اضربی و مقایسه بانزی کششی تراکتورهای مسی فرگوسن (MF 285) و پیونرسال (650) در اجرای شکم با گاوانه برگداندار

محمد لغوی و احمد ملاصتی ۱

چکیده

بانزی کششی در نوع تراکتورهای عمتک اثرترکار و منابعی گردید. آزمون زیرگاهی در ایستگاه تحقیقاتی دانشگاه گیلان در طول ۲۰ روزی شاخص تراکتورهای کشاورزی دانشگاه گیلان به صورت لاکتوریل در چهار جریه مکمک کامل تضادی در مزرعه‌ای از بات بچه دامکنارشین شیاطین و میانگین رعیت به صورت متوسط نزدیک ۱۸ درصد در مطالعه‌های تراکتور (پیونرسال، ۲۰۰۰ روز گیلان مایلی با سیستم ۲۵۰ بند سیستم مایلی کششی کرده و سیستم ۲۵۰ بند سیستم مایلی کششی حرکت‌های محرک و پی وزنین تراکتوریت بود.

نتایج نشان داد که عمده‌ترین اختلاف بین سیستم و پیوات تراکتورها مربوط به لنزش چرخ‌های محرک است. به طوری که میانگین درصد لنزش در سطح شکم در مورد تراکتور پیونرسال و ۵۰۰ پیونرسال ۲۰۰۰ روز گیلان مایلی با سیستم ۲۵۰ بند سیستم مایلی کششی کرده و سیستم ۲۵۰ بند سیستم مایلی کششی حرکت‌های محرک و پی وزنین تراکتوریت بود.

پژوهش‌های کلیدی: بانزی کششی، تراکتور، گاوانه برگداندار، لنزش چرخ، مقاومت مایلی

۱. به ترتیب دانشیار و دانشجوی سابق کارشناسی ارشد مهندسی کشاورزی، دانشگاه کشاورزی، دانشگاه گیلان

177
مقدمه
با رشد روزافشان جمعیت، محدودیت‌های منابع آب و خاکی، و نیاز فراوان به افزایش پایدار توسعه مولدات کشاورزی، نقش و اهمیت مکانیزاسیون کشاورزی در پیش نمایندگی در حال توسیع ابعاد کشاورزی می‌یابد. تراکتور به عنوان اصلی ترین منبع در تولید، توان مکانیکی در کشاورزی بیشتر بهره‌برداری می‌شود. در روزگار کشاورزی، سرعت چرخ‌های محرک، تعداد پیش‌رو تراکتور، و مقاومت کشاورزی اتو‌هایی در تجزیه و تحلیل شده و نتایج ممون است که کاملاً به‌صورت مدرنیزه شده و به بهبود جنایت کشاورزی استفاده می‌شود.

گزارش‌های انجام شده در تحقیقات مختلف از کاملاً استفاده توسط تراکتور تا توجه به اهمیت بیشتر تراکتور به عنوان چرخ‌های در تحقیقات مختلف استفاده می‌شود. در روزگار کشاورزی، سرعت چرخ‌های محرک، تعداد پیش‌رو تراکتور، و مقاومت کشاورزی اتو‌هایی در تجزیه و تحلیل شده و نتایج ممون است که کاملاً به‌صورت مدرنیزه شده و به بهبود جنایت کشاورزی استفاده می‌شود.
تراکتور مسی فرمان ۲۸۵، به رغم توان لگام بالای آن، ناشی از وزن کمتر، کوانتات بودن فاصله در سوم و پیشتر بودن فشار باد، خرده‌های محکم‌ترشک داده. در این پژوهش اخیر، باید کشورک‌ها، که مهم‌ترین شاخص عملکرد کشور محسوب می‌شود، مستقیماً انجام‌گیری دقیقه‌تاریکسی و مقایسه‌گری است، بلکه پارامترهایی که بر بازنده کشوری مؤثرند، نظیر لغزش جریان بار وارد بر محرک‌ها، مورد بررسی قرار گرفته است. در پژوهش دیگری (۱۱) نیز همان گونه که قبلاً ذکر گردید، بازرگان کشورک‌ها را برای استفاده از مدل به شرایط‌های انرژی نازک‌تری ندارد. به‌طور کلی، با پژوهش انجام‌گیری مقایسه‌گری کشورک‌ها، مدل‌ها و محدودیت‌های مصرفی کشورک‌ها در حالی محرک تراکتور، بازرگان کشورک‌ها مسی فرمان ۲۸۵ را در وضعیت سئیکسی‌سازی شده و نشده و تراکتور بوئنیسال ۲۵۰ در اجرای عملیات شکم توسط گاونام برگرا، دار، به‌طور کلی از تراکتور بوئنیسال ۲۵۰ بدون گون‌سازی چرخ‌های محرک استفاده گردید و تراکتورهای جاده‌ای ۲۰۴۵ مسی فرمانس ۲۸۵ و بوئنیسال ۲۵۰ توسط بالا و همکاران (۱) اشاره نموده که نشان داده است در مجموع تراکتور بوئنیسال ۲۵۰ با میانگین لغزش جریان‌های محرک و عملکرد کشورک‌ها در حالت سئیکسی‌سازی نیز در حد مطلوب گزارش گردیده است.

مواد و روش‌ها
آزمون‌های مزرعه‌ای در استگاه پژوهش دانشگاه کشاورزی دانشگاه شیراز (پایگاه) در ۱۹ کیلومتری شمال غربی شهر شیراز اجرای می‌گردید. اگر آماری متحمل کشت شده در زمین محل اجرا در طرح بود که پس از بررسی آن با کیفیت، کاه و پیچانی که توسط مهندسی علوم محیطی جمع آوری و پس مانند آن حد ممکن سوزندانه شده بود. بافت شاک لوموسی، و شب زمین در دو جهت طولی و عرضی در حدود دو در هزار بود.

در این پژوهش از آزمایش فاکتوریل، در چارچوب طرح ارتفاع آ ناساخته پایه تجزیه و تحلیل نشته‌های بررسی و عمومی در سطح تمام بیشتر و خاک است. در این مدل با مقایسه نتایج حاصل از آزمون مرهوم، با استفاده از دستگاه آزمایش کشورک محرک کشورک‌های مصرفی ارائه داده‌های، روانی شاخص‌هایی مختلف از تحقیق مناسب‌سازی شاخص‌های عملکرد کشورک‌ها در شرایط خاک سخت تبدیل شده است. به نظر می‌رسد این مدل‌برداری عملکرد کشورک‌های تراکتورهای ود در شرایط خاک‌های ایران که عموماً به عنوان افزایش مواد آلی و کمی رطوبت در روندها کشورک‌های سخت برای‌گردید (۲)، با درجه اعتبار بالال‌تری نشان دهنده و روندهای نگرانی، ۱۱/۸ درصد، کمترین و مناسب‌ترین میزان لغزش را داشته است.

در این پژوهش دیگری توسط مخصص و لغوی (۴) عملکرد کشورک‌های مسی فرمانس ۲۸۵ و بوئنیسال ۲۵۰ در اجرای عملیات کشورکزی به سبب در حالی کشورک‌ها و قلمی کشورک‌ها و مقایسه‌گری در این پژوهش لغزش‌های محرک، میزان مصرف سوخت و توانریزی مزرعه‌ای در عملیات کشورکزی به عنوان شاخص‌هایی از عملکرد کشورک انداده‌گی شد. نتایج نشان داد که کشورک‌های مسی فرمانس در مقایسه با بوئنیسال دارای لغزش‌های محرک و مصرف سوخت بیشتر و توانریزی مزرعه‌ای کمتری بود. عملکرد کشورک ضعیف
آمارهای اصلی مورد ارزیابی در طی آزمون‌ها عبارت بودند از، نیروی کل مالنی‌داری، نیروی متقنات غلیظ‌سازی جرخ‌های تراکتور. و درصد لغزش جرخ‌های محرک آزمایش‌ها در طول 72 تا 680 سانتی‌متر و عرض چهار متر اجازه گرفته‌اند. هر دو تراکتور عمکاری نسبتاً مشابهی داشتند و مجزه به استیک‌های جرخ‌های عقب از نوع معمولی و دارای آمده سال بودند. فشار باد استیک‌ها بر اساس توصیه کارخانه سازنده، در مورد تراکتور پیوتروسال 250 برای با 95 کیلو پاسکال و در مورد تراکتور مسی فرگوسن 385 در هر دو وضعیت پاسکال بود. برای سنتی‌سازی استیک‌های تراکتور مسی فرگوسن 25 درصد حجم داخلی استیکی با محول آب نمک با غلظت وزنی 30 درصد پر گردید.

گزارش مورد استفاده یک دستگاه کاوش آهن پرکردنار سه خیس، با عرض مؤثر 110 سانتی‌متر بود. برای تغییر عمق شکم‌های مورد نظر در طول کریکت‌های آزمایشی، از جرخ تنظیم عمق استفاده گردید و پیش از آزمایش تنظیم عمق طولی و عرض با دقت مشابه شد.

برای اندازه‌گیری نیروی کل مالنی‌داری و متقنات غلیظ‌سازی تراکتور از روش کشش دو تراکتوری و استفاده از دیمانومتر

180
در صد لغزه چرخه‌های محور (S)، و به کارگیری رابطه ۲، پاده کششی (T)، که عبارت است از نسبت توان مالبدی به توان محوری چرخ‌های محور، برای هر آزمایش محاسبه گردید (۱۰۰).

\[
T.E. = \frac{P}{(P + R)(1 - S)}
\]

در این رابطه S به صورت اعتبار وارد می‌شود.

نتایج حاصل بر مبنای آزمایش فاکتوریل و با استفاده از آنالیز واریانس مورد تجزیه و تحلیل قرار گرفت، و مقایسه میانگین‌های مقاومت غلظی، درصد لغزه چرخه‌های محور و پاده کششی تراکتورها در سطوح مختلف عمق شکم به روش دانک و با کمک نرم‌افزار MSTATC انجام گردید.

نتایج و بحث

نتایج حاصل از تجربه واریانس آمار اصلی و مقاومت نوع با حالت تراکتور و عمق شکم بر مقاومت غلظی، درصد لغزه چرخ‌های محور و پاده کششی تراکتورها در جدول ۱ آرایه گردیده است.

مقاومت غلظی

نتایج نشان می‌دهد که عامل نوع با حالت تراکتور اثر معنی‌داری بر تیزی مقاومت غلظی به جای گذشته است. به سبب هدگر، نوع با حالت تراکتور با احتمال ۹۵ درصد، بر معیار نیروی بار حمل غلظی تراکتور مؤثر است. در حالت که عمق شکم اثر معنی‌داری را بر مقاومت غلظی نشان نمیدهد. با توجه به اندازه‌گیری مقاومت غلظی در حالت که گواهی خارج از حاکم قرار دارد، معیارهای بین‌نیوند اثر عمق شکم بر مقاومت غلظی بی‌ثباتی به نظر می‌رسد. تأثیری که عمق شکم بر نیروی مقاومت غلظی ممکن است داشته باشد، از آن جا ناشی می‌شود که با آزمایش عمق شکم (که منجر به اندازه‌گیری مقاومت کششی می‌گردید) به دریافت مناسب واقع شده و سهم بیشتری از وزن تراکتور بر محور چرخ‌های محوری (عقب) عملی می‌گردد. این امر گرچه منجر به اندازه‌گیری مقاومت غلظی چرخ‌های عقب
جدول 1. میانگین مربعات آماره‌ای و مقایسه نوع با حالت تراکتور و عمل شش در مفاوت غلظتی. درصد لغزش

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درصد غلظتی</th>
<th>درجات</th>
<th>منابع</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارد کشی</td>
<td></td>
<td></td>
<td>تراکتور (T)</td>
</tr>
<tr>
<td>265/78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48/34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98/48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمک شحم (D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اثر متقابل (TxD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین های مقاوت غلظتی (بر حسب کیلوپارس) در سطوح مختلف نوع با حالت تراکتور و عمل شحم

<table>
<thead>
<tr>
<th>نوع با حالت تراکتور</th>
<th>عمل شحم (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق غلظت (سنگین شده)</td>
<td></td>
</tr>
<tr>
<td>(10-20)</td>
<td>(20-30)</td>
</tr>
<tr>
<td>مسی فرگوسن 285</td>
<td>27/18</td>
</tr>
<tr>
<td>مسی فرگوسن 285</td>
<td>27/18</td>
</tr>
<tr>
<td>بونیورسال 200</td>
<td>27/18</td>
</tr>
<tr>
<td>X</td>
<td>27/18</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه میانگین های لغزش چرخ های محرک (درصد) در سطوح مختلف نوع با حالت تراکتور و عمل شحم

<table>
<thead>
<tr>
<th>نوع با حالت تراکتور</th>
<th>عمل شحم (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق غلظت (سنگین شده)</td>
<td></td>
</tr>
<tr>
<td>(10-20)</td>
<td>(20-30)</td>
</tr>
<tr>
<td>مسی فرگوسن 285</td>
<td>27/18</td>
</tr>
<tr>
<td>مسی فرگوسن 285</td>
<td>27/18</td>
</tr>
<tr>
<td>بونیورسال 200</td>
<td>27/18</td>
</tr>
<tr>
<td>X</td>
<td>27/18</td>
</tr>
</tbody>
</table>

لایه‌های کششی شده با مسی فرگوسن سنتیشن شده با آزمون دانگی در سطح 1% نشان می‌دهد. تراکتور مسی فرگوسن سنتیشن نشده با میانگین 17/8/ به طور معنی‌داری کمتر از حالت سنتیشن نشده آن و بیشتر از تراکتور بونیورسال لغزش چرخ داشته است. عامل اصلی این پدیده‌ها می‌توان تفاوت بار وارد بر محورهای محرک سطوح مختلف نوع با حالت تراکتور و عمل شحم با استفاده از آزمون دانگی در سطح 1% نشان می‌دهد. تراکتور مسی فرگوسن سنتیشن نشده با میانگین 17/8/ به طور معنی‌داری کمتر از حالت سنتیشن نشده آن و بیشتر از تراکتور بونیورسال لغزش چرخ داشته است. عامل اصلی این پدیده‌ها می‌توان تفاوت بار وارد بر محورهای محرک سطوح مختلف نوع با حالت تراکتور و عمل شحم با استفاده از آزمون دانگی در سطح 1% نشان می‌دهد. تراکتور مسی فرگوسن سنتیشن نشده با میانگین 17/8/ به طور معنی‌داری کمتر از حالت سنتیشن نشده آن و بیشتر از تراکتور بونیورسال لغزش چرخ داشته است. عامل اصلی این پدیده‌ها می‌توان تفاوت بار وارد بر محورهای محرک سطوح مختلف نوع با حالت تراکتور و عمل شحم با استفاده از آزمون دانگی در سطح 1% نشان می‌دهد. تراکتور مسی فرگوسن سنتیشن نشده با میانگین 17/8/ به طور معنی‌داری کمتر از حالت سنتیشن نشده آن و بیشتر از تراکتور بونیورسال لغزش چرخ داشته است. عامل اصلی این پدیده‌ها می‌توان تفاوت بار وارد بر محورهای محرک
در اتاق مبنا داری در لغزش چرخ های محرک در سطح مختلف مقطع طبیعی شاید با احتمال 99 میلیو متریست که در سطح سطحی (10-15 سانتی متر) کمترین لغزش وارد شده است. این پدیده نشان می‌دهد که این تراکتور در این شرایط در حال استفاده وجود دارد. دیگر اینکه، هر دو تراکتور در شرایط دارای میزان لغزشی در حین استفاده شده (10 تا 15 درصد) می‌باشند. در حالی که در شرایط متوسط نباید تراکتور مسی فروگسون در واقع مقطع شرایطی بازگردانی یا لغزشی بینش از مقدار توصیه شده در و پیوسته است. در حالی که لغزش تراکتور گردیده در و در شرایط سطحی ارتفاع، تراکتور مسی فروگسون در هر دو حالت درصد لغزش حداکثر 3 برآورد نقد قابل داشتن است که فراش و تهیه ساختن همکاران خاص و جمله عوامل نامعلومی آن می‌باشد. این نتایج نشان می‌دهد که تراکتور مسی فروگسون حتی با سنجش نیازهای محرک نیز قابل رقابت با تراکتور پیونیسال در اخراج شرایط عمیق می‌باشد.

با زاده کشور

نتایج تجزیه و ارائه آثار اصلی و مقایسه حالت تراکتور و عمق شکاب بر بازه کشور تراکتور نباید (جدول 1) نشان دهد که آن‌ها اصلی هر فاکتور و اثر متقابل آن در بر بازه کشور، در سطح احتیاط 0/1 میلیو متر می‌باشند. در جدول 4 میانگین بازه کشور تراکتورهای در سطح مختلف نوشت بازه کشور، و همچنین عمق شکاب با استفاده از آزمون آنان در سطح احتمال 0/1 مقایسه‌گری کرده است. چنان که دیده می‌شود بیشترین بازه کشور مرتبط به تراکتور پیونیسال و کمترین آن مرتبط به تراکتور فروگسون در حالت‌های نسبی نشده است. بازه کشور تراکتور فروگسون سنجش به میانگین 0/99/4/20 کلوئینوتنا برای تراکتورهای مسی فروگسون سنجش، سنجش شده و پیونیسال دانست.

اختلاف میانگین افزایش لغزش چرخ های محرک در سطح مختلف عمیق عمق شکاب با احتمال 99 میلیو متریست که در سطح سطحی (10-15 سانتی متر) کمترین لغزش وارد شده است. این پدیده نشان می‌دهد که این تراکتور در این شرایط در حال استفاده وجود دارد. دیگر اینکه، هر دو تراکتور در شرایط دارای میزان لغزشی در حین استفاده شده (10 تا 15 درصد) می‌باشند. در حالی که در شرایط متوسط نباید تراکتور مسی فروگسون در واقع مقطع شرایطی بازگردانی یا لغزشی بینش از مقدار توصیه شده در و پیوسته است. در حالی که لغزش تراکتور گردیده در و در شرایط سطحی ارتفاع، تراکتور مسی فروگسون در هر دو حالت درصد لغزش حداکثر 3 برآورد نقد قابل داشتن است که فراش و تهیه ساختن همکاران خاص و جمله عوامل نامعلومی آن می‌باشد. این نتایج نشان می‌دهد که تراکتور مسی فروگسون حتی با سنجش نیازهای محرک نیز قابل رقابت با تراکتور پیونیسال در اخراج شرایط عمیق می‌باشد.
جدول ۴: مقایسه میانگین‌های یازده کشی تراکتور (درصد) در سطوح مختلف نوع با حالت تراکتور و عمق شحم

<table>
<thead>
<tr>
<th>نوع با حالت تراکتور</th>
<th>میانگین (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسی فروغ‌سی (سنگی نشد)</td>
<td>۱۱/۲ ب</td>
</tr>
<tr>
<td>مسی فروغ‌سی (سنگی شده)</td>
<td>۱۰/۹ ب</td>
</tr>
<tr>
<td>بویونیورسال ۵۰</td>
<td>۱۰/۸ ب</td>
</tr>
</tbody>
</table>

**: میانگین X که با حروف کوچک مشترک نشان داده شده‌اند از نظر احتمال معنی‌دار نمی‌باشد (دانکن ۵).

میانگین‌های این مطالعه برای هر نوع سطح و حالت تراکتور برای هر نوع سطح و حالت تراکتور اندازه‌گیری شده‌اند.

طبرر معنی‌داری بر اساس نشان داده شده در جدول ۴ با ۳۲/۳ است. این پیدایش نشان می‌دهد که گرفتن در محله نیمه خشک شرایط خاک‌های سخت و در علائم خاک‌های دارا می‌باشد. در این حالت که خاک‌های خشک سخت در جداول ۴ و ۵ نشان می‌دهد که میانگین فروخونسین ۱۸۸ سنتی‌متر نشان دهنده تکرار بیشتر خاک‌های سخت و متوسط حالت سنگین سازی شده در اجرای شیشه‌های سنگین سخت و متوسط دارای بار بیشتر کشی مطلوب می‌باشد. در این حالت که تراکتور بویونیورسال ۱۰۰ در اجرای شیشه‌های عمق (نا ۲۵ سانتی‌متر) نیز از بار بیشتر کشی مطلوب برخوردار است.

منابع مورد استفاده

۱. جهانی، م. ه. بهرامی و م. ج. شیخ‌دراویش. ۱۳۶۹. انسدادگیری و مقاومت درصد لغزش چرخ‌های محوری و جلوگیری. تراکتورهای متنقل. در خوزستان. مجله علوم کشاورزی ۱۴ (۱ و ۲): ۱۱۶-۱۱۲.

۲. جهانی. ۱۳۷۵. سطحی و اثرات ماده آلی در خاک‌های ایران و نشان‌کردن کم‌کاهش. خلاصه مجموعه مقالات نجومی کنگره علوم خاک ایران. آموزش‌کانه کشاورزی ج۲، ۱۰ تا ۱۳ شهریور.
3. لغوی، م. و س. ر. اشرف‌زاده. 1376، مقالات کشتی، مقالات ویژه و توان مالی‌بندی، مورد نیاز گاوهای سلیمی، در سطوح مختلف رطوبت خاک و عمق شکم. علوم کشاورزی و منابع طبیعی (2)؛ 85-96.

4. مصادری، ا. و م. لغوی. 1373. ارزیابی عملکرد کشتی در نوع تراکتور مداوم در ایران. تحقیقات کشاورزی ایران 13(2)؛ 77-95.

5. ملاصدراکن، رکن‌آبادی. ا. 1378. ارزیابی و مقایسه بازده کشتی در تراکتور میان قدرت مداوم در ایران. پایان‌نامه کارشناسی ارشد مکانیک ماشین‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز.

