسی قرار گرفته است، با سریره‌های
چند و چند با پلان ذوزنقه‌ای شکل که توسط پلیو و

مانیع مورد استفاده

۱. روشن زمینی. ۱۳۸۹. بررسی سریره‌های چند و چند
وجود در شیکه‌های آبیاری نکوآباد، آبشار و روستات و مقایسه
عملکرد آنها بر رویت بوته‌های آبیاری نکوآباد، انتشار، اولت، دانشکده، کشاورزی، دانشگاه
صحیح است. تحصیلات

۲۵۵.