ارزیابی و مقایسه بازدهی کششی تراکتورهای مسی فرگوسن (285) و پونی‌رسال (650) در اجرای شکم با گاواهان برگ‌داندار

محمد لغوی و احمد ملاصادی۱

چکیده

بازده کششی در نوع تراکتورهای مسی فرگوسن 285 و پونی‌رسال 650 در عملیات شکم توسط گاواهان برگ‌داندار ارزیابی و مقایسه گردید. آزمون مزرعه‌ای در اینجا تحقیقات دانشگاه کشاورزی دانشگاه شیراز به صورت آزمونی در چهارچوب طرح بلوری کاملاً تصادفی در مزرعه‌ی بافت خاک لپرسی‌شناسی و میانگین رطوبت 18 درصد در هر صفحهٔ سه متری بوده است که در تراکتور (پونی‌رسال 650، مسی فرگوسن 285) بدون سیستم‌سازی کرده‌ها و مسی فرگوسن 285 با سیستم کردن جرخه‌ای توسط آب تکمیل و سطح مصرفی شکم سطحی (E/TA = 0.2) و سطح مصرفی شکم سطحی (E/TA = 0.2) سانتی‌متری) بوده است. نتایج اجرای شکم در کلیه تیمارها در حدود چهار کیلومتر در ساعت ثابت نگه داشته شده. از این رو، نتایج تراکتورهای مورد انتخاب، مقایسه شامل تاریکی کششی، درصد نفع‌زایی جرخه‌ای محکم و بازده کششی تراکتور بود.

نتایج نشان داد که عمده‌ترین اختلاف بین سه نوع از تراکتورها در تاکسیر است. به طوری که میانگین تاکسیر در فرگوسن 650 از سایر ابزار به طور ملی‌یکم بیشتر بوده است. به طوری که میانگین تاکسیر در فرگوسن 650 از سایر ابزار به طور ملی‌یکم بیشتر بوده است. به طوری که میانگین تاکسیر در فرگوسن 650 از سایر ابزار به طور ملی‌یکم بیشتر بوده است. به طوری که میانگین تاکسیر در فرگوسن 650 از سایر ابزار به طور ملی‌یکم بیشتر بوده است. به طوری که میانگین تاکسیر در فرگوسن 650 از سایر ابزار به طور ملی‌یکم بیشتر بوده است.
مقدمه

با رشد رویانفروشیتی محدودیت منابع آب و خاکی، و نیاز فراوانی‌های اقتصادی به روز در تولید محصولات کشاورزی، نقش و اهمیت مکانیک‌های کشاورزی به‌وجهی در حال توسعه ابعاد گسترده‌تری می‌یابد. تراکتور به عنوان اصلی‌ترین منبع در تولید محصولات کشاورزی با کاربردی مکانیزه کشاورزی، ویژه‌ای را به‌خود اختصاصی می‌دهد.

مدت‌الازمان تکمیل تراکتورها در کشاورزی ایران، استفاده‌ای توان مالیندی آنها در اجرای عملیات خاک‌کشی و مخصوصاً شکم توسط کشاورزین از آن است. در میانه‌های روشن به‌خود. توان تراکتور، بعنوان نیاز توان‌های دیگر، توان هیدرولیکی و توان کشاورزی (مالیندی)، روش‌های کنترل توان، ویل عموماً با علت نام‌نوازی بیشتری خواهد یافت. محصولات درگیری قبلاً محسوسیتی بیان که می‌باشد. با توجه به اهمیت بیانی که به عنوان مهم‌ترین شاخص استفاده بهینه از آن با تراکتور که به صورت سنتی توان مالیندی به توان محوری گزینه محرک تعیین می‌شود، ارزیابی و مقایسه آن به‌ نحوه‌های تجاری و تحلیلی همواره مورد توجه بوده است.

نتایج پژوهش‌های انجام شده به گواهی انتقاد ۲۰ تا ۵۵ درصد برابر می‌باشد. متغیرهای آزمایش‌گری اطمینان شده‌که عامل توان‌های مالیندی در توان‌های تراکتور به گروه‌های مختلفی مصرف می‌کنند که اولویتی، مقاومت غلتکی و درصد دورات خرچنگ، و سبب محاسبات بازده کشاورزی و بررسی قرار داد. در نتایج که احتمالاً ۱۰ درصد بازده کشاورزی بیش از ۵۰ درصد به‌طوریکه در شرایط بستری‌تر خواهد بود.

مدل توان‌های تراکتور به نظر بوده است. برای پیش‌بینی بازده کشاورزی چرخ‌های محرک و در حال تولید باید توان کشاورزی با چرخ‌های محرک باشد. در این راستا که احتمالاً ۲۵ درصد به‌صورت نسبی توان مالیندی به توان محوری گزینه محرک تعیین می‌شود، و هم‌وندی ممکن است موجب کاهش اعمال‌های محصولات کشاورزی گردد (۸۰٪).

مؤثرترین راه برای بهبود سازی و اصلاح عملکرد کشنده تراکتورهای ایجاد ماهیت مناسب بین توان، بار وارد بر چرخ‌های محرک، سرعت پیش روی تراکتور و مقاومت کشنده ادوات یا لغزش چرخ‌های ماشین، پژوهش‌های زیر آن را می‌باشد.

۱۷۸
ارتباط آج‌لدک‌های باشند ارائه گردیده است. این مدل بر پایه تجزیه و تحلیل نشان‌های بررسی و معمولاً در صفحه تمام بکار و خاک استوار بوده و عقلاء به مقررات بررسی انعطاف‌پذیری آج‌لدک‌های باشند را نب در پیش‌بینی شایع‌ها
عمارت‌کنی ملوصه می‌دارد. اعتبار این مدل با مقایسه نتایج حاصل از آزمون مروجی‌ها با استفاده از دستگاه آزمایش‌کننده چرخ (Wheel traction tester) مدل ارزیابی گردید. نتایج این ارزیابی حاکی از افزایش مناسب شاخص‌های عمارت‌کنی در شرایط خاک سخت بوده است.

به نظر می‌رسد این مدل عامل عمارت‌کنی تراکتورهای را در شرایط خاک‌های ایران، که عموماً به علت فقر مواد آلی و کمی رطوبت در رفیق خاک‌های سخت می‌گردد (4)، با درجه اعتبار بالاتری پیش‌بینی نماید. این نتایج روشن‌کننده تجربه است.

در مورد ارزیابی عمارت‌کنی تراکتورهای متناول در ایران پژوهش‌های انجام گردیده است که از آن جمله می‌توان به بررسی تأثیر عواملی بر عملکرد وارد بر محور محرک فشار بای لاستیکی و عملکرد پژوهش‌های محوری تراکتورهای جانی بر (6) و پژوهش‌های می‌تواند با آمار و همکاران (1) اشاره نمود. که ناشان داد گردیده است در مجموع تراکتور پیونرسال 500 با میانگین لغزش چرخ 11/8 درصد، کمترین و مناسب‌ترین میزان لغزش را داشته.

است.

مواد و روش‌ها

آزمون‌های مزرعه‌ای در استان‌های پژوهشی دانشگاه‌های کشاورزی دانشگاه شیراز (باج‌گاه) در 19 کیلومتری شمال غربی شیراز انجام گردید. به دنبال آنی تحکیم کشت شده در زمین محل اجرای طرح بود که پس از بررسی آن با گزارش که و نقاشی‌کننده توسط ماسیمین بهمکاری مجمع آوری و پس مانند چهار مسی در حجم فشار نیروی شده بود. به ترتیب خاک از امایش فاکتور در چارچوب طرح

در این پژوهش از آزمایش‌ها فاکتور، در چارچوب طرح

ترک‌آور مسی فرگوسن 285، به رغم توان لگام‌های باشند، ناشی از وزن کمتر، کوانتت عموماً در محور و بیشتر بودن فشار

باد چرخ‌های محک می‌شود. شاخص‌های عمارت‌کنی تراکتورهای که مهم‌ترین شاخص عمارت‌کنی می‌باشد، عللی اند. بازه کوانت پابای خود شرایط گردن است. در پژوهش‌های بایر صنعت چرخ‌های محکری می‌باشد که بازه کشی تراکتورها با استفاده از مدل به دست آمده در شرایط خاک‌های اروپایی و اروپایی ندارد. که این آزمایش‌ها، با استفاده محور محرک هما بمی‌باشد با مقیاسه علمی محرک 285 در دو وضعیت سیستم‌های شده و نشده و تراکتور پیونرسال 500 در اجرای عملیات شکم توسط گاوانه بزرگ‌کننده در سه مسطح از عمق شکم در حالی که شاخص‌های است. در این بررسی از تراکتور پیونرسال 285، 500، بدون سیستم‌های گردید 285 در دو وضعیت سیستم‌های شده و نشده و تراکتور پیونرسال 500 در اجرای عملیات شکم توسط گاوانه بزرگ‌کننده در سه مسطح از عمق شکم در حالی که شاخص‌ها و مصرف محکر استفاده گردید، زیرا در پژوهش‌های قبلی (1 و 4) درصد لغزش چرخ‌های محکر و عمارت‌کنی کشت آن در حالت سیستم‌های شده نیز به محدودیت‌های گردیده است.

بالکه‌های کامل تصادفی با 9 تیمار (سه نوع با حالت تراکتور، سه عمق شخم) در سه تکرار استفاده گردید. میانگین رعیت خاک در عمق صفر تا 30 سانتی‌متری در حدود 18 درصد بود. بر مناسب بودن خشک کردن کلیه بیل‌ها، نمودار 2 از آزمون نشان می‌دهد که تأثیر سلست تراکتور، شیل تراکتور و بیوزنی‌سالاری در وضعیت استاندارد توصیه شده و تراکتور مسی فرکوسن 285 در وضعیت عادی (بدون سنتی سازی) بر روی تراکتور خویش بهتر عمل می‌کرد. و در وضعیت سنتی سازی شده (بر روی تراکتور غیرهای مرکزی) با آب نمک، و دیگری عمق شخم در سه محدوده 10-15 سانتی‌متری (مستطی) و 20-25 سانتی‌متری (عمری) ضریب بارش کشتی تراکتورها به عنوان مناسب بررسی گردید.

پاتامه‌های اصلی مورد اندازه‌گیری در طی آزمون‌ها عبارت بودند: از تراکتور مالبندی، نری، مکان سطحی، چرخ‌های تراکتور، و درصد لغزش چرخ‌های محرک آزمایش‌ها در طول 27 کیلومتر هر یک بوده و بررسی چهار متر اجاره غیرهای در هر کیلومتر عقرب کاری نسبتاً مشابه داشتند. و مغزه به استفاده چرخ‌های دوم عقرب از نوع معمولی و دارای آج سالم بودند. فشار باد نسبت به کارخانجات سازنده، در مورد تراکتور بیوزنی‌سالاری 240 در این آزمایش، که در مورد تراکتور مسی فرکوسن، 285 در هر دو وضعیت بارگذاری، برای 70 کیلومتر پایدار بود. در صورت سنتی سازی لاستیک‌های تراکتور مسی فرکوسن، 285 درصد حجم داخلی لاستیک با محول آب نمک باید غلظت ونیز 30 درصد برگردید.

گزارا مورد استفاده یک دستگاه گازگیره پرکردنار سه خیص، با عرض مؤثر 110 سانتی‌متر بود. برای تبیین عمق شخم‌های مورد نظر در طول کرت خیص آزمایشی، از چرخ‌های تنظیم عمق استفاده گردید و پیش از آغاز آزمایش تنظیم اطلاعی و عرض با دقت جابجایی شد.

برای اندازه‌گیری توری کشتی مالبندی و مقاومت غلتخش تراکتور از روش کشتی در تراکتور و استفاده از دیمانومتر

[1] Regional Network for) RNAM (Agricultural Machinery (MALB) بر طبق روش (Agricultural Machinery

S(%) = [(A - B) / A] × 100
درصد لغزش جریه‌های محلک (S)، و به کارگیری رابطه ۲، با زاده کنشی (T) که عبارت است از نسبت توان مالبندی به توان محوری جریه‌های محلک، برای هر آزمایش معنی‌دار گردد (100).

\[T.E. = [P / (P + R)] - (1 - S) \]

در این رابطه S به صورت اعتبار وارد می‌شود.

نتایج حاصل بر مبنای آزمایش فلاکتوریال و با استفاده از آنالیز واریانس مورد تجزیه و تحلیل قرار گرفت و مقایسه میانگین‌های مقادیر غلظتی، درصد لغزش جریه‌های محلک و بازیه کنشی تراکتورها در سطوح مختلف، معنی‌دار شد. به روش دانشگاهی و میانگین‌های مقادیر غلظتی در گروه‌های مختلف مشاهده گردید.

نتایج و بحث

نتایج حاصل از تجزیه و ارتباطات آماری اصلی و مقابل‌نوع یا حالت تراکتور و عمق شکم بر مقادیر غلظتی، درصد لغزش جریه‌های محلک و بازیه کنشی تراکتورها در چند گروه تعریف و مورد بررسی قرار گرفت.

مقادیر غلظتی

نتایج نشان می‌دهد که عامل نوع یا حالت تراکتور اثر معنی‌داری بر تغییر مقادیر غلظتی به چنین گذشتگی از کل و درصد، به معنی‌داری بوده است. با حالت تراکتور با استفاده از ۹۵ درصد، بر مبنای نرخ بر عمق شکم بر سطح تراکتورها می‌توانست، در حالی که عامل ظرفیت اثر معنی‌داری را بر مقادیر غلظتی نشان ننمود. با این توجه به انتخاب گیری مقادیر غلظتی در حالتی که گواهی خارج از حاصل قرار دارد، معنی‌دار نیز بوده و عمق شکم بر سطح تراکتور می‌توانست به دنبال رابطه معنی‌داری با نسبت رشد یافته سه تأخیری که عامل شکم بر گریزای مقادیر غلظتی بازیه کنشی نشان ننمود.

لزگش جریه‌های محلک

جدول ۱، نشان می‌دهد که عامل نوع یا حالت تراکتور و عمق شکم، اثری متقابل آنها بر لزگش جریه‌های محلک در سطوح مختلف قابل بهبود است. به توجه به نتایج بیان شده، این اثر گرچه می‌توانست با افزایش عمق شکم به کارگیری در کنشی می‌گردد، به دنبال انتقال و بقای شکم و سهم بیشتری از وزن تراکتور بر محور جریه‌های محلک (قطعی) اعمال می‌گردد. این امر گرچه می‌توانست با افزایش مقادیر غلظتی جریه‌های محلک،
جدول 1. میانگین مربعات آثار اصلی و مقابل نوای خامدل بارش و عمق شمش بر مقاومت گلشی. درصد لغزش

<table>
<thead>
<tr>
<th>منابع</th>
<th>درصد لغزش</th>
<th>مپاگین مربعات</th>
<th>درصد لغزش</th>
<th>تغییر</th>
<th>آزاید</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراکتور (T)</td>
<td>365/98</td>
<td>488/24</td>
<td>0/15</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>عمق شمش (D)</td>
<td>487/92</td>
<td>980/19</td>
<td>0/21</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>اثر مقابل (TxD)</td>
<td>165/99</td>
<td>187/26</td>
<td>0/11</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td>374/9</td>
<td>401/1</td>
<td>0/9</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین‌های مقاومت گلشی (بر حسب کیلوپونتن) در سطوح مختلف نوع با حالت تراکتور و عمق شخم

<table>
<thead>
<tr>
<th>نوع بالای حالت تراکتور</th>
<th>عمق شحم (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(25-10)</td>
</tr>
<tr>
<td>مسی فرگوسن 285 (ستونی نشده)</td>
<td>1/84b</td>
</tr>
<tr>
<td>مسی فرگوسن 285 (ستونی نشده)</td>
<td>2/374a</td>
</tr>
<tr>
<td>بونیورسال 650</td>
<td>2/23a</td>
</tr>
<tr>
<td>میانگین X</td>
<td>2/13a</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه میانگین‌های لغزش‌های محتر (درصد) در سطوح مختلف نوع با حالت تراکتور و عمق شخم

<table>
<thead>
<tr>
<th>نوع بالای حالت تراکتور</th>
<th>عمق شحم (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(25-10)</td>
</tr>
<tr>
<td>مسی فرگوسن 285 (ستونی نشده)</td>
<td>10/0c</td>
</tr>
<tr>
<td>مسی فرگوسن 285 (ستونی نشده)</td>
<td>27/9b</td>
</tr>
<tr>
<td>بونیورسال 650</td>
<td>9/4f</td>
</tr>
<tr>
<td>میانگین X</td>
<td>10/0c</td>
</tr>
</tbody>
</table>

سطح مختلف نوع بالای حالت تراکتور و عمق شحم با استفاده از آزمون دافسن در سطح 0.1 نشان می‌دهد. تراکتور مسی فرگوسن سستگی نشده با میانگین 17/7/ به طور معناداری کمتر از حالت سستگی نشده آن و بیشتر از تراکتور بونیورسال لغزش خرچ داشته است. عامل اصلی این پدیده می‌توان تفاوت بار وارد بر محورهای محركة.
ارزیابی و مقایسه باده، کشش تراکتورهای مسی فرگوسن (MF 285) و بونیورسال (650) در

(عقد) این تراکتورها (به ترتیب 25/1 و 18/8 کیلوووتن
برای تراکتورهای مسی فرگوسن سنگین نشده، سنگین شده و
بونیورسال) دانست.

اختلاف میانگین‌های لغزش چرخ‌های محکم در سطوح
مختلف عمق میانگین نیز به احتمال 99/ مونی در استایل، به طوری
که در عمق شکم سطحی (10–15 سنانی متر) کمترین لغزش
(102/0/0)، و در عمق عمیق (20–30 سنانی متر) بیشترین مقدار
لغزش (3/0/0) واقع گردیده است. نیاز تراکتور به تغییر
(Tractev) بالاتر چرخ به خاک با افزایش عمق شکم و
لغزش مورد نیاز (3) توجه کننده ابن پدیده می باشد. جدول 3 نشان
dهد که در سطوح مختلف عمق شکم کاهش لغزش در هر سطح نوع
یا حالت تراکتور یکسان بوده ولی با افزایش عمق شکم تفاوت
با سخن دیگر تأثیر نوع حالت تراکتور بر توزیع لغزش
چرخ در سطوح مختلف عمق شکم یکسان بوده و این امر
نشان دهنده وجود اثر متقابل عمق شکم و نوع تراکتور است.

این بیانیه را می توان ناشی از تفاوت تراکتورها در پدیداری
و طول نمای چرخ‌های محکم با خاک دانست. این دو عامل
موجب گرفتن ظرفیت ایجاد نیروی گیربکس تراکتورها متفاوت
باشد. به طوری که در شکم سنگین ولی تا حدودی موتور
ظرفیت کشش تراکتورها مقاومت کشش گاهی این اندازه
مناسب داشته و یکسان در متغیر باشد. با افزایش بیشتر
عمق شکم در مورد تراکتور مسی فرگوسن این تغییر به هم
خورد. به طوری که ظرفیت ایجاد نیروی گیربکس چرخ‌ها
جوابیکی کشش مالنیانی مورد نیاز بوده و در نتیجه لغزش
چرخ به خاک افزایش یافته می باشد.

جدول 3: میانگین نشان دهد که در مورد تراکتور مسی فرگوسن در
هر حالت خاص به هنگام افزایش عمق شکم از سطحی به
مناسب و سبب به عمق، با افزایش عمق در حالت
لغزش چرخ‌های محکم مواجه گردیده است این در حالت
است که در تراکتور بونیورسال با همین تغییرات عمق شکم،
جدول 4 میانگین‌های بازده کششی تراکتور (درصد) در سطوح مختلف نوع با حالات تراکتور و عمق شخم

<table>
<thead>
<tr>
<th>نوع شخم (سانتی متر)</th>
<th>X</th>
<th>20-25</th>
<th>25-30</th>
<th>30-35</th>
<th>35-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسی فرگوسن 285 (سنگن نشده)</td>
<td>73/8</td>
<td>47/1</td>
<td>78/6</td>
<td>47/1</td>
<td>75/3</td>
</tr>
<tr>
<td>مسی فرگوسن 285 (سنگن شده)</td>
<td>69/4</td>
<td>45/8</td>
<td>76/5</td>
<td>44/6</td>
<td>74/5</td>
</tr>
<tr>
<td>یوپی‌ورسلا 250</td>
<td>77/5</td>
<td>77/5</td>
<td>70/9</td>
<td>73/3</td>
<td>75/1</td>
</tr>
<tr>
<td>میانگین X</td>
<td>70/9</td>
<td>70/9</td>
<td>70/9</td>
<td>70/9</td>
<td>70/9</td>
</tr>
</tbody>
</table>

میانگین‌های X که با حروف کوچک مشترک نشان داده شدهاند دارای اختلاف معنادار نمی‌باشند (دانتکن 5). میانگین‌هایی که با حروف بزرگ مشترک نشان داده شدهاند دارای اختلاف معنادار نمی‌باشند (دانتکن 5). طور معناداری بیشتر از جدول سنگن نشده آن (32/6%) و کوچکتر از تراکتور یوپی‌ورسلا (32/8%) است. این پیداها را بنا توجه به نتایج قبلی، می‌توان به روند تغییرات درصد غرفش جرخهای محور این تراکتور نسبت داد. تراکتور یوپی‌ورسلا که بیشترین بازده کششی را داشته و میانگین میانگین درصد غرفش نشان می‌دهد، دارای بیشترین زمان (3/8 گیلیون‌تکن) روزی محسور محور بوده و تراکتور مسی فرگوسن سنگن نشده که کمترین بازده کششی را داشته که میانگین میانگین درصد غرفش را دارد، کمترین بار (25 گیلیون‌تکن) وارد بر محور جرخهای محور اکثر دارای که می‌تواند. جدول 4 همچنین کشش معنادار بازده کششی را به افزایش عمق شخم نشان می‌دهد که این نتایج نیز با توجه به افزایش میانگین درصد غرفش را دارد، افزایش عمق شخم (جدول 3) منطقی می‌باشد.

از نکات شایان توجه جدول 4 معنادار نیودن اختلاف بازده کششی سه نوع با حالات تراکتور در اجرای شخم سطحی است. که در این حال دارای هر سه درایه بازده کششی زیاد و مطلوب می‌باشد. تراکتور مسی فرگوسن سنگن نشده تراکتور بازده می‌باشد.

متابع مورد استفاده

1. مالکی، م. ه. بهرامی و م. ج. شیخ داوودی. 1369. اندوراگیری و مقایسه درصد غرفش جرخهای محور (عقب) تراکتورهای متناول در خوزستان. مجله علمی کشاورزی 14 (1 و 2): 116-123.
2. کلیایی، م. 1355. وضعیت مادی آلی در خاک‌های ایران و نقش کمبود کلسیم. خلاصه مجموعه مقالات پنجمین کنگره علمی خاک‌های ایران، آموزشگاه کشاورزی گرج، 10 تا 13 شهریور.
ارزیابی و مقایسه بازده کاشت تراکتورهای می‌فرگوسن (285) و بی‌لوبرسال (650) در...

3. لغوي، م. و س. ر. پژوهی‌زده. 1376. مقارنی کاشتی، مقاومت ویژه و توان مالبدی مورد تیز گل‌آهون قلمی (چیپ) در سطوح مختلف رطوبت خاک و عملکرد. علوم کشاورزی و منابع طبیعی (2): 85-87.

5. ملادی‌پور زکن‌آبادی، ا. 1378. ارزیابی و مقایسه بازده کاشتی در تراکتور میان قادری متناول در ایران. پایان‌نامه کارشناسی ارشد مکانیک ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز.

