بررسی منحنی‌های همدما جذب و دفع رطوبتی بذر درت (هیربیدهای تری و کراس ۶۴۷ و سینگل کراس ۷۴۰)

مجید سلیمانی و محمد شاهدی

چکیده
منحنی‌های همدما در کنترل رطوبت بذر و رطوبت نسبی محیط اطراف آن طی دوره نگهداری و همچنین کنترل فرآیند خشک‌شدن و طرایح خشک‌کن حائز اهمیت است. با توجه به اهمیت منحنی‌ها، پژوهشی در قالب دو آزمایش فاکتوریل با ۳ فاکتور: هیربید (شامل هیربیدهای ۶۴۷ و ۷۴۰)، دما (در ۶ سطح در دامنه ۵ تا ۵۵ درجه سانتی‌گراد) و رطوبت نسبی (در دامنه ۹۰ تا ۱۰ درصد) به طور مستقل برای پدیده‌های جذب و دفع رطوبت انجام گرفت. برای فراهم ساختن رطوبت نسبی در دامنه مورد نظر از محلول گلیسرول استفاده شد. آزمایش‌ها نشان داد که محول این ماده می‌تواند شرایط مورد نظر را تأمین کند. البته رابطه میان فشارهای و رطوبت نسبی رابطه‌ای غیر خطی و به میزان کم وابسته به دما بود. نتایج حاصل از مقایسه معنی‌النگه‌دهی نشان داد که عوامل درجه حرارت، رطوبت نسبی و هیربید، هر سه بر رطوبت تعدادی جذب و دفع در سطح ۱/۲ درای اثر مثبت دارند. همچنین با افزایش در این ماده رطوبت نسبی از اهمیت و تأثیر پرخوردار است. مقایسه هیربیدهای نشان داد که در شرایط محیطی یکسان، هیربید ۶۴۷ و رطوبت تعدادی بالاتری نسبت به هیربید ۷۴۰ دارد که این مسئله بیانگر پالتر بودن قابلیت نگهداری و فعالیت آب کمتر هیربید ۷۴۰ است. ارتباط مشاهدات بر مدل‌های ریاضی غربی شده‌است. چنگ- فاست و اسونین یک رابطه خطی ضریب منحنی به این ترتیب نشان داد که لوله اسیوین برای منحنی‌های جذب و دفع هیربید ۷۴۰ و جذب و دفع هیربید ۶۴۷ و مدل چنگ- فاست برای منحنی دفع هیربید ۶۴۷ مدل‌های دقیقتر و مناسب‌تر است.

واژه‌های کلیدی: منحنی‌های همدما، جذب، دفع رطوبت، رطوبت نسبی، هیربیدهای تری و کراس

مقدمه
منطقه، ایجاد می‌کند تا ارتباط با مسائل‌های نگهداری و حفظ کیفیت این پژوهش جامع و کامل مورد گیری‌هایی در دوره نگهداری، کامپیوتر، بقای‌الحیات، جوان‌زنی و میزان صدمه به بذر به

۱. مربی پژوهش مرکز تحقیقات کشاورزی تبریز
۲. استاد علوم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

۲۱۷
حذافر پرمس.

مطالعات مشخص کردن است که عدم کنترل عوامل محیطی در جهت کاهش دما و رطوبت نسبی باعث افزایش فعالیت کیک‌ها در دوره نگهداری نشده و اولین قسمتی که توسط این عوامل فساد مورد حمله و تجزیه قرار می‌گیرد روابط بذری است.

این بوده که در این پژوهش کاهش دما، فعالیت تنفس و افت قوه نامی به بذری است که در جهت حشرات و رطوبت بذری نسبی به خودی بذری عصر انجام اثر تأثیر گذارند، زیرا افزایش فعالیت آنزیم‌های نفاسی و در افزایش شدت تنفس، نمک به کاهش ذخیره غذایی و افت قوه نامی به بذری است. از آنجا که رطوبت بذری و حشرات محل حضور از یکدیگر و در عین حال دو عامل مذکور تاثیر از زیستگری در حطرات مختلف، اگاهی از منحیه‌های هم‌مانند بذری به منظور نگهداری زیست آن لازم به نظر می‌رسد.

در سال 1989 چنی و موری، منحیه‌های هم‌مانند دوازده بذری را در دمای 0 و 4 درجه سانتی‌گراد مردود بررسی قرار دادند. تاثیر نشان داد که این منحیه‌ها برای اردک مختلف متفاوت است. همان‌طور که نشان داده شده در رطوبت نسبی از عوامل مؤثر بر تغییرات این منحیه‌ها می‌باشند و دارای اثر معنی‌دار است. همچنین نتایج نشان داد که پیدا کردن مطالعه طول‌مدتی در این منحیه‌ها نسبی بر درجه‌های 10 تا 100 درصد وجود دارد.

در سال 1980 تیمور ویگارش که به عوامل بیماری از قبل اجرا محصول (مواد معنی‌دار رگن، ناهسا، پروتئین و ناشناخته) را محصول و شرایط محیطی بذر در رطوبت نسبی تعادلی آن مؤثر است. در سال 1969 چنی و موری دو مرحله گندمی نشان داد که افزایش در درجه مقدار آن در دمای 15/5 درجه سانتی‌گراد مردود بررسی قرار دادند. منجر به افزایش قابلیت نگهداری آن در روز 17 روز می‌شود و در رطوبت 15/5 درجه سانتی‌گراد مردود بررسی قرار دادند. در روز 17 روز افزایش در درجه سانتی‌گراد مردود بررسی قرار دادند. در روز 17 روز می‌شود.

حتی پژوهش‌های مختلف، بیش از یک جنس کیک از دانه‌های غلات جدا شده است. در جنس بیک حداکثر و پک دمای بهینه و نیز بکر رطوبت نسبی بهینه برای فعالیت بذری زیر می‌باشد.

دمای بهینه برای بذری کیک‌های محل غلات در دمای 25 تا 30 درجه سانتی‌گراد است.
پرسی منحنی‌های همدمای جذب و دفع رطوبتی پدیده درت (Delta Ohm)

این شناسایی دو فاکتور برای اجرای حساب‌شده‌بود 15-10 درجه سانتی‌گراد استفاده شد.
همچنین برای توسعه یک‌نحوی دما و رطوبت از یک دما بعده به‌طور گرفته شد. پس از انجام شرایط محیطی (که حدود یک
سوم حجم محفظه را تشکیل می‌دهد) با هوا موجود در
محفظه، رطوبت نسبی آن همراه با درجه حرارت خشک و
درجه حرارت مرمودع با استفاده از Testo (مدل 405
Testo در دانه‌تیم‌پر) در مراحل مختلف با ورود رطوبت تعدادی، مدل را مورد مقایسه قرار
دادند و در کل مدل هندرس را به عنوان بهترین مدل ارزیابی
کردند. اما در عین حال تایم‌باینی و دقت رنگ مدل‌ها در
جدب بهتر از پدیده دفع رطوبت ارزیابی (12).

در سال 1383، می‌فرتند و تکنیک پدیده دفع رطوبت را برای
سهم پست ایرانی بررسی قرار دادند و مدل‌ها اسوسیو
اسپیت و چانگ-فایست را به تریج برای ارقام او، مناسب
که پیش‌برداری و تبادل مناسب‌گرایی کرده. همچنین تأثیر رقم
و دما را در دفع رطوبت تعدادی، مناسب‌گرایی کرده (1).

هدف از انجام تپوهانی بسته است: از
الف) بررسی تأثیر عناصر محیطی شامل دما و رطوبت نسبی و
ب) تعیین مناسب برای دیجی‌الهای جذب و دفع هرکی
از ارقام مورد نظر.

مواد و روش‌ها
برای تعیین منحنی‌های همدمای بدن درت، دانه‌ای و همچنین
بررسی تأثیر شرایط محیطی بر این، همبود‌های مبدل منطقه‌ی
یعنی سینگال کاسه 700 و تبریز کاسه 647 از مرکز کشت و
صنت شده در پژوهشگاه تهیه‌گردد.

برای تأیید رطوبت نسبی به طور دقیق در شرایط دمایی
مفهوم گلیسرول در مراحل مختلف تعیین انتهاه قرار
گرفت (1). برای انتخاب آزمایشگاه‌ها، مخلوط‌های گلیسرول با
سیاهه‌هایی در دامنه 40 تا 60 درصد (w/w) تهیه شد و
برای تعیین رطوبت نسبی به عنوان دما شامل، در
شکل شکل‌هایی در دست آمده برای رطوبت نسبی در

219
شکل 1. (الف) محفظه مورد استفاده برای تهیه و زیستگی‌های محلول گلسول و (ب) محفظه مورد استفاده برای نمونه‌ها.

هریک از دماهای ذکر شده، مدل‌هایی یک متغیر برای رطوبت نسبی بر اساس غلظت محلول گلسول به دست آمده. در نهایت با روشن کردن و خطا، غلظت‌های دقیق لازم برای فراهم ساختن 5 سطح رطوبت نسبی (0، 20، 40، 60 و 90 درصد) در دمای 0، 0.5، 3، 3.5 و 4 درجه سانتی‌گراد مشخص گردید که نتایج آن در جدول 1 ارائه شده است. برای محلول‌های رقیق جهل‌بی‌وی از آلودگی به کیکها، از دو قطره محلول اشباع سولفات سن استفاده شد (2).

برای پرسی تأثیر شرایط محیطی بر مقدار رطوبت تعادلی (EMC) بذر درشت، مطالعه‌ای در قالب آزمایش فاکتوریل بر پایه کاملاً نامتعادل، شامل فاکتورهای رقم (در سطح شامل هیبریدهای 0، 0.4 و 0.7)، درجه حرارت (در 5 سطح در دامنه 5\6 هیدرها درجه 0، 0.4 و 0.7) و رطوبت نسبی (در 5 سطح مذکور) و در مدت 30 روز صورت گرفت. بدین ترتیب رطوبت تعادلی در 2 حالت جذب (Desorption) و دفع (Adsorption) مورد ارزیابی قرار گرفت. در حالت جذب حدود 4 گرم نمونه خشک و در حالت دفع حدود 5 گرم نمونه مترورپ (که با استفاده از پارچه كتانی

240
جدول 1. غلظت‌های مورد نیاز گلیسرول (\%/w/w) برای تأمین رطوبت نسبی مورد نظر

<table>
<thead>
<tr>
<th>RH(%)</th>
<th>T(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>32/9</td>
<td>24/1</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(6/9)</td>
<td>(6/8)</td>
</tr>
<tr>
<td>32/9</td>
<td>64/6</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(11/5)</td>
<td>(8/5)</td>
</tr>
<tr>
<td>32/9</td>
<td>65/5</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(16/3)</td>
<td>(11/8)</td>
</tr>
<tr>
<td>32/9</td>
<td>85/5</td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>(29/52)</td>
<td>(21/9)</td>
</tr>
<tr>
<td>32/9</td>
<td>67/5</td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>(53/94)</td>
<td>(77/73)</td>
</tr>
</tbody>
</table>

اعداد داخل پارانتز در جدول یاگر فشار تبادل شده بر حسب میلی‌متر جیوه در غلظت ارائه شده در بالای آن می‌باشد.

در انتهای برای بررسی امکان برآورد دقیق رطوبت تعالی‌بندی در افزایش توانایی محیطی درجه حرارت و رطوبت نسبی محیط، داده‌های به دست آمده بر مدل‌های ریاضی و تجربی معتبر موجود منطق‌گردد. انتقال داده‌ها بر مدل‌های غیر خطی که در دیل ارائه شده است با استفاده از روش گوس-بوت (Gauss-Newton) و به کمک نرم‌افزار SAS صورت گرفت. این مدل‌ها عبارتند از: Modified Henderson (الف) "مدل اصلاح شده هندرسن" (Equation

\[
RH = 1 - \exp \left(- A \times (T+C) \times M^b \right)
\]

\[b = \frac{1}{2}
\]

برای تعیین رطوبت نمونه‌ها، از آون Memmert مدل 650 ساخت اپن با دقت دمای 1°C ± استفاده شد. پس از آن داده‌های به دست آمده در قالب آزمایش فاکتورهای 3 فاکتوری برای هرکدام از پدیده‌های جذب و دفع به طور جداگانه مورد تجزیه و سپس با آزمون دانکن، مانگین‌ها مورد مقایسه قرار گرفت (در سطح 0.05).
می‌شود به طوری که به عنوان مثال در دمای 25 درجه سانتی‌گراد، رطوبت نسبی به 90 درصد غلظت این ماده باشد از 9/99 درصد غلظت آن به 9/86 درصد افزایش پیدا کند. بنابراین رابطه میان افزایش غلظت گلیسرول و کاهش رطوبت نسبی یک رابطه غیر خطی است. مدل‌های که در نتیجه برآورد مقادیر رطوبت نسبی بر اساس غلظت محمل گلیسرول در دمان‌های مورد مطالعه حاصل آمده عبارتند از:

\[T=5^\circ C: \quad RH=(101.45-1.01C)/(1-0.0074C), \quad R^2=0.99 \]
\[T=15^\circ C: \quad RH=(101.78-1.02C)/(1-0.0074C), \quad R^2=0.99 \]
\[T=25^\circ C: \quad RH=(102.11-1.02C)/(1-0.0075C), \quad R^2=0.99 \]
\[T=35^\circ C: \quad RH=(102.45-1.02C)/(1-0.0075C), \quad R^2=0.99 \]
\[T=45^\circ C: \quad RH=(102.77-1.03C)/(1-0.0075C), \quad R^2=0.99 \]
\[T=55^\circ C: \quad RH=(103.05-1.03C)/(1-0.0076C), \quad R^2=0.99 \]

که در این روابط C غلظت گلیسرول (w/w) می‌باشد.

\[\text{MRD}=(1/n)\sum(|M-M_0|/M) \]

که در این رابطه \(M_0 \) میانگین مقادیر رطوبت تعادلی است.

نتایج

پس از انجام آزمایش‌های مربوط به تعیین فشار بخار و رطوبت نسبی محصول‌های گلیسرول، نتایج نشان داد که این ماده می‌تواند در کنترل رطوبت نسبی در دامنه مورد نظر مؤثر باشد. نتایج به دست آمده در جدول 1 آورده شده است.

همانطور که در نتیجه به دست آمده در جدول نشان می‌دهد افزایش غلظت گلیسرول در دمای بالاتر، می‌توان رطوبت نسبی و همچنین فشار بخار محدود به محصول گلیسرول را کاهش داد. به عنوان مثال در دمای 25 درجه سانتی‌گراد با افزایش غلظت گلیسرول به 34% (w/w) رطوبت نسبی به 7/64 درصد کاهش یافت. به طوری که سطح به میزان آن از 5 درجه سانتی‌گراد در تمام 6 سابقه باعث کاهش می‌گردد که افزایش دمای 5 درجه سانتی‌گراد 1/10 درصد کاهش یافته است.

demal چانگ - فاست (Chung-Pfost Equation)

\[RH=\exp (-A/(T+C) \times \exp (-B \times M)) \]

مدل اصلاح شده اوسین (Modified Oswin Equation)

\[RH=1/((A+B \times T)/M+C+1) \]

بر اساس روابط \(T \) در دو روابط MRD به ترتیب رطوبت نسبی و رطوبت تعادلی محصول T، درجه حرارت و \(A \) و \(B \) فاکتورهای اثرگذار از دو ایندکس T. پس از انطباق داده‌ها، فاکتور برای هریک از همبستگی در جدول و دفع به طور چسبانه به دست آمد. برای مشخص کردن مقدار همبستگی از رابطه برآورد رطوبت تعادلی با مربعات‌های خطی استاندارد (Standard Error of Estimate) تعیین شد و مورد بررسی و مقایسه قرار گرفت تا بهترین مدل‌های برای هر همبستگی مشخص گردید.

پیشنهادات

پیشنهادات بر اساس نتایج و ارائه رابطه و رطوبت تعادلی در پدیده چند جدب از این امر برای تجربه و اربانس رطوبت تعادلی در پدیده چند دمای جدب 2 درجه سانتی‌گراد است.
جدول 2: تجزیه واریانس رطوبت تعادلی بذر در پیده‌های جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>میانگین مربوطات (جذب)</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>هیبرید 1/179**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5/23/05 **</td>
<td>5</td>
<td>دما</td>
</tr>
<tr>
<td>423/159**</td>
<td>4</td>
<td>رطوبت نسبی</td>
</tr>
<tr>
<td>136/4360 **</td>
<td>5</td>
<td>هیبرید × دما</td>
</tr>
<tr>
<td>20/0905 **</td>
<td>4</td>
<td>هیبرید × رطوبت نسبی</td>
</tr>
<tr>
<td>0/5969 **</td>
<td>20</td>
<td>دما × رطوبت نسبی</td>
</tr>
<tr>
<td>0/25/035 **</td>
<td>20</td>
<td>هیبرید × دما × رطوبت نسبی</td>
</tr>
<tr>
<td>0/55</td>
<td>120</td>
<td>خطأ</td>
</tr>
</tbody>
</table>

** : معنی‌دار در سطح احتمال 1% ns : غیرمعنی‌دار

شکل 2: مقایسه میانگین‌های رطوبت تعادلی هیبرید‌های ذرت در پیده‌های جذب و دفع (به طور مستقل)

شکل 3: مقایسه میانگین‌های رطوبت تعادلی ناشی از تغییرات دما در پیده‌های جذب و دفع
شکل 4: مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محیط در پیده‌های جذب و دفع (به طور مستقل)

شکل 5: مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محیط در پیده جذب

بیشتر است، بنابراین کنترل آن حائز اهمیت می‌باشد. طبق جدول تجزیه و تحلیلس، اثر متغیر دما در رطوبت نسبی در سطح 1% معنی‌دار به دست آمده است. شکل 5 بانگر این مدل است که در دمای نسبی آن رطوبت نسبی، رطوبت تعادلی افزایش می‌یابد که به این امر متعلق به یک تابع تناوب سیگماتیپیدی است و بر عکس با افزایش دما به کاهش می‌باشد. افزایش دما و تعادلی کاهش پیدا می‌کند. بنابراین دیگر می‌توان به ترکیب مناسبی از این عوامل، رطوبت محصول را در سطح مطلوب حفظ کرد یا به سطح مورد نظر رساند. به توجه به شکل 5، اثر رطوبت نسبی محیط نیز مطلوب جدول 2 و شکل 4 بر رطوبت تعادلی بذر در سطح 1% معنی‌دار به دست آمده است. مقایسه میانگین‌های در شکل 2 بانگر این مدل است که افزایش رطوبت نسبی در تمام سطوح به کاهش نسبی به دست آمده است. افزایش دما در رطوبت تعادلی محصول در پیده جذب می‌گردد. میانگین‌ها نشان می‌دهد که تغییرات رطوبت نسبی (حاصل از تغییرات فشار بخار آب) در تغییرات رطوبت محصول، مؤثرتر از عامل محیطی دما در سطوح مورد مطالعه است. زیرا بیشتر منحنی تغییرات رطوبت تعادلی در اثر تغییرات رطوبت نسبی

224
در شکل‌ها یک پیانو موزیکی بودن رپوتی نسبی در تغییرات
رپوتی تعدادی برژ بایان زیرا شیب تغییرات رپوتی تعدادی
بر اثر تغییر رپوتی نسبی از شیب تغییرات رپوتی
تعادلی محصول در اثر تغییرات دمای بستری است.
اثر مقیاس فاکتورهای درجه حرارت در رپوتی نسبی تیر
طبق جدا در رپوتی تعادلی بجز در سطح 1/1 معنی‌دار است
و مانگنهای مرتبه در شکل 6 اثرات شده است. مشاهده
می‌شود که افزایش نسبی دمای بستری کاهش شیب متوسط منحنی‌های
EMC سیگمیدی می‌شود. این شکل نشان می‌دهد که در
ثانی افزایش نسبی دمای بستری تعادلی ناشی از
افزایش سرعت توده‌ها با توجه به جدول 2 در سطح 1/1 معنی‌دار نیست.

پیش‌بینی

تغییرات سپمان (نقاط میان رپوتی تعادلی محصول در حالت
جذب و رپوتی تعادلی در حالت دفع در ERH یکسان) بروی
هیریدهای 744 و 747 در شکل 7 و 8 برحسب دما ارائه شده است. این تغییرات نشان میدهد که دمای هر دور رقم در
شیب تابی افزایش رپوتی نسبی نا حید موجب افزایش
پهنای کامل و سپس بوجود کاهش آن می‌شود. افزایش درجه
حرارت (به جز دما) 15 درجه‌ای گارده باعث
کاهش این پهنای می‌شود.

ضایب درمان

پدیده‌های غیر خاطر انتخاب مدل مناسب
پس از اطمینان داده‌ها به دست آمده برای هیریدهای 744 و
747 در دامنه دما 5 الی 55 درجه
سانتی‌گراد و رپوتی نسبی ۱۰ الی ۹۰ درصد بر روی معادلات
هندسی، چانگ- فاست و اسایین، ضایب مشخص شد که در
جدول 3 آنها شده است.

چنانچه در این جدول ذکر شده دیده می‌شود با توجه به
مقدار تغییرات استاندارد برآورد و انحراف نسبی مانگنهای برای

مشخص می‌شود که با تعداد بروز رپوتی تعادلی (EMC)
موارد رپوتی نسبی در حال تعادل (ERH) یکسان است.
افرازیام دما افزایش پیدا می‌کند که این پدیده دمای ناشی از
افرازیام کردار خیار در محیط و یا به عبارتی افزایش عاطفیتی آن
در محصول است که بر عضو نگهداری بجز تأثیر مغزی دارد.
با توجه به جدول 2، اثر مقیاس هیریدهای در سطح و هیریدهای
رپوتی نسبی و نیز اثر مقیاس فاکتورهای طرفه فاکتورهای، فاقد
معنی‌دار است.

پدیده دفع رپوتی

اطلاع از منحنی همان‌های رپوتی در جدول دفع، بیشتر در
مرحله کاوش رپوتی بذر در فرآیند خشک کردن و در پرآورد
سرعت و زمین خشک شدن و تعین دفع رپوتی خشک‌کنن حالت
اهمیت است.

نتایج به دست آمده از تجزیه واریانس رپوتی تعادلی در
پدیده دفع در جدول 2 آیرات شده است.

طبق این جدول شکل 7.2 و 3، و در سطح مانگنها در مرحله کاوش
رپوتی بذر در فرآیند خشک کردن و در پرآورد
سرعت و زمین خشک شدن و تعین رپوتی خشک‌کنن حالت
اهمیت است.

مشخص می‌شود که با تعدد بروز رپوتی تعادلی (EMC)
جدول ۳ ضرایب معادلات هندسی، چانگ- فاست و اسون در پیده‌های جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>مدل</th>
<th>نوع پدیده</th>
<th>رقم</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R²</th>
<th>SEE</th>
<th>MRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>هندسی</td>
<td>جذب</td>
<td>۰/۸۳۲</td>
<td>۰/۹۹۴</td>
<td>۱/۲۲۴</td>
<td>۱/۲۴۱</td>
<td>۰/۷۹۷</td>
<td>۱/۲۷۶</td>
<td>۰/۵۲</td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۱/۱۱۲</td>
<td>۰/۹۹۶</td>
<td>۲/۰۴۳</td>
<td>۲/۰۱۲</td>
<td>۰/۷۹۷</td>
<td>۱/۲۷۶</td>
<td>۰/۵۲</td>
</tr>
<tr>
<td>چانگ-</td>
<td>جذب</td>
<td>۰/۹۶۹</td>
<td>۰/۹۹۵</td>
<td>۱/۰۶۴</td>
<td>۱/۰۳۹</td>
<td>۰/۷۸۷</td>
<td>۰/۶۸</td>
<td></td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۰/۱۱۲</td>
<td>۰/۹۹۶</td>
<td>۲/۸۸۲</td>
<td>۲/۸۲۵</td>
<td>۰/۷۸۷</td>
<td>۰/۶۸</td>
<td></td>
</tr>
<tr>
<td>فاست</td>
<td>جذب</td>
<td>۰/۷۹۸</td>
<td>۰/۹۹۶</td>
<td>۱/۰۳۱</td>
<td>۱/۰۰۷</td>
<td>۰/۸</td>
<td>۰/۵۶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۰/۷۹۸</td>
<td>۰/۹۹۶</td>
<td>۱/۰۳۱</td>
<td>۱/۰۰۷</td>
<td>۰/۸</td>
<td>۰/۵۶</td>
<td></td>
</tr>
<tr>
<td>اسون</td>
<td>جذب</td>
<td>۰/۷۹۸</td>
<td>۰/۹۹۶</td>
<td>۱/۰۳۱</td>
<td>۱/۰۰۷</td>
<td>۰/۸</td>
<td>۰/۵۶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۰/۷۹۸</td>
<td>۰/۹۹۶</td>
<td>۱/۰۳۱</td>
<td>۱/۰۰۷</td>
<td>۰/۸</td>
<td>۰/۵۶</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۶ مقایسه میانگین‌های رطوبت تعمیم در اثر تغییرات رطوبت نسبی محیط در پدیده دفع
بحث
نتایج به دست آمده از این پژوهش نشان داد که رطوبت تعادلی بذر با افزایش درجه حرارت کاهش و با افزایش رطوبت نسبی، به صورت تابع سیگونیده افزایش می‌یابد که این اثر رطوبت نسبی بر این تغییرات خیلی محسوس تر است. در آزمایش‌های چن و همکار و همچنین سویپ و همکار نتایج مشابه به دست آمده است (14 و 12).

هیبرید ۷۰۴۴ در هر دو حالت رطوبت ذوب و دفع، رطوبت بهترین مدل، مدل اسپین می‌باشد و برای هیبرید ۶۴۷ بهترین مدل در جذب، مدل اسپین است، درحالی که در حالت دفع در جذب، مدل چانگ- فاست دارای کمترین خطای را دارد. منحنی‌های حاصل از مدل‌های مناسب در شکل های ۹ تا ۱۲ ارائه شده است.
شکل 9. منحنی‌های همدمای جذب هیبرید 647 محاسبه شده بر اساس مدل اسون پس از تعیین ضراپب

شکل 10. منحنی‌های همدمای دفع هیبرید 447 محاسبه شده بر اساس مدل چانگ - فاست پس از تعیین ضراپب

شکل 11. منحنی‌های همدمای جذب هیبرید 704 محاسبه شده بر اساس مدل اسون پس از تعیین ضراپب
برای این همیشه، مدل چانگ- فاست است. سوپید و همکار نیز رفتار ارقام مختلف را در اطلاعات بر مدل‌های موجود، متفاوت از یکدیگر کرده که البته در اغلب موارد مدل هلدرسن به عنوان بهترین مدل معروف شده است (12).

نتیجه‌گیری

1. با استفاده از منحنی‌های ارائه شده در این پژوهش (منحنی‌های 9 تا 12) و با استفاده از مدل‌های منطق‌شده برای هبری‌دایه‌ها 704 و 527 می‌توان رطوبت بذر را در شرایط محیطی متغیر و بست آورد و با کنترل عوامل محیطی، رطوبت بذر را تحت مطلوب و مورد نظر تغییر داد.

2. با توجه به این که مطالعات نشان داده‌اند که در رطوبت نسبی کمتر از 70% (که برای هبری‌دایه 704 در پدیده‌های جذب و دفع به ترتیب رطوبت نسبی 15/75 و 15/15 درصد بر پایه خشک و برای هبری‌دایه 642 در پدیده‌های جذب و دفع به ترتیب رطوبت نسبی 15/25 و 15/15 درصرد بر پایه خشک ایجاد می‌کند) از فعالیت‌های کلیه‌ها جلوگیری می‌شود و نیز با توجه به این که گاهی رطوبت نسبی دارد تا حد خیلی بالایین مسیر نرم‌تری خیلی زیاد است، حتی احتمال مسئولیت‌های ملبس در خیلی بد حضور رطوبت بذر به مبنای تغییرات سالان آن صورت گرفت.

همچنین نتایج نشان می‌دهد که در شرایط محیطی یکسان، هبری‌دایه 704 نسبت به هبری‌دایه 707 رطوبت تعادلی بالاتر و در نتیجه قابلیت تغییرات آب بالاتری را دارد. به عبارتی دیگر، جوانه به منحنی‌ها مراجعه شود، چنین نتیجه‌گیری می‌شود که در رطوبت تعادلی یکسان، هبری‌دایه 704 رطوبت نسبی تعادلی بالاتر ایجاد می‌کند که این مسئله خود ناشی از افزایش فشار بخار و فعالیت آب محصول است. بنابراین در شرایط یکسان از نظر محتوای رطوبتی هبری‌دایه 704 می‌تواند از دوام و قابلیت کنگه‌داری بهتر برخوردار باشد.

پدیده‌سپرک که باعث ایجاد منحنی‌های جذب و دفع رطوبتی می‌شود با توجه به نتایج با افزایش میزان 15 درصد
آن کاهش بیشتر می‌کند و غالباً در رطوبت نسبی 100 و 90 درصد، میزان آن در طول تغییرات رطوبت نسبی به حداقل خود مرسید. نتایج حاصل از بررسی چنین و همکاران نیز مؤید این مطلب است (4).

مقایسه مدل‌های غير خطی با ضرایب تصحح شده، نشان می‌دهد که مدل آسین از میان مدل‌های سورد اسفاده در این پژوهش، از دقت بیشتری برای هبری‌دایه 704 در هر دو پدیده جذب و دفع رطوبت برخوردار است در حالی که برای هبری‌دایه 647 مدل آسین تنها برای پرآوردن رطوبت تعادلی جذب قطع بی‌پالنتی نسبت به سایر مدل‌ها دارد. مدل برتر در پدیده دفع

شکل 12. منحنی‌های همدمای دفع هبری‌دایه 704 محاسبه شده بر اساس مدل اسین‌پس از تعبیر ضرایب

249
منابع مورد استفاده

1. زمردیان، غ. و. ر. تکلی. ۱۳۸۲. دستیابی به منحنی های تعادلی و پیشنهاد مدل ریاضی مناسب برای پیشبینی رطوبت تعادلی برای
سه رقم پنجه‌ای علوم کشاورزی ایران ۳۷ (۳):۲۷۳–۲۹۴.

Van Nostrand, Reinhold.

Trans. ASAE 32(3): 999-1006.

Paul, MN.

Joseph, MI, ASAE.

USA.

13. Thompson, T. L. 1972. Temporary storage of high-moisture shelled corn using continuous aeration. Trans. ASAE
15: 333-337.

630-637.

kernels on the development of Penicillium species and Aspergillus flavus in storage. Phytopathol. 75: 1137-1140.

16. Young, J. H. 1976. Evaluation of molds to describe sorption equilibrium moisture content isotherm. Trans. ASAE