تأثیر محدودیت آب بر عملکرد سه رقم نخود

غلامرضا محتشمی، کاظم قاسمی گل‌عذاتی، عزیز جوانتشیر و محمد مقدم

چکیده
به منظور بررسی تأثیر رژیم‌های مختلف آبیاری بر برخی از شاخص‌های زراعی و فیزیولوژیک، سه رقم نخود (جم. 2011 و پیروز.) آزمایشی در سال 1377 در مزرعة تحقیقاتی دانشکده کشاورزی دانشگاه تبریز انجام شد. آزمایش به صورت اسپلیت‌پلات با طرح یک به یک مقدمه کامل تصادفی با سه تکرار اجرا شد که در آن رژیم‌های آبیاری شامل آبیاری کامل و آبیاری محدود (یک نوبت آبیاری در یک مراحل فیزیولوژیک شاخص دهی، گل‌دهی با تشکیل نیام) در کرت‌های اصلی ارائه نخود در کرت‌های فرعی گنجانده شدند. در شرایط آبیاری محدود بین رژیم‌های آبیاری، اختلاف معنی‌داری از نظر درصد پوشش سیب و تعداد نیام در پوشه وجود نداشت. در صورتی که سرعت، طول دوره پر شدن، وزن و عملکرد دانه در شرایط آبیاری در مرحله تشکیل نیام به طور معنی‌داری بیشتر از رژیم‌های آبیاری در مرحله شاخص دهی گل‌دهی و پوشش سیب و تعداد دانه در كلم در رقم 2011 پیشتر از رقم جم و پوشش سیب در سایر موارد واکنش این دو رقم به محدودیت آب قبلاً مشاهده نیامد. کلیه صفات به استثنای تعداد نیام در پوشه به طور معنی‌داری کمتر از ارتفاع جم 101. بود درصد پوشش سیب، بالاترین هیپس‌گی را به عملکرد دانه نشان داد. این بررسی مشخص کرد که در بین مراحل فیزیولوژیک گیاه نخود، مرحله تشکیل پوشه دانه‌سازی حساس ترین مرحله ب‌کمک ادبی است و در شرایط محدودیت آب با انجام آبیاری در این مرحله می‌توان عملکرد نخود را به طور قابل توجهی افزایش داد.

واژه‌های کلیدی: نخود، درصد پوشش سیب، سرعت و طول دوره پر شدن دانه، عملکرد، اجزای عملکرد دانه

مقدمه
به طور کلی از نظر اهمیت، نشان‌های مشکلات دوران نشان‌پذیری زیستی که علت نخود را تحت تأثیر قرار می‌دهد (25) در آزمایش‌های به منظور بررسی سازگاری نخود نسبت به آب و هوا،

1. به ترتیب دانشجوی دکتری، دانشیار و استادان زراعت و اصلاح نباتات، دانشگاه تبریز، دانشکده کشاورزی، دانشگاه تبریز.
مواد و روش‌ها
این آزمایش در بهار سال ۱۳۷۷ در مرغ‌های استان تحقیقاتی
دانشکده‌کشاورزی دانشگاه تبریز به اجرای آمد. استفاده
مورد نیازهای هواناسی در رنگ‌پوشی کاملاً ستی و نقشه خشک
قرار می‌گیرد (۱). پایان خلاصه‌ای این آزمایش شماره است (۳)
در pH خاک بین ۷/۹ تا ۸/۸ و متوسط سطحی آن ۸/۰ درصد
بود. قبل از کاشت، عملیات زیر انجام شد: این آزمایش
بی‌استعدادی پلاک با طرح بایه بخارها کامل صافی و
در ۳ تکرار انجام شد. در این تکرار (ا) آبیاری غلظت ۵ در نظر گرفته
عملیات مواد نمونه غلظت ۲ در نظر گرفته
شدند. بازده آن در هر کیلو غلظت ۱/۰ در نظر گرفته
سانتی‌متر در هر کیلو غلظت ۵ سانتی‌متر و پوشیده شده
بودند. آزمایش به‌طور مواد نمونه غلظت ۱/۰ در نظر گرفته
در مرغ/گوشت زایی خاکی، کلیه
بزرگی خاکی کلیه از کاشت با استفاده از سرم نمونه‌ی به نسبت و در
هزار. ضمن این کاشت به نظر گرفته
شبکه بدون ذره آبیاری مورد ارزیابی قرار گرفتند.
آب‌میوه به این خاصیت تغذیه مطلوب که
شکل دهی، گل‌دهی یا تشنگی نیاز آبیاری سرد. در هر
تیمار، آب‌میوه مواد نمونه که ۵۰/۰ درکه از آبیاری
مرحله کشاورزی که تمکار روی هر دو صفت
صرف (سرعت و طول دوره بر روز شدن) می‌باشد و
گونه گیاهی بستگی دارد (۱۶).

با توجه به محدود بودن منابع، در کشور در این تحقیق
سعی شده است تا به‌کار گرفت به‌کار
فیلوتیک، درصد پوشش، سرعت و طول دوره پرورش
تان، عملکرد، اجزاء عملکرد ارقام نخود، در مقایسه با
آبیاری کامل، مورد بررسی قرار گرفته و در هنگام
شناسایی شاخص‌های مؤثر بر عملکرد، به‌کارگیری
برای دست‌یابی به عملکرد مطلوب، عدين و معرفی شود.
تاثیر محدودیت آب بر عملکرد سه رقم نخود

محاسبه و برآورد گرده:

\[W = \begin{cases} a + bt & t < t_m \\ a + bt_m & t \geq t_m \end{cases} \]

در این معادله \(W \) و \(t \) عدد، \(a \) عرض از مبدا خط \(b \) ضریب خط \(t \) زمان (Mass maturity) وزنی (Mass maturity) به حداقل مقدار خود می‌رسد \(t_m \) تعداد سرعت در بین وزن میزان رسیدگی \(tm \) ردیابی گرده است. برای تعیین درصد میدان دانه از معادله 2 استفاده شد.

\[GFD = \frac{MGW}{GFR} \]

در معادله مذکور GFD (Grain Filling Duration) GFD به عنوان نماینده (Maximum Grain Weight) MGW و (Grain Filling Rate) GFR به عنوان میزان مواد غذایی استفاده شد. تجزیه و تحلیل برای صفات سیب مطالعه انجام و برای مقایسه میانگین سطوح عاملی از روش توکی استفاده شد. محاسبات آماری با استفاده از نرم افزار SAS و نرم افزارهای با بهره‌گیری از نرم افزار Excel انجام شد.

نتایج و بحث

درصد پوشش سبز

تجزیه و تحلیل درصد پوشش سبز سه رقم نخود در مراحل مختلف رشد و ریزش به عنوان آماری (جدول 1) نشان می‌دهد که آمار آبریزی، رقم، زمان و اثر متقابل آبیاری × زمان معنا در می‌باشد. به عبارت دیگر درصد پوشش سبز در روزهای مختلف آبیاری و همچنین در بین ارقام نخود و در فواصل زمانی متغیر پس از سیسمی نشود به طور معنی‌داری تغییر یافته است. معنی‌دار بودن اثر متقابل آبیاری × زمان بین‌گرا به‌کمک آمار، واقعیت این است که روند تغییرات درصد پوشش سبز در طول جامعه شمارش و مسیر در یک اثر تحت دمای 130°C در آبیاری گرده به سختی یافته است. به همین دلیل این میانگین و زنخشک‌های دانه در درصد تیمار و در هر مراحل محسوب گردد. روند تغییرات زنخشک دانه‌ها افزایش وزن و هر دانه بر حسب میلی‌گرم در هر روز) با استفاده از معادله 1

\[\text{کیولد} = \frac{\text{وزن دانه}}{\text{گرده}} \]

به طور مشابه به‌کمک آمار، واقعیت این است که روند تغییرات درصد پوشش سبز در طول جامعه شمارش و مسیر در یک اثر تحت دمای 130°C در آبیاری گرده به سختی یافته است. به همین دلیل این میانگین و زنخشک‌های دانه در درصد تیمار و در هر مراحل محسوب گردد. روند تغییرات زنخشک دانه‌ها افزایش وزن و هر دانه بر حسب میلی‌گرم در هر روز) با استفاده از معادله 1

\[\text{کیولد} = \frac{\text{وزن دانه}}{\text{گرده}} \]
جدول 1. نتایج آزمایشات رصد پوشش سیب در مراحل مختلف رشد در رزم‌های مختلف آبیاری

<table>
<thead>
<tr>
<th>عوامل آزمایشی</th>
<th>درجه آرازی</th>
<th>میانگین مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>58/9/8 **</td>
</tr>
<tr>
<td>آبیاری</td>
<td>3</td>
<td>795/6/7 **</td>
</tr>
<tr>
<td>شرایط بیشتر</td>
<td>6</td>
<td>135/3/8</td>
</tr>
<tr>
<td>رشد</td>
<td>2</td>
<td>269/2/3/4 **</td>
</tr>
<tr>
<td>خطا اصلی</td>
<td>6</td>
<td>22/1/6 **</td>
</tr>
<tr>
<td>خطا فرعی</td>
<td>16</td>
<td>5/3/55 **</td>
</tr>
<tr>
<td>زمان</td>
<td>9</td>
<td>8/47/6/9 **</td>
</tr>
<tr>
<td>انحراف خطا</td>
<td>4</td>
<td>205/6/0 **</td>
</tr>
<tr>
<td>شرایط بیشتر</td>
<td>18</td>
<td>389/3/8 **</td>
</tr>
<tr>
<td>خطا فرعی</td>
<td>216</td>
<td>385/0/00 **</td>
</tr>
</tbody>
</table>

و **: به ترتیب غیر معنی‌دار و معنی‌دار در سطح احتمال 1/ ns

جدول 2. مقایسه میانگین درصد پوشش سیب در هر کل فصل رشد، سرعت پر شدن دانه، طول دوره پر شدن دانه و حداکثر وزن دانه

<table>
<thead>
<tr>
<th>طول دوره پر شدن دانه (روز)</th>
<th>سرعت پر شدن دانه (میلی گرم در روز)</th>
<th>حداکثر وزن دانه (میلی گرم)</th>
<th>سطح آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>265/444 **</td>
<td>7/7/633 **</td>
<td>37/7/633 **</td>
<td>آبیاری کامل</td>
</tr>
<tr>
<td>228/0/55 **</td>
<td>7/2/530 **</td>
<td>37/0/55 **</td>
<td>آبیاری در مرحله تشکیل نیام</td>
</tr>
<tr>
<td>137/5/50 **</td>
<td>7/2/433 **</td>
<td>37/0/55 **</td>
<td>آبیاری در مرحله گل‌دهی</td>
</tr>
<tr>
<td>125/7/50 **</td>
<td>7/2/433 **</td>
<td>37/0/55 **</td>
<td>آبیاری در مرحله شاخه دهن</td>
</tr>
</tbody>
</table>

| میزان دانه | شرایط بیشتر | رشد آبیاری | محدود بود | (جدول 2) | با بررسی روند تغییرات میانگین درصد پوشش سیب از ارقام نخود در مراحل مختلف رشد و در رزم‌های مختلف آبیاری

فرات فیزیولوژی در سطح احتمال 5/ را نشان می‌دهد.

میزان پوشش سیب (شکل 1) ملاحظه کنید که درصد پوشش سیب در مراحل مختلف رشد و دوم از در شرایط آبیاری کامل به مراتب بیشتر از آبیاری محدود بوده است. حداکثر درصد پوشش سیب در شرایط آبیاری کامل و آبیاری در مرحله تشکیل نیام نسبت به شرایط آبیاری دوم و شرایط آبیاری یک و دوم هر حالت حاصل شده است که نشان می‌دهد دوم پوشش سیب در این شرایط بیشتر بوده است. این امر این چیزی است که نشان می‌دهد درصد پوشش سیب در ارقام نخود در مراحل مختلف رشد و در رزم‌های مختلف آبیاری

فقط یکبار در طول فصل رشد آبیاری صورت گرفته است. (مرحله پر شدن دانه) از لحاظ میانگین درصد پوشش سیب وجود ندارد. ولی همانطور که از نظارت می‌رود میانگین درصد پوشش سیب در شرایط آبیاری کامل به طور معنی‌داری بیشتر از آبیاری های محدود بود. (جدول 2) با بررسی روند تغییرات میانگین درصد پوشش سیب از ارقام نخود در مراحل مختلف رشد و در رزم‌های مختلف آبیاری

112
شکل ۱. تغییرات میانگین پوشش سبز از ارقام نخود در مراحل مختلف رشد در روزهای مختلف آبیاری

جدول ۳. مقایسه میانگین درصد پوشش سبز در کل فصل رشد، سرعت پرشدن دانه، طول دوره پرشدن دانه، وزن دانه و حداکثر وزن دانه (میانگین ۱۰ مرحله) در سه رقم نخود

<table>
<thead>
<tr>
<th>رقم</th>
<th>درصد پوشش سبز</th>
<th>سرعت پرشدن دانه (وزن)</th>
<th>طول دوره پرشدن دانه (روز)</th>
<th>وزن دانه (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۳۰/۱±۲/۸٢</td>
<td>۷/۳±۵/۸١</td>
<td>۵۰/۱±۱/۶٨</td>
<td>۱/۱±۰/۶٨</td>
</tr>
<tr>
<td>۲</td>
<td>۳۰/۸±۲/۴٨</td>
<td>۷/۲±۵/۸٤</td>
<td>۴۹/۷±۱/۵٠</td>
<td>۱/۸±۰/۷٣</td>
</tr>
<tr>
<td>۳</td>
<td>۳۲/۵±۲/۸٣</td>
<td>۷/۳±۶/۲٨</td>
<td>۴۹/۷±۱/۵٢</td>
<td>۱/۹±۰/۷٣</td>
</tr>
</tbody>
</table>

حرکت غیرمشابه در هر سطح اختلاف معنی‌دار در سطح احتمال ۵٪ را نشان می‌دهد.

پیشترین درصد پوشش سبز را در شرایط آبیاری کامل و محدود نسبت به ارقام جم و پیروز داشتند. این امر می‌تواند از پیشتر بودن تعداد شاخه‌ها و توسه جانشینی آنها در این رقم ناشی شده باشد. از نظر درصد پوشش سبز، رقم پیروز پایین‌ترین مقادیر را به خود اختصاص داد (جدول ۳ و شکل ۲). تأثیر بسیار زیادی می‌باشد. در شرایط آبیاری کامل، گیاه با استفاده پیشتر از منابع موجود به تولید قسمت‌های سبز خود ادامه داده و از پیشتر سبز پیشتر و پایدارتر برخورداری می‌گردد (۱۳). در بین ارقام نخود نیز از نظر میانگین درصد پوشش سبز اختلاف معنی‌داری وجود داشت. بدين ترتیب که رقم ۲۰۱
زمان (روز پس از کاشت)

شکل 2. تغییرات درصد پوشش سبز موجب نخود در رژیم‌های مختلف مطرح

حد و استیج انتقال از رژیم 3 و 7 پیروز معمول نیست (جدول 3). عملکرد آن با ارتفاع 3.2 و 3.8 می‌تواند در همه آب‌سنگ‌های کاملاً ایرانی و سایر شرایط آبیاری کامل از پرتون بیشتر باشد. گیاهی از نظر درصد پوشش سبز، سرعت و دو هم‌مراتر پرتون داده و اجزای عملکرد به تعداد نیام در بوته و وقن دانه در مقایسه با آب‌سنگ‌های محدود ناشی بود (جدول 1، 2 و 5). علاوه بر آن، دوام پیشگیری پوشش سبز در شرایط آبیاری کامل نیز می‌تواند از طرف افزایش طول مدت فتوسنتز، مویش افراش عملکرد کردد (شکل 1). بر اساس گزارش سلیم و همکاران (32) بالا بودن درصد پوشش سبز به ویژه در دو هم‌مراتر پرتون داده تبیه آب از سطح خاک را کاهش داده و به بهبود وضعیت رطوبتی خاک و افراش میزان آب در استرس گیاه منجر می‌شود. برتری عاملکن در شرایط آبیاری کامل در مرحله تشکیل نیست به رژیم‌های آبیاری در مراحل گیاهی یا شاخه دهی را نیز می‌توان به بالاتر بودن سرعت و طول دوره پر شدن دانه نسبت داد که به تولید دانه‌های درصد و دوم پوشش سبز در طول فصل رسید به ویژه در مرحله حساس تشکیل و پر شدن دانه بر روی عملکرد و همچنین تأثیر مثبت آبیاری بر درصد و دوم پوشش سبز در لگومهای دانه‌ای و غلت تغییر در بسیاری از حفظ مورد تأیید قرار گرفته است (1، 2، 5، 13، 23 و 24).

عملکرد و اجزای عملکرد

بر اساس نتایج حاصل از تجربه واریانس، تأثیر آبیاری و رقم بر روی عملکرد دانه معمول بود (جدول 4). دو دست تریب که در شرایط آبیاری کامل، بیشترین میزان عملکرد به دست آمد (2242 گرم در متر مربع) و پس از آن به ترتیب رژیم‌های آبیاری در مرحله تشکیل نیام کل دهی و بالاخره شاخه دهی قرار گرفته (جدول 5). در بین ارقام مورد آزمایش نیز از نظر میزان عملکرد دانه، اختلافات معنی‌داری دیده شد. به طوری که رقم 2012 از بالاترین و رقم 7 پیروز از پایین‌ترین میزان عملکرد دانه بود. رقم چم نیز از نظر میزان عملکرد دانه در
جدول ۲. نتایج تجربه واریانس عملکرد و اجزای عملکرد سه رقم نخود در زیرهای مختلف آبیاری

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آرادی</th>
<th>میانگین مربعات عملکرد دانه</th>
<th>وزن صد دانه (گرم)</th>
<th>تعداد دانه در بوته</th>
<th>تعداد نام در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>۵/۱۸۲</td>
<td>۲۵/۱۰۰</td>
<td>۱/۰۵۶</td>
<td>۱۱/۳۷۸</td>
</tr>
<tr>
<td>آبیاری</td>
<td>۳</td>
<td>۲/۵۷۴</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
<tr>
<td>خطای اصلی</td>
<td>۶</td>
<td>۱/۵۳۳</td>
<td>۱۲/۰۰۰</td>
<td>۱/۵۲۵</td>
<td>۱۱/۵۸۴</td>
</tr>
<tr>
<td>رقم</td>
<td>۶</td>
<td>۱/۵۷۳</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
<tr>
<td>خطای فرعي</td>
<td>۱۶</td>
<td>۱/۵۰۰</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
</tbody>
</table>

میانگین مربعات عملکرد دانه در سطح آزادی به ترتیب گم/در و معنی‌دار در سطح احتمال ۵% و ۱% درصد.

جدول ۳. نتایج مقایسه میانگین‌های عملکرد و اجزای عملکرد در قلم نخود در زیرهای مختلف آبیاری

<table>
<thead>
<tr>
<th>سطح آبیاری</th>
<th>عملکرد دانه (گرم در مترا مربع)</th>
<th>وزن صد دانه (گرم)</th>
<th>تعداد دانه در بوته</th>
<th>تعداد نام در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری کامل</td>
<td>۲/۵۰۰</td>
<td>۲/۰۰۰</td>
<td>۱/۰۵۶</td>
<td>۱۱/۳۷۸</td>
</tr>
<tr>
<td>آبیاری در مرحله تشکیل نام</td>
<td>۱/۵۰۰</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
<tr>
<td>آبیاری در مرحله کل دهنده</td>
<td>۱/۵۰۰</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
<tr>
<td>آبیاری در مرحله شناخته دهی</td>
<td>۱/۵۰۰</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
</tbody>
</table>

در سطح آزادی به ترتیب گم/در و معنی‌دار در سطح احتمال ۵% و ۱% درصد.

جدول ۴. نتایج مقایسه میانگین‌های عملکرد و اجزای عملکرد در سه رقم نخود

<table>
<thead>
<tr>
<th>رقم</th>
<th>عملکرد دانه (گرم در مترا مربع)</th>
<th>وزن صد دانه (گرم)</th>
<th>تعداد دانه در بوته</th>
<th>تعداد نام در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۱</td>
<td>۱/۵۰۰</td>
<td>۱/۵۰۰</td>
<td>۱/۰۵۶</td>
<td>۱۱/۳۷۸</td>
</tr>
<tr>
<td>جم</td>
<td>۱/۵۰۰</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
<tr>
<td>پیروز</td>
<td>۱/۵۰۰</td>
<td>۱/۵۰۰</td>
<td>۱/۰۶۳</td>
<td>۱۱/۵۰۲</td>
</tr>
</tbody>
</table>

در سطح آزادی به ترتیب گم/در و معنی‌دار در سطح احتمال ۵% و ۱% درصد.

در نیم در نخود زراعی به طور عمده تحت کنترل ساختار زننده است و تأثیر عوامل محیطی بر آن ناجی است. پاندی و همکاران (۱۹) نیز در مورد بادام زمینی به تجربه مشابهی دست یافتند. در بررسی حاضر، عملکرد پایین دانه در رقم پیروز نسبت به ارقام جم و ۳۰۱ را می‌توان به کمتر بودن درصد درشت‌تر منجر گردیده (جدول ۲). در بین اجزای عملکرد فقط تعداد دانه در نیم تحت تأثیر درجه آزادی قرار گرفت (جدول ۳ و ۴). این امر نشان می‌دهد که نشانه خاص بر روی این صفت در نخود تأثیر قابل توجهی ندارد. بر اساس گزارش اولد و همکاران (۴) تعداد دانه.
پوشش سبز، سرعت و طول دوره پر‌شدن دانه و در نتیجه کوچک شدن دانه شکل یافته یا نسبت داد (جدولهای ۲ و ۳).

بیماری از پژوهشگران تأثیر گرد آب در طول دوره رشد گیاه در ورود در مراحل بروز و پر‌شدن دانه را بر پا کرده است. عملکرد آن در طول تأمین قرار داده‌اند (۱۶، ۲۰، ۲۸ و ۲۹).

به عقیده آنها، این کاهش عملکرد می‌تواند از کاهش درصد و دوام پوشش سبز، سرعت پر‌شدن دانه و دوره مؤثر پر‌شدن آن بر اثر شرایط خشکی ناشی شود.

سرعت و دوره مؤثر پر‌شدن دانه

با توجه به خطوط رگرسیونی مربوط به تغییرات وزن دانه سه رقم نخود در شرایط آبیاری کامل و محدود (شکل ۲) دیده می‌شود که در کلیه رژیم‌های آبیاری و برای هر رقم نخود وزن دانه تا رسیدن به حداکثر جریان در زمان رشد که وزن دانه به حدرسیدگی رسیده، روندی افزایشی داشته و پس از آن، تغییر چندانی پیدا نکرده است. در این منحنی های خط رگرسیونی نمایانگر سرعت پر‌شدن دانه و نقطه‌کلیه‌ی که در آن وزن دانه به حالت نرمالی نسبتاً ثابت در می‌آید، نشان دهنده طول دوره پر‌شدن دانه است. با توجه به گرفتن شیب خطوط رگرسیون (شکل ۲) و پس از مقایسه میانگین‌ها (جدول ۲) مشخص شد که سرعت پر‌شدن دانه و حداکثر وزن دانه در شرایط آبیاری کامل به طور معنی‌داری بیشتر از رژیم‌های بی‌پاش آبیاری است. در شرایط آبیاری محدود نیز سرعت پر‌شدن دانه و حداکثر وزن دانه در رژیم یک بار آبیاری در مرحله تشکل نیام به ترتیب بالاتر از یک بار آبیاری در مرحله گل‌دهی و یک بار آبیاری در مرحله شاخه دهی بوده است. از لحاظ سرعت دوره مؤثر پر‌شدن دانه نیز در بین رژیم‌های مختلف آبیاری اختلاف معنی‌دار وجود داشت (جدول ۲ و شکل ۳). به این ترتیب که بین آبیاری کامل و یک بار آبیاری در مرحله تشکل نیام از لحاظ دوره مؤثر پر‌شدن دانه اختلاف معنی‌داری می‌باشد. بین آبیاری در مرحله گل‌دهی و آبیاری در مرحله شاخه دهی نیز از این نظر اختلاف معنی‌دار وجود نداشت. اما دوره مؤثر پر‌شدن دانه در شرایط مورد نظر(Teixeira da Silva, 1989).
شکل 2. تأثیر روش‌های مختلف آبیاری بر روی سرعت و طول دوره پر شدن دانه در سه رقم نخود

1. آبیاری در مرحله شاخه‌های
2. آبیاری در مرحله گل دهی
3. آبیاری در مرحله تشكل نیمی

افزایش پوشش سبز موجب شود، جذب انرژی نوراتی و در نتیجه فتوستاترا افزایش داده و به طور مسئولی عمکارگری را تحت تأثیر قرار می‌دهد. در بین اجرای عمکارگری، وزن دانه بالاترین همیپنتکی را با عمکارگر دانه نشان داد که این امر با افزایش میزان همیپنتکی سرعت و تعداد محصولات مثبت و معنی‌دار بود. ولی میزان همیپنتکی سرعت پر شدن دانه است. همیپنتکی بالای وزن دانه با عمکارگر توسط سبیم و ساکسن(22 در مورد نخود و لیون و همکاران(24) در مورد لوبیا تأیید شده است.
جدول 7 ضرایب همبستگی بین صفات مورد مطالعه

| ضریب همبستگی | میانگین درصد | پوشش سیر | سرعت | طول دوره | پروسه‌دارکنی | تعداد دانه | وزن دانه | عملکرد دانه | عمودی
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/894</td>
<td>0/894</td>
<td>0/866</td>
<td>0/866</td>
<td>0/782</td>
<td>0/583</td>
<td>0/465</td>
<td>0/759</td>
<td>0/116</td>
</tr>
</tbody>
</table>

* به ترتیب معنی‌دار در سطوح احتمال 0/01 و 0/05 درصد

* به طور کلی، در این بررسی مشخص شد که در شرایط کمبود آب با انجام آبیاری در مرحله تشکیل نیاز می‌توان عملکرد نخود را افزایش داد. همچنین، درصد و دوام پوشش سری‌گاهی و سرعت و طول دوره پروسه‌دارکنی از مهم‌ترین عوامل مؤثر بر عملکرد دانه نخود می‌باشند. بنابراین، پیشنهاد می‌شود در برنامه‌ها اصلاحیه به این شاخص‌ها توجه بیشتری مبذول گردد.

* روی گند بهار نیز مؤثر همین مطلوب است.

* وجود همبستگی ظنی و معنی‌دار بین سرعت و دوره مؤثر بر دانه با عملکرد توسط دانه و همکاران (1) در مورد بادام زمینی، هواسویی و همکاران (13) در مورد بالا ماهون و هویس (15)، نی و همکاران (18) در مورد نخود فرنگی، استپورت و همکاران (27) در مورد گند بهار، گزارش شده است.

منابع مورد استفاده

1. ثابتی، ح. 1348. بررسی اقلیم حیاتی ایران. انتشارات دانشگاه تهران.
2. قاسمی گلعادی، ک. م. موحیدی، ف. حمیدزاده خویی، و. م. مقبری. 1375. اثرات کمبود آب بر رشد و عملکرد دانه نخود در تراکم‌های مختلف. دانش کشاورزی 7 (3 و 4): 17-37.