بررسی منحنی‌های همدما چسب و دفع رطوبتی بذر ذرت (هیبریدهای تری و کراس ۶۴۷ و سینگل کراس ۷۶۴)

مجید سلیمی‌نژاد و محمد شاهدی

چکیده

منحنی‌های همدما در کنترل رطوبت بذر و رطوبت نسبی محيط اطراف آن طی دوره نگهداری و همچنین کنترل فرآیند خشک‌شدن و طراحی شکلی حاصل همدما است. با توجه به اهمیت این منحنی‌ها، پژوهشی در قالب دو آزمایش فاکتوریل با ۳ فاکتور: هیبرید، شامل هیبریدهای ۶۴۵ و ۷۶۴، دما (در ۶ سطح در دامنه ۵ تا ۴۵ درجه سانتی‌گراد) و رطوبت نسبی (در دامنه ۱۰ تا ۹۰ درصد) به طور مستقل برای پیدا کردن چسب و دفع رطوبت انجام گرفته. برای فراهم ساختن شناساری رطوبت نسبی در دامنه مورد نظر از محلول گلیسرول استفاده شد.

از آزمایش‌ها نشان داد که محول این ماده می‌تواند شرایط مورد نظر را تأمین کند. البته رابطه میان غلظت و رطوبت نسبی، رابطه‌ای غیر خطی و به‌صورت کم و بسته به ماده بر عهده‌ی حاصل از مقایسهً میانگین‌ها نشان داد که عوامل درجه حرارت، رطوبت نسبی و هیبرید، شکسته بر رطوبت تعلقی جذب و دفع در سطح ۱/۰ درای اثر ممکن دارد. همچنین که باعث در این میان رطوبت نسبی از اهمیت و تأثیر بیشتر برخوردار است. مقایسه‌ی هیبرید‌ها نشان داد که در شرایط محیطی یکسان، هیبرید ۶۴۵ رطوبت تعلقی بالاتری نسبت به هیبرید ۷۶۴ دارد که این ساله به بانگر بارانگری قابلیت نگهداری و فعالیت ای که هیبرید ۷۶۴ است. انتقال مشاهدات بر مدل‌های ریاضی غریفخت هندسی، چاگنگ-فاست و اسپین پس از تعیین ضرایب منحنی به این ترتیبی که مدل اسپین برای منحنی‌های جذب و دفع هیبرید ۷۶۴ و جذب ۶۴۵ و مدل چاگنگ-فاست برای منحنی دفع هیبرید ۶۴۵ مدل‌های دقیق تر و مناسب‌تر است.

واژه‌های کلیدی: منحنی‌های همدما، ذرت، جذب و دفع رطوبت، رطوبت، مدل‌های رطوبتی

مقدمه

توجه‌ی انجام می‌کند تا ارتقاء با مسائل نگهداری و حفظ

کیفیت آن پژوهشی جامع و کامل صورت گیرد تا در دوره

نگهداری، کاهش قابلیت جوانانه‌ی و میزان گذشتن به بذر به

نداشته باشد، حکایت کشیده‌ی در نشانه‌ی، واژه‌ها، میزان اصفهان

۱. مربی پژوهش مرکز تحقیقات کشاورزی درفول

۲. استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۲۱۷
درجه سانتی‌گراد است که این وجود بعضی در دمای ۳۷ درجه سانتی‌گراد بهترین رشد و فعالیت را نشان می‌دهد. حداکثر دما برای رشد کیک‌ها مشخص نشده است ولی گزارش شده که برخی از آنها حتی در دمای حدود صفر درجه سانتی‌گراد نیز قادر به رشدند (۳۳).۲۵° C.

کربن‌سیستم‌کاپنی گزارش کرده‌اند که در دمای ۲۰ درجه سانتی‌گراد نسبی لازم برای فعالیت قرار به دامنه ۷۰ تا ۹۰ درصد یا بالاتر و حداقل دمای لازم برای فعالیت آنها ۵ تا ۱۰ درجه سانتی‌گراد است (۶). این تابع و توهین در سال ۱۹۸۷ ترکیبی قهوه نامی به یک نتیجه رسیده‌اند که حصول دریک درصد سایسی‌دی‌گیژی فیزیکی (در نتیجه ضریب‌گزینی و یا تغییرات ناگهانی رطوبت در اثر عامل شرایط محیطی) از یک باد خشکابی با دو عامل مذکور ناتوان از عمل درجه حرارتی است. اگاهی از منحنی‌های هم‌سطحی بذر به منظور نگهداری سالم آن لازم به نظر می‌رسد (۷). سریال دیگری که پس از برداشت بذر درخت اهمیت و ضروری است اعمال فیبرین خشک‌کردن و کاهش رطوبت آن است. اگاهی از منحنی‌های هم‌سطحی حصول در نگهداری زمان در دمای رطوبت در نتیجه پرآوردن افزایش در مدت زمان و مصرف انرژی طی مرحله خشک کردن و بستری ناز است (۳) و (۱۴).

پس از پرهشی که ثامن‌زاد در سال ۱۹۷۸ انجام داد، مشخص شد که افزایش رطوبت با درخت و درمان این مرحله به کاهش عمر نگهداری آن می‌شود به طوری که در دمای ۱۵/۵° C کاهش رطوبت حصول از ۲۸/۰ به ۱۵/۶ در افزایش قابلیت نگهداری آن از ۱۷ روز به ۱۷ روز موشود و در رطوبت ۱۵/۵° C کاهش دما حصول از ۳۹/۱ به ۳۹/۱ روز ظرفیتی در ۱۷ روز باعث افزایش عمر نگهداری از ۴۸ روز به ۴۸ روز موشود (۱۲).

در سال ۱۹۸۰ توری و گزارش کرد که عوامل سبیلی از قبیل اجزای محصول (مواد معدنی، محیطی و نشانه، بوتیلین و شرایط محیطی بذر درخت بی‌طریقی) نقش محصول و شرایط محیطی بذر درخت بی‌طریقی در نتیجه تفاوت مؤثر می‌باشد. این نتیجه دارد که پیشنهاد یک تمام طول نتوانی رطوبت نسبی در دمای ۱۰ تا ۱۰ روز از ۱۰۰ درصد و وجود دارد (۴).

در سال ۱۹۸۹ جنرال و موری مدل‌های هندرسن، چانگ- فاست، اسیون و هالیس را به منظور ارزیابی قابلیت آنها در برآورد رطوبت تعلیق از دستانی گلاسه و دانه‌های روشی بررسی کردند و در نتایج می‌توانستند در دستانی به‌طور گسترده‌ای را برای برخی از ارقام گندم بی‌طریقی و روان به‌طور بالا، مدل اسیون را برای رشد کیک‌های محل غلات درداشت (۱۳) و (۱۴).

در سال ۱۹۸۹ جنرال و موری مدل‌های هندرسن، چانگ- فاست، اسیون و هالیس را به منظور ارزیابی قابلیت آنها در برآورد رطوبت تعلیق از دستانی گلاسه و دانه‌های روشی بررسی کردند و در نتایج می‌توانستند در دستانی به‌طور گسترده‌ای را برای برخی از ارقام گندم بی‌طریقی و روان به‌طور بالا، مدل اسیون را برای رشد کیک‌های محل غلات درداشت (۱۳) و (۱۴)
بررسی منحنی های هم‌دما جذب و دفع رطوبت با دقت...

اندازه‌گیری شد. لازم به ذکر است که قیل از شروع آزمایش و تعیین رطوبت نسبی و فشار بخار محلول‌ها هیگرومترا با استفاده از محلول‌های استاندارد اسیدسولفوریک و گلیسرول بر اساس منابع موجود در دانشگاه تهران و دانشگاه 54 درجه سانتی‌گراد کالیبره شد. (8 و 10) برای اطمنان پیشتر، درجه حرارت خشک و درجه حرارت ماروت وسط دانشکده خشک و درجه حرارت ماروت وسط در شرایط مشابه برای هریک از محلول‌های استاندارد گردید و با استفاده از رابطه ترمودینامیکی زیر، فشار بخار آن تعیین شد:

\[P_w = P_{wb} - \frac{(P_b - P_{wb})(T_b - T_w)}{1555/56 - 1/7(T_w)} \]

که در این خصوص پارامترهایی به ترتیب زیر است:

- \(P_w \): فشار بخار آب (kPa)
- \(P_{wb} \): فشار بخار مولکولی (kPa)
- \(P_b \): فشار بخار آب در حال اشتعال در دما ماروت (kPa)
- \(T_b \): درجه حرارت خشک (°C)
- \(T_w \): درجه حرارت ماروت (°C)

مدل 1832 ساخت آلمن Lambrecht برای تغییرات پیوسته برای دقت بین 0.01 درجه سانتی‌گراد استفاده شد. برای خاصیت بررسی 0.01 درجه سانتی‌گراد تعیین شد و فشار بخار آب در دما ماروت وسط از جنس پلیکس کلریک (Plexy Glass) تعیین شد. برای تأمین گرمای از گرم‌کننده با توان 600 وات و برای تنظیم دقت حرارت از یک ترمودستی دیجیتال مدل 3080 ساخت شرکت دلائیما HD-219.
همیک از دماهای ذکر شده، مدل یا یک متغیر برای رطوبت نسبی بر اساس غلظت محلول گلیسرول به دست آمده. در نهایت، با روش سه دما، غلظت‌های دقیق لازم برای فراهم ساختن 5 سطح رطوبت نسبی (5، 10، 20، 30 و 90 درصد) در دماهای 5، 15، 25، 35 و 55 درجه سانتی‌گراد مشخص گردید که نتایج آن در جدول 1 ارائه شده است. برای محلول‌های رقیق جهت جلوگیری از آلودگی به کیفیت‌ها، از دو قطعه محلول اشباع سوخته مس استفاده شد (2).

برای پرسر تأثیر شرایط محیطی بر مقدار رطوبت تعادلی (EMC) بذر درخت، مطالعاتی در قابل آزمایش فاکتوریل بر پایه کاملاً تعادلی، شامل فاکتورهای رقم (در دو سطح شامل: هیبریدهای 70 و 285 درجه حرارت در 4 سطح در دامنه 50 تا 55 درجه سانتی‌گراد به فاصله 10 درجه از یکدیگر) و رطوبت نسبی (در 5 سطح مذکور) و هر تیمار در 3 تکرار صورت گرفت. باین منظور رطوبت تعادلی در 2 حالت جذب (Desorption) و دفع (Adsorption) مورد ارزیابی قرار گرفت. در حالت جذب حدود 4 گرم نمونه خشک و در حالت دفع حدود 5 گرم نمونه مرطوب (که با استفاده از پارچه کتانی)
جدول 1. غلظت‌های مورد نیاز گلیسرول (w/w) برای تأمین رطوبت نسبی مورد نظر

<table>
<thead>
<tr>
<th>RH(%)</th>
<th>T(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>84/1</td>
</tr>
<tr>
<td>70</td>
<td>79/8</td>
</tr>
<tr>
<td>50</td>
<td>90/2</td>
</tr>
<tr>
<td>30</td>
<td>97/5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

در انتهای بررسی امکان برآوردن دقت رطوبت تعادلی بر

همیشه‌های مذکور) بر اساس فاکتورهای محیطی درجه حرارت

و رطوبت نسبی محیط داده‌های به دست آمده بر مدلهای

ریاضی و تجربی معنی‌دار و جابل به طور یکسانه مورد

تجزیه و سپس به آزمون دانکن، میانگینها مورد مقایسه قرار

گرفت (در سطح 0/05).

برای تعیین پیدایش پسماند برای هر رقم در دمای منشأ

تقویت میان محتوای رطوبت با در حالات و تغییرات

دفعم به عنوان کمیت این پیدایش گزارش گردد که اثر تغییرات

رطوبت نسبی و دما بر آن در قالب منحنی ارائه شده است.

Equation

\[\text{RH}=1-\exp \left(-A \times (T+C) \times M^B \right) \]
Chung-Park Equation

The Chung-Park equation is a model used to estimate relative humidity (RH) as a function of temperature (T) and mean relative deviation (MID) derived from the following conditions:

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>RH Formula</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>55°C</td>
<td>$RH = \exp\left(\frac{-103.05 - 1.03C}{1 - 0.0076C}\right)$</td>
<td>>0.99</td>
</tr>
<tr>
<td>45°C</td>
<td>$RH = \exp\left(\frac{-102.77 - 1.03C}{1 - 0.0075C}\right)$</td>
<td>>0.99</td>
</tr>
<tr>
<td>5°C</td>
<td>$RH = \exp\left(\frac{-101.45 - 1.01C}{1 - 0.0074C}\right)$</td>
<td>>0.99</td>
</tr>
</tbody>
</table>

The Modified Oswin Equation (Mean Relative Error of Estimate) is given by:

$$RH = 1 - \left(\frac{A \times T}{M \times D}\right)$$

Where:
- \(RH\) is the relative humidity (%)
- \(T\) is the temperature (°C)
- \(M\) is the mean relative deviation
- \(A\) is a constant
- \(D\) is another constant

The equation can be used to estimate RH based on the given temperature and MID values.
جدول 2 تجزیه و ارزیابی رطوبت تعادلی زرد در پدیده‌های جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>میانگین مربوطات (جذب)</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1769</td>
<td>1</td>
<td>هیبرید</td>
</tr>
<tr>
<td>22/055</td>
<td>5</td>
<td>دما</td>
</tr>
<tr>
<td>924/159</td>
<td>4</td>
<td>رطوبت نسبی</td>
</tr>
<tr>
<td>421/921</td>
<td>5</td>
<td>هیبرید دما</td>
</tr>
<tr>
<td>31/023</td>
<td>4</td>
<td>رطوبت نسبی</td>
</tr>
<tr>
<td>0/539</td>
<td>20</td>
<td>دما رطوبت نسبی</td>
</tr>
<tr>
<td>0/599</td>
<td>20</td>
<td>رطوبت نسبی</td>
</tr>
<tr>
<td>0/550</td>
<td>120</td>
<td>خطا</td>
</tr>
</tbody>
</table>

**: معنی‌دار در سطح احتمال 1% ns: غیرمعنی‌دار

![شکل 2 مقارنی میانگین‌های رطوبت تعادلی هیبرید‌ها در دما و دفع دما در پدیده‌های جذب و دفع (به طور مستقل)]](image1)

![شکل 3 مقارنی میانگین‌های رطوبت تعادلی هیبرید‌ها در دما و دفع دما در پدیده‌های جذب و دفع (به طور مستقل)]](image2)
شکل 4. مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی میحوی در یک‌دهه‌های چسب و دفع (به طور مستقل).

شکل 5. مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی میحوی در پدیده جذب.

بیشتر است، بنابراین کنترل آن جائز اهمیت می‌باشد. طبق جدول تجزیه واریانس، اثر منفی‌الدما در رطوبت نسبی در سطح 1% معنی‌دار به دست آمده است. شکل 5 نشان می‌دهد که در دمای نسبی‌تر افزایش رطوبت نسبی شکل 5 بانگر این مطلب است که دمای نسبی‌تر افزایش می‌باید که به‌دنبال افزایش انتقال بر پیک ناب افزایش، سبیل‌هایی در است و بر عکس به‌طور به‌درجه حرارت رطوبت تعادلی کاهش پیدا می‌کند. به عبارتی‌هایی می‌توان با ترکیب مناسبی از این عوامل، رطوبت محصول را در سطح مطلوب حفظ کرد یا به سطح مورد نظر رساند. با توجه به شکل 5 اثر رطوبت نسبی میحوی نیز مطلوب جدول 2 و شکل ۴ بر رطوبت تعادلی می‌باشد. بنابراین، در سطح 1% معنی‌دار به دست آمده است. میانگین‌ها در شکل 2 بانگر این مطلب است که افزایش رطوبت نسبی در تمام سطوح به کار رفته در این پژوهش باعث افزایش معنی‌دار رطوبت تعادل محصول در پدیده جذب می‌گردد.

میانگین‌ها نشان می‌دهد که تغییرات رطوبت نسبی (حاصل از تغییرات فشار بخار آب) در تغییرات رطوبت محصول، مؤثرتر از عامل محیطی دما در سطح مورد مطالعه است. زیرا شیب منحنی تغییرات رطوبت تعادلی در اثر تغییرات رطوبت نسبی
در شکل‌ها یک پیانو مورتریت بودن رطوبت نسبی در تغییرات رطوبت تعادلی بذر با میانگین سیبگیمیتی از نواحی مولکول‌های رطوبت تعادلی بذر در نواحی مختلف رطوبت تعادلی محصول در نواحی مختلف دیشب است. اثر متقابل فاکتورهایی در محاسبه چرخان در رطوبت نسبی بر طبق جدول 2 بر رطوبت تعادلی بذر در سطح 1/4 می‌بینیم. در این مطالعه است و مولکول‌هایی موثر در رطوبت نسبی بذر در محصولات که برکه‌داری بذر ثابت می‌باشد، اثر متقابل هر دو در رطوبت نسبی و اثر مرتکب افزایش فاکتورها با توجه به جدول 2 در سطح 1/4 می‌بینیم.

پایه پساندن تغییرات سیمپادان (نقاط میان رطوبت تعادلی محصول در حالت ERH، جذب و رطوبت تعادلی در حالت دفع در هر یک از 704 و 472 در هر یک از 78 و 50 در هر یک از 90 و 50 و 72 و 90 در هر یک از 60 و 50 در هر یک از 50 و 40 در هر یک از 40 و 30 در هر یک از 30 و 20 در هر یک از 18 و 10 در هر یک از 9 و 6 و 8 و 4 و 2 و 1 در هر یک از 0.5 و 0.2 و 0.1 و 0.05 و 0.005 در هر یک از 0.002 و 0.001. نواحی متقابل فاکتورهایی در محصولات که برکه‌داری بذر ثابت می‌باشد، اثر متقابل هر دو در رطوبت نسبی و اثر مرتکب افزایش فاکتورها با توجه به جدول 2 در سطح 1/4 می‌بینیم.

پایه پساندن تغییرات سیمپادان (نقاط میان رطوبت تعادلی محصول در حالت ERH، جذب و رطوبت تعادلی در حالت دفع در هر یک از 704 و 472 در هر یک از 78 و 50 در هر یک از 90 و 50 و 72 و 90 در هر یک از 60 و 50 در هر یک از 50 و 40 در هر یک از 40 و 30 در هر یک از 30 و 20 در هر یک از 18 و 10 در هر یک از 9 و 6 و 8 و 4 و 2 و 1 در هر یک از 0.5 و 0.2 و 0.1 و 0.05 و 0.005 در هر یک از 0.002 و 0.001. نواحی متقابل فاکتورهایی در محصولات که برکه‌داری بذر ثابت می‌باشد، اثر متقابل هر دو در رطوبت نسبی و اثر مرتکب افزایش فاکتورها با توجه به جدول 2 در سطح 1/4 می‌بینیم.

پایه پساندن تغییرات سیمپادان (نقاط میان رطوبت تعادلی محصول در حالت ERH، جذب و رطوبت تعادلی در حالت دفع در هر یک از 704 و 472 در هر یک از 78 و 50 در هر یک از 90 و 50 و 72 و 90 در هر یک از 60 و 50 در هر یک از 50 و 40 در هر یک از 40 و 30 در هر یک از 30 و 20 در هر یک از 18 و 10 در هر یک از 9 و 6 و 8 و 4 و 2 و 1 در هر یک از 0.5 و 0.2 و 0.1 و 0.05 و 0.005 در هر یک از 0.002 و 0.001. نواحی متقابل فاکتورهایی در محصولات که برکه‌داری بذر ثابت می‌باشد، اثر متقابل هر دو در رطوبت نسبی و اثر مرتکب افزایش فاکتورها با توجه به جدول 2 در سطح 1/4 می‌بینیم.

پایه پساندن تغییرات سیمپادان (نقاط میان رطوبت تعادلی محصول در حالت ERH، جذب و رطوبت تعادلی در حالت دفع در هر یک از 704 و 472 در هر یک از 78 و 50 در هر یک از 90 و 50 و 72 و 90 در هر یک از 60 و 50 در هر یک از 50 و 40 در هر یک از 40 و 30 در هر یک از 30 و 20 در هر یک از 18 و 10 در هر یک از 9 و 6 و 8 و 4 و 2 و 1 در هر یک از 0.5 و 0.2 و 0.1 و 0.05 و 0.005 در هر یک از 0.002 و 0.001. نواحی متقابل فاکتورهایی در محصولات که برکه‌داری بذر ثابت می‌باشد، اثر متقابل هر دو در رطوبت نسبی و اثر مرتکب افزایش فاکتورها با توجه به جدول 2 در سطح 1/4 می‌بینیم.

پایه پساندن تغییرات سیمپادان (نقاط میان رطوبت تعادلی محصول در حالت ERH، جذب و رطوبت تعادلی در حالت دفع در هر یک از 704 و 472 در هر یک از 78 و 50 در هر یک از 90 و 50 و 72 و 90 در هر یک از 60 و 50 در هر یک از 50 و 40 در هر یک از 40 و 30 در هر یک از 30 و 20 در هر یک از 18 و 10 در هر یک از 9 و 6 و 8 و 4 و 2 و 1 در هر یک از 0.5 و 0.2 و 0.1 و 0.05 و 0.005 در هر یک از 0.002 و 0.001. نواحی متقابل فاکتورهایی در محصولات که برکه‌داری بذر ثابت می‌باشد، اثر متقابل هر دو در رطوبت نسبی و اثر مرتکب افزایش فاکتورها با توجه به جدول 2 در سطح 1/4 می‌بینیم.

پایه پساندن تغییرات سیمپادان (نقاط میان رطوبت تعادلی محصول در حالت ERH، جذب و رطوبت تعادلی در حالت دفع در هر یک از 704 و 472 در هر یک از 78 و 50 در هر یک از 90 و 50 و 72 و 90 در هر یک از 60 و 50 در هر یک از 50 و 40 در هر یک از 40 و 30 در هر یک از 30 و 20 در هر یک از 18 و 10 در هر یک از 9 و 6 و 8 و 4 و 2 و 1 در هر یک از 0.5 و 0.2 و 0.1 و 0.05 و 0.005 در هر یک از 0.002 و 0.001. نواحی متقابل فاکتورهایی در محصولات که برکه‌داری بذر ثابت می‌باشد، اثر متقابل هر دو در رطوبت نسبی و اثر مرتکب افزایش فاکتورها با توجه به جدول 2 در سطح 1/4 می‌بینیم.
جدول ۳. ضرایب معادلات هندرسین-چانگ- فاست و اسوین در پیدا کردن جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>مدل</th>
<th>نوع پدیده</th>
<th>رم</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R²</th>
<th>SEE</th>
<th>MRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>هندرسین جذب</td>
<td>0.0843</td>
<td>0.994</td>
<td>2/187</td>
<td>2/1/47</td>
<td>51/4/10</td>
<td>1/156</td>
<td>0/0.04</td>
<td>1/0.06</td>
</tr>
<tr>
<td>دفع</td>
<td>0.067</td>
<td>0.997</td>
<td>2/1/14</td>
<td>0.994</td>
<td>5/9/18</td>
<td>0/0.07</td>
<td>0/0.08</td>
<td></td>
</tr>
<tr>
<td>چانگ جذب</td>
<td>0.049</td>
<td>0.999</td>
<td>5/1/24</td>
<td>19.05</td>
<td>3/43/18</td>
<td>1/0.64</td>
<td>0/0.06</td>
<td></td>
</tr>
<tr>
<td>دفع</td>
<td>0.047</td>
<td>0.996</td>
<td>5/9/85</td>
<td>18.782</td>
<td>0.43/95</td>
<td>0/0.07</td>
<td>0/0.06</td>
<td></td>
</tr>
<tr>
<td>فاست جذب</td>
<td>0.056</td>
<td>0.995</td>
<td>8/3/88</td>
<td>18.3</td>
<td>0/23/7</td>
<td>0/0.09</td>
<td>0/0.09</td>
<td></td>
</tr>
<tr>
<td>دفع</td>
<td>0.047</td>
<td>0.995</td>
<td>5/9/09</td>
<td>18.01</td>
<td>0/0.11</td>
<td>0/0.07</td>
<td>0/0.06</td>
<td></td>
</tr>
<tr>
<td>اسوین جذب</td>
<td>0.039</td>
<td>0.998</td>
<td>0/0.0.06</td>
<td>0/0.04</td>
<td>3/0.69</td>
<td>0/0.12</td>
<td>0/0.09</td>
<td></td>
</tr>
<tr>
<td>دفع</td>
<td>0.047</td>
<td>0.995</td>
<td>0/0.0.06</td>
<td>0/0.04</td>
<td>3/0.69</td>
<td>0/0.12</td>
<td>0/0.09</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۶. مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محیط در پدیده دفع

226
بحث

نتایج به دست آمده از این پژوهش نشان داد که رطوبت تعمیمی بیش از آن تأثیر درجه حرارت، کاهش و با انفیش رطوبت نسبی، به صورت تابعی سیگنالیدی انفیش می‌باشد که به اثر رطوبت نسبی بر این تغییرات خیلی محسوس تر است. در آزمایش‌های چنین همکار و همچنین سوپر و همکار نتایج مشابه به دست آمده است (۴ و ۱۲).

هیرید ۷۰۴ در هر دو حالت جذب و دفع، رطوبت بهترین مدل، مدل اسوسین می‌باشد و برای هیرید ۶۴۷ بهترین مدل در حالت جذب، مدل اسوسین است، در حالی که در حالت دفع رطوبت؛ مدل چانگ- فاست دارای کمترین خطای را دارد.

منحنیهای حاصل از مدل‌های مناسب در شکل‌های ۹ تا ۱۲ ارائه شده است.
شکل 9. منحنی‌های همدماج جذب هیبرید ۶۴۸ محاسبه شده بر اساس مدل اسون پس از تعیین ضراپ

شکل 10. منحنی‌های همدماج دفع هیبرید ۶۴۸ محاسبه شده بر اساس مدل چانگ - فاست پس از تعیین ضراپ

شکل 11. منحنی‌های همدماج جذب هیبرید ۷۰۴ محاسبه شده بر اساس مدل اسون پس از تعیین ضراپ
برای این هیبرید، مدل چانگ-فاست است. سوپید و همکاری نیز رفتار اراق مختلف را در اطمینان بر مدل‌های موجود متقابل از یکدیگر کرانش کردن که بهتر از اغلب موارد، مدل هندسی به عنوان بهترین مدل معروف شده است (۱۲).

نتیجه گیری

۱- با استفاده از منحنی‌های ارائه شده در این پژوهش (منحنی‌های ۹ تا ۱۲) و با استفاده از مدل‌های منطق شده برای هیبرید‌های ۷۰۴ و ۶۴۷ می‌توان رطوبت بال‌تر را در شرایط محیطی متفاوت به دست آورد و با کنترل عوامل محیطی، رطوبت بال‌تر را حاصل می‌کند. و مورد نظر تغییر داد.

۲- با توجه به این که مطالعات نشان داده که در رطوبت نسبی کمتر از ۷۰٪ که برای هیبرید ۷۰۴ در پدیده‌های ۱۵/۲۵ و ۱۷/۲۵ درصد برای خشک و برای هیبرید ۴۷۴ یا در پدیده‌های جذب و دفع به ترتیب رطوبت معادال ۱۵/۲۵ و ۱۵/۲۵ درصد برای خشک ایجاد می‌کند از فعالیت کیف‌ها جلوگیری می‌شود و نیز با توجه به این که کاهش رطوبت توده بذر تا حد خیلی باین، منتظر صرف‌اندزی خیلی زیاد است، حتی اگر سعی شود مطالعه‌ای دقیق در خصوص حیدرای رطوبت توده به منظور تغییر در سالمن آن صورت گیرد.

همچنین نتایج نشان می‌دهد که در شرایط محیطی یکسان، هیبرید ۷۰۴ نسبت به هیبرید ۶۴۷ رطوبت تعادلی بال‌تر و در نتیجه قابلیت نگهداری آب بالاتری را دارد. به عبارتی دیگر جوانه به منحنی‌ها مراجعه شود، چین نتیجه‌گیری می‌شود که در رطوبت تعادلی یکسان، هیبرید ۷۰۴ رطوبت نسبی تعادلی بالاتر ایجاد می‌کند که این مسئله خود ناشی از افزایش فشار بخار و فعالیت آب محصول است. بنابراین در شرایط یکسان از نظر محتوای رطوبتی، هیبرید ۷۰۴ می‌تواند از این و قابلیت تغییر‌های ورودی برخورد باشد.

پدیده پسمان که باعث ایجاد منحنی‌های جذب و دفع رطوبت می‌شود با توجه به نتایج با افزایش میزان ۱۵ میلی‌متر آن کاهش پیدا می‌کند و غالباً در رطوبت نسبی ۱۰ و ۹۰ درصد، میزان آن در هر تغییرات رطوبت نسبی به حداقل خود می‌رسد. نتایج حاصل از بررسی چن و همکاران نیز موید این مطلب است (۴).

مقایسه مدل‌های غیر خطی با ضرایب تصاحح شده، نشان می‌دهد که مدل اسپیس از میان مدل‌های مورد استفاده در این پژوهش، از دقت بیشتری برای هیبرید ۷۰۴ در هر دو پدیده جذب و دفع رطوبت برخوردار است در حالی که برای هیبرید ۴۷۷ مدل اسپینر نشان داده که برای پیداکردن رطوبت تعادلی جذب، بسیار بالاتر نسبت به سایر مدل‌ها دارد. مدل برتر در پدیده دفع

