ازبایی مدل‌های رایانه‌ای LEACHC و SWAP در آبشوهی مزرعه‌ای املاح خاک در منطقه

چهار افضل استان یزد

وحید خاکسازی، سیدعلی‌اکبر موسوی، سیدعلی‌محمد چراغی، علی‌اکبر کامگار حضیری و
شاهرخ زند پارسا

چکیده

انجام آزمایش‌های مزرعه‌ای به منظور تعیین مقدار بهینه آب مصرفی برای اصلاح شوری خاک، وقت‌گیر و هزینه‌گیر بوده، بنابراین استفاده از مدل‌های کامپیوتری (رایانه‌ای) آبشوهی رایانه‌ای شده است. ولی قبل از استفاده از کارگری چینی مدل‌هایی در مقایسه با نتایج آزمایش‌های مزرعه‌ای آبشوهی شود. در این پژوهش دو مدل رایانه‌ای LEACHC و SWAP از شیب‌سازی تب‌رخ رطوبت و شوری خاک حاصل از انجام آزمایش‌های آبشوهی مورد ارزیابی قرار گرفتند. در شیب‌سازی حسکت و توزیع رطوبت در خاک، مدل LEACHC نسبت به مدل SWAP را ارائه داد. با وجود برتری مدل LEACHC نسبت به مدل SWAP هر دو مدل نتایج رضایت‌بخشی داشتند. در پیشینه شوری تب‌رخ خاک در زمان‌های مختلف، مدل LEACHC به دلیل بهره‌گیری از مکانیسم انتقال املاح به‌عنوان چهارچوبی، انتشار و پخش‌گی و نیز در نظر گرفتن برهم‌کنش‌های شیمیایی در محیط خاک، مانند جذب، رسوب، انحلال و غیره در مقایسه با مدل SWAP نتایج بهتری را نشان داد. هر دو مدل با وجود اختلاف مقدار پیش‌بینی شده و انداده‌گی شده شوری در آبشوهی‌های اول، توافته ان روند شوری‌زاپای خاک را به نحو قابل قبولی پیش‌بینی نمایند.

واژه‌های کلیدی: آب‌شوهی، چهار افضل، LEACHC، SWAP

مقدمه

با توجه به رشد و روزافزون جمعیت، نیاز به تولید محصولات غذایی بیشتر، بخشی از از احساس می‌شود. کشاورزان به عنوان یکی از محوریت‌های بخش‌های از تأمین مبتنی حاکمیت غذایی بشر مطرح است و در حال حاضر پیش‌بینی شده شد که منطقه اولیه آب‌شوهی، با پیش‌بینی کردن مقدار خاک کشت می‌باشد که 50 میلیارد هکتار کشت می‌باشد که 13/2 هزار میلیارد هکتار می‌باشد که 7 میلیارد هکتار تحت خاک سازی قابل کشت و 15 میلیارد هکتار تحت خاک سازی قابل کشت و 15 میلیارد هکتار تحت خاک سازی قابل کشت و 15 میلیارد هکتار تحت خاک سازی قابل کشت و 15 میلیارد هکتار تحت

1. به ترتیب دانشجوی سابق کارشناس ارشد، استادیار، دانشجوی و استادیار مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز

2. استادیار پژوهش مرکز تحقیقاتی شوری زرد
از طريق مجموعه‌ای از معادلات دیفرانسیل که به کمک کامپیوتر حل می‌شوند با دقت‌ترین شکل توصیف می‌شود.

SWAP در این تحقیق و مدل کامپیوتری LEACHC و (Soil, Water, Atmosphere, Plant) مربوط به شوری در خاک‌های آهکی از مدل Leaching Estimation and Chemistry Model سازی فرایند آب‌گیری اماح از نمایش خاک به کار گرفته شده یک مدل شبیه سازی بیان آب و اماح در کیک SWAP است. خاک زیرکشت یا آبی از نوع مختلف شرایط مرزی و با در نظر گرفتن چکیده مSEN محسوب و تحلیل است.

مواد سایر مشابه خاک و سایر مدل‌های مختلف (Van Genuchten and Mualem) و مدل‌های مورد استفاده از مدل‌های SWAP مبارزه ریچاردز را برای حرکت آب در خاک به کار می‌گیرد. نمونه‌های طبیعی خاک و سایر مدل‌های مختلف (Van Genuchten و Mualem) و با به وسیله مقادیر جدول‌بندی شده تعیین می‌شود (23). جدول عده معادله ریچاردز طوری تطبیق یافته که قابل حمل بسیار معنی‌داری اشاره به اندازه گرفتن اسهام و همین‌طور معنی‌داری اسهام به کار می‌رود. در مطالعه‌های مختلف انتقال اماح SWAP روند‌های مختلف انتقال الکتریک جابه‌جایی، حجم‌گیری و انتشار جذب غیر خطي انحصار مرتبی اول و جذب به وسیله ریشه را شبیه‌سازی می‌کند. این امر شبیه‌سازی انتقال معمول نمک و غلظت شامل تأثیر شوری بر رشد گیاه را مجاز می‌کند. در ارتباط با شبیه‌سازی تغییرات شوری در خاک SWAP فقط از مکان‌سنجی‌ها جابه‌جایی و انتشار استفاده می‌کند و از جذب توسط ریشه و ذرات خاک و نیز انحصار صرف‌نظر شده است.

توسط بهاسون و واکنش (12) در بخش شیمی LEACHM خاک، گیاه و انعم در دانشگاه Cornell TPTM، مدلی به کمک محاسباتی و اندازه‌گیری توسط SWAP مدل توری (RBM) و مدل توری و دیگر (Theoretical Plate-Thickness Model) سیستم جریان‌های حاکم (Convexion-Dispersion) مدل انتقال‌اتن‌شات TPTM و مدل TDFM (Transfer Function 및 TDFM) مدل‌های ریزدایی خاک و ترتیب خاک مدل سری (TPTM) مخلوط مدل توری (RBM) و مدل توری (Theoretical Plate-Thickness Model) سیستم جریان‌های حاکم (Convexion-Dispersion) مدل انتقال‌اتن‌شات TPTM و مدل TDFM (Transfer Function)
ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP

ماده و روش‌ها

این پژوهش از استفاده مدل تحقیقات شوری در شرایط مختلف مفرکت می‌باشد. وضعیت نمونه برابر اولیه قبل از شروع آزمایش‌های صورت گرفته و میزان تعداد نمونه‌های مورد نظر بر روی آنها انجام شد. این آزمایش‌ها به‌طور کلی شامل خاک‌شناسی و انتخاب شرایط خاک از نظر خصوصیات ظاهری و خاک‌شناسی، برای انتخاب گروه‌های هیدرولوژیکی اشاعه در هر لایه خاک از نفوذ سنج کلف (Guelph Permeameter) و نیز از حلقه نفوذ (17) استفاده شد.

توسط محققین مختلف برای انجام اصل خاک آب و SWAP املاح در خاک (16 و 12)، آتان کیست و کیفیت آب آبیاری و شوری خاک (7)، مدیریت کیست و کیفیت آب آبیاری و شوری خاک (19). مورد استفاده قرار گرفته و مناسب تشخیص داده شده است. همچنین قابلیت مدل LEACHC انتقال املاح در بالای اسپیستا کم و برسی تأثیر گزینه‌های مختلف مدیریت و شرایط اولیه شرایط منطقه ریشه، مورد بررسی قرار گرفته و نتایج به‌دست آمده رضایت‌بخش بوده است. (3 و 11).

در این پژوهش آزمایش خاک شرایط مدل می‌باشد تحقیقات شوری برز، واقع در محله‌های چاه افاضل، مورد مطالعه قرار گرفت. اهداف این پژوهش به شرح زیر است:

1. بررسی نیبر در رطوبت و املاح خاک با استفاده از مدل‌های LEACHC و SWAP در طول یک اصل بیشتر

2. ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در تخمین رطوبت و شرایط نیبر خاک متقابل با نتایج آزمون مزروعه آیش‌های در چاه افاضل نیبر به دو روش (اصل و مایع) مقایسه تریسیمی (ب) استفاده از شاخه‌های آماری.
به منظور قرار دادن رطوبت در اندکی تازه آزمایش و تعریف
محلول مختلف در حین آبنشیایی از نمونه برداری تخربی
(دست خورده) خاک برای عمق 0-15 سانتی‌متر و از نمونه‌برداری
متری عمق‌های 0-15، 15-30، 30-45، و 45-60 سانتی‌متر
استفاده شد. نمونه خاک به دست آمده به‌طور چهار نمونه‌ای
نوشته شده بود. برای خاک و سپس نمونه‌برداری متری تغییر
مقدار اولیه قیمت آبیوئیت pH, EC, آنیون‌ها و کاتیون‌هایه عصاره
اشباع خاک مورد استفاده قرار گرفت. نمونه برداری برای تغییر
رطوبت و شرایط از یک خاک یا فاصله زمانی ۷ روز انجام
گرفت.

برای اجرای مدل SWAP پس از آماده‌سازی فاصله‌های
لازم، اطلاعات مورد نظر در این فاصله‌ها قابل مورد است. از جمله
شکل‌سازی از این الگو، داده‌های مرتبط با آب خاک و تغییر خاک
است که شامل شاخص‌های مدل مناسب برای تغییر از سطح خاک و
تغییر ضریب مربوط به آن‌ها می‌باشد. مدل تغییر شده است در این
پژوهش مدل بالاک و همکاران (5) است.

در این فاصله، تغییر اقلیم خاک (در صورت مطلق بودن
خاک) و تغییر نرخ و ارتفاع فیزیکی و هیدرولوژیکی برای
هر اقلیم تغییر می‌شود. با حفار برخی دیده نزدیکی محل انجام
آزمایشات در عمق 0-15 و 45-60 سانتی‌متر به رقمی کارشناسی معمول
باید به‌طور کامل نظر تا عمق 1 متر دارد. این موضوع و هم
است. با مشخص شدن تغییر اقلیم خاک، می‌بایست برای هر
خاک عوامل مربوط به ناب‌گذاشتی رطوبت وان کنونیت
y-n، m، α، k (روطبی باقی‌مانده)، (روطبی اشباع)، (Van Genuchten
کارشناسی سال‌های)

هیدرولیکی اشباع خاک) وارد شود.

برای به دست آوردن این بپردازی‌ها باید ترجمه عمل شده
با ریزگیر مختصات موجود خاک ذکر شده، از تاثیر
لایه برداشت شده. این تغییرات به آزمایش‌گیران تلقی و نیز
به‌طور قابل توجهی از قبیل پیختر و سونو آوریان

نیز دستگاه محفظه فشاری

رهنمای کشاورزی و منابع طبیعی / سال دهم / شماره دوم / ۱۳۸۵
جدول 1. برخی خصوصیات شیمیایی لايهای مختلف خاک قبل از آبیاری خاک (ایستگاه تحقيقات چاه افضل)

<table>
<thead>
<tr>
<th>SAR</th>
<th>SO₄²⁻</th>
<th>HCO₃⁻</th>
<th>Cl⁻</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>pH</th>
<th>dS/m</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق خاک (سانتی‌متر)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ميلي آكي و بالا در لتر</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222.3</td>
<td>375/6</td>
<td>1/22</td>
<td>1/10</td>
<td>1/12</td>
<td>34/7</td>
<td>15/25</td>
<td>8/20</td>
<td>81/20</td>
<td>0-15</td>
</tr>
<tr>
<td>102/3</td>
<td>167/1</td>
<td>1/18</td>
<td>1/40</td>
<td>1/29</td>
<td>39/7</td>
<td>68/7</td>
<td>8/24</td>
<td>71/24</td>
<td>15-40</td>
</tr>
<tr>
<td>38/05</td>
<td>87/0</td>
<td>1/3/3</td>
<td>1/4</td>
<td>1/26</td>
<td>29/9</td>
<td>22/5</td>
<td>7/16</td>
<td>28/11</td>
<td>40-70</td>
</tr>
<tr>
<td>24/5</td>
<td>88/3</td>
<td>1/15</td>
<td>1/11</td>
<td>1/21</td>
<td>32/1</td>
<td>13/7</td>
<td>7/16</td>
<td>18/09</td>
<td>70-100</td>
</tr>
</tbody>
</table>

جدول 2. برخی خصوصیات فیزیکی لايهای مختلف خاک قبل از آبیاری (ایستگاه تحقيقات چاه افضل)

<table>
<thead>
<tr>
<th>درصد حجمی رطوبت (g/cm³)</th>
<th>شکل ظاهری</th>
<th>رطوبت گذشته</th>
<th>عمق خاک (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>در ظرفیت زراعی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2</td>
<td>1/34</td>
<td>1/6</td>
<td>لوم شنی</td>
</tr>
<tr>
<td>27/2</td>
<td>1/26</td>
<td>29/5</td>
<td>لوم</td>
</tr>
<tr>
<td>27/2</td>
<td>1/17</td>
<td>22</td>
<td>لوم</td>
</tr>
<tr>
<td>27/9</td>
<td>1/17</td>
<td>28</td>
<td>لوم شنی</td>
</tr>
</tbody>
</table>

در این پژوهش مالک‌های آماری شاخص جذر میانگین (RMSE) (Root Mean Square Error) مجدور خطا و با روش‌های استاندارد به دست آمد: 

کارایی مدل کردن (EF) (Modeling efficiency) ضریب جرم (CRM) (Coefficient of Residual Mass) باقیمانده (R²) (Coefficient of Determination) مناسب بوده و برای بزیج اجرای مدل‌ها استفاده شده است.

نتایج و بحث

برخی خصوصیات فیزیکی و شیمیایی لايهای مختلف خاک قبل از انجام آزمایش‌های آبیاری در منطقه چاه افضل در جدول‌های 1 و 2 نشان داده شده است. 

میانگین شوری در نیبرخ خاک برابر با 72.62 دسی‌زیمنس برم متر بوده و بنابراین جزو خاک‌های خیلی شور ورود اطلاعات استفاده شده است. دمی‌سکر گروه داده‌ها شامل تناوب و مدت آبیاری و بارندگی‌ها می‌باشد. در سومین گروه داده‌ها نیز ترکیب بونه آپی آبیاری است که با نمونه‌گیری از آب مورد استفاده برای آبیاری که از رود پهناوی موجود در ایستگاه تحقيقات شوری تأمین می‌شود در ابتدا و انتهای انجام آزمایش‌ها و با روش‌های استاندارد به دست آمد. 

با آماده شدن فلای داده ورود اطلاعات، مدل‌ها اجرا شده و نتایج حاصل در ارزیابی با مقادیر رطوبت شوری نیبرخ خاک با مقادیر اندارگیری شده مورد مقایسه قرار گرفتند.

در این پژوهش مالک‌های آماری شاخص جذر میانگین (RMSE) (Root Mean Square Error) مجدور خطا و با روش‌های استاندارد به دست آمد: 

کارایی مدل کردن (EF) (Modeling efficiency) ضریب جرم (CRM) (Coefficient of Residual Mass) باقیمانده (R²) (Coefficient of Determination) مناسب بوده و برای الگوی اجرای مدل‌ها استفاده شده است.

نتایج و بحث

برخی خصوصیات فیزیکی و شیمیایی لايهای مختلف خاک قبل از انجام آزمایش‌های آبیاری در منطقه چاه افضل در جدول‌های 1 و 2 نشان داده شده است.

میانگین شوری در نیبرخ خاک برابر با 72.62 دسی‌زیمنس برم متر بوده و بنابراین جزو خاک‌های خیلی شور ورود اطلاعات استفاده شده است. دمی‌سکر گروه داده‌ها شامل تناوب و مدت آبیاری و بارندگی‌ها می‌باشد. در سومین گروه داده‌ها نیز ترکیب بونه آپی آبیاری است که با نمونه‌گیری از آب مورد استفاده برای آبیاری که از رود پهناوی موجود در ایستگاه تحقيقات شوری تأمین می‌شود در ابتدا و انتهای انجام آزمایش‌ها و با روش‌های استاندارد به دست آمد.

با آماده شدن فلای داده ورود اطلاعات، مدل‌ها اجرا شده و نتایج حاصل در ارزیابی با مقادیر رطوبت شوری نیبرخ خاک با مقادیر اندارگیری شده مورد مقایسه قرار گرفتند.

در این پژوهش مالک‌های آماری شاخص جذر میانگین (RMSE) (Root Mean Square Error) مجدور خطا و با روش‌های استاندارد به دست آمد:
جدول 3 پارامترهای محاسبه شده برای مدل وان گنختن - مدول. تایب کمیل، و هیدرولوژیکی اشکاب اندوزاژ گیری شده برای لایه‌های مختلف خاک مزرعه

<table>
<thead>
<tr>
<th>ShmarehLaieye</th>
<th>Kh</th>
<th>B</th>
<th>h0(cm)</th>
<th>m</th>
<th>n</th>
<th>a</th>
<th>0s</th>
<th>0r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Genuchten</td>
<td>190/2</td>
<td>0/86</td>
<td>0/15</td>
<td>0/09</td>
<td>0/25</td>
<td>0/1</td>
<td>1/2</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>68/5</td>
<td>0/24</td>
<td>0/16</td>
<td>0/05</td>
<td>0/5</td>
<td>0/2</td>
<td>2/4</td>
<td>2/8</td>
</tr>
<tr>
<td></td>
<td>219/2</td>
<td>0/32</td>
<td>0/5</td>
<td>0/11</td>
<td>0/4</td>
<td>0/1</td>
<td>3/8</td>
<td>3/8</td>
</tr>
<tr>
<td></td>
<td>47/3</td>
<td>0/5</td>
<td>0/2</td>
<td>0/09</td>
<td>0/25</td>
<td>0/1</td>
<td>1/2</td>
<td>1/6</td>
</tr>
</tbody>
</table>

برای تیمار DIL1 این مقایسه به ترتیب در شکل‌های 1 و 2 نشان داده شده است.

ملاحظه می‌شود که مدل SWAP توانسته است رطوبت را در نمروخ خاک در عمق‌ها و زمان‌های مختلف و صرف‌نظر از فواصل به کارگیری آب در سطح خاک به خوبی پیش‌بینی نماید. در حالی که بر اساس شکل 2 مدل LEACHC نمایانگر رطوبت را در نمروخ خاک بالاتر از مقدار اندوزاژ گیری شده پیش‌بینی کرده است.

در مدل امکان انتخاب و یا تعیین تعادل پیش‌تری گره در نمروخ خاک در مقایسه با مدل LEACHC وجود دارد. از طرف دیگر فواصل گره‌نیز در مدل LEACHC می‌تواند باشد در حالی که در مدل SWAP اختیار عمل در انتخاب فاصله متفاوت بین عمق خاک وجود دارد.

این مسئله می‌تواند در یافتن تایب کمیل و هیدرولوژیکی اشکاب اندوزاژ گیری شده برای لایه‌های مختلف خاک کاهش یابد برای سایر اجرای مدل داشته باشند. در مورد این مطالعه نیز به دلیل تفاوت در ضخامت لایه‌ها در نتایج تایب داشته است.

در مدل LEACHC محدودیت‌های مدل مورد استفاده برای خاک مزرعه در کل و برای هر دو مدل بیشتر از اختلاف بین مدل SWAP و SAR (EC> 4 ds/m) برای سایر 96/8 است. با این شرایط خاک‌های سدیمی (13) طبقه‌بندی شدند. بنابراین خاک مورد آزمایش، خاکی شور و سدیمی است.

پیش‌بینی مقدار آب اشباعی با اصلاح کننده مودین نیاز برای کاهش دادن یک کیت پیش‌بین و مدل SWAP با ROC (کورنگ 4 5/1) مجدداً درصد سطح دیواری تابدل نا هدایت هیدرولوژیکی اشکاب اندوزاژ گیری شده برای لایه‌های مختلف خاک مزرعه در دو جدو دو مدل است. مقدار پیش‌بینی شده سدیمی LEACHC و SWAP

62
نیم‌مرخ‌های مقادیر رطوبت اندازه‌گیری شده و پیش‌بینی شده ممکن است ناشی از محدودیت‌های ذاتی مدل‌ها باشند. برای مثال، تأثیرات بیشترین سمند رطوبت (Hysteresis) و جریان (Leach) می‌تواند سهم از میان مکان‌های پیش‌بینی شده باشد. این مکانیسم می‌تواند مقدار سرعت جریان آب به زیر عمق 30 سانتی‌متر بعد از عمل نفوذ را تغییر دهد. دلیل ممکن دیگر برای
جدول 2: شاخص‌های آماری برای مقایسه مقدار اندازه‌گیری شده رطوبت و پیش‌بینی شده توسط مدل LEACHC و SWAP

<table>
<thead>
<tr>
<th>تیمار (آزمایشی)</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0/411</td>
<td>0/292</td>
<td>0/421</td>
<td>0/292</td>
<td>0/411</td>
<td>0/292</td>
<td>0/421</td>
<td>0/292</td>
</tr>
<tr>
<td>CRM</td>
<td>0/421</td>
<td>0/292</td>
<td>0/411</td>
<td>0/292</td>
<td>0/421</td>
<td>0/292</td>
<td>0/411</td>
<td>0/292</td>
</tr>
<tr>
<td>EF</td>
<td>0/421</td>
<td>0/292</td>
<td>0/411</td>
<td>0/292</td>
<td>0/421</td>
<td>0/292</td>
<td>0/411</td>
<td>0/292</td>
</tr>
</tbody>
</table>

- D1L1
- D2L1
- D1L2
- D2L2

چون از اطلاعات مربوط به این تیمار در فراوانی کاربردها کردن مدل SWAP استفاده شده در محاسبه شاخص‌های آماری مورد نظر شده است.

می‌شود، با بررسی تأثیر الگوی واقعی باران در نفوذ و توزیع رطوبت، نمی‌تواند به درستی بیان شود.

می‌توان به دقت بیشتری از منظره‌های K(h) و 0(h) دست‌نخورده خاک که محدود به دو نقطه در سطح مرجع می‌شود، ممکن است به درستی تغییر پذیری مکانی مشاهده خاک‌های طبیعی از لحاظ نکره‌های بالینی مشاهده شود. مراحل پیش‌بینی در طی نشان دهنده LEACHC را برای استفاده در محاسبات شاخص‌های آماری باید تغییر و برای هر کدام از مدل‌ها به طور جداگانه در جدول 4 آنها شده است.
ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در آیوشی مزروعه‌ای اصلاح

با این که مدل SWAP دقیقاً مدل LEACHC را در پیش‌بینی رطوبت خاک ندارد ولی با خاطر در بر داشتن مکانیسم‌های پیشرفته در شیمیایی، فلز و انفعالات شیمیایی مخلوط خاک توانسته تایید بهتری را در مقایسه با مدل LEACHC که از این مکانیسم‌های پیشرفته استفاده می‌کند، ارائه دهد. این نتایج از مدل SWAP را بهتر می‌نماید. در مدلهای اصلاح خاک تا چه حدا تا حدودی در انتقالگذاری باشد و توانست به‌طور کلی به‌طور کامل شیمیایی آزمایش‌های اصلاح به روش آب‌مند قطعات خاک، می‌تواند به‌طور قرار گیرد تا به بهبود آلاینده‌های CRM تنبیه ناهنجاری‌های CRM مقدار

مقدار اصلاح به‌طور کلی برآورد بالاتر یا تا در مقایسه با اصلاح‌گیره‌های CRM مقدار تبادل CRM در در برآورد CRM کمتر مدل و مقدار آب‌مند CRM معنی برآورد اکثر مدل نسبت به اصلاح‌گیره‌های CRM. این نتایج بهتری در رطوبت SWAP مدل روز یک روز و در اصلاح‌های دور آب‌مند 6 روز کمتر بهترین کرده است.

براساس ضریب R۲ معنا‌داری SWAP مقدار مدل CRM می‌گردد. اعمال زده شده در LEACHC و SWAP برای جلوگیری از اصلاح‌های آب‌مند به‌طور کلی برآورد شده‌است. دلیل این است که مدل SWAP برای اصلاح‌های آب‌مند به‌طور کلی برآورد شده است. مدل SWAP را در حسب نسبتاً قابل قبولی پیش‌بینی کرده است. چنانچه ذکر شد، علاوه بر رطوبت، پیش‌بینی مدل‌های LEACHC و SWAP در ارتباط با شرایط نیم‌بر کنار شد. شرایط زندی‌گی در این مدل رفع مورد مطلع و بررسی قرار گرفته است. مدل‌های زندی‌گی خاک بر اساس اطلاعات شوری و عمل آب آب‌مندی در کلیه تیم‌ها با استفاده از نرم‌افزار Curve Expert به‌صورت مدل‌های 1 به دست آمد. یکی از مهم‌ترین رایحه‌های این مدل، منحنی شوری‌هایی در دست آمده معلوم شد، نیم‌بر کنار شد. در طول آزمایش‌های استفاده از این مدل‌ها و برای هر کدام از تیم‌ها به سرعت جدایگانه‌های تعبیر شد. تابع

\[
\frac{(EC_f - EC_{eq})}{(EC_i - EC_{eq})} = \frac{D_f}{D_i} + \frac{1}{151}
\]

برای این عادی این که منحنی شوری‌هایی در دست آمده معلوم شد، نیم‌بر کنار شد. در طول آزمایش‌های استفاده از این مدل‌ها و برای هر کدام از تیم‌ها به سرعت جدایگانه‌های تعبیر شد.

\[
\frac{(EC_f - EC_{eq})}{(EC_i - EC_{eq})} = \frac{D_f}{D_i} + \frac{1}{151}
\]

در این معادله به EC_{eq}، EC_{eq}، EC_{eq}، EC_{eq} به ترتیب عادی و عادی اولیه، نهایی و عادی اولیه تابع و دیگر دارند. رسم مدل‌های اصلاح‌گیره‌های شوری کنار خاک در برای مدل‌های پیش‌بینی شده در دست آمده در D1L1 برای نیم‌بر کنار LEACHC و SWAP شده است.
شکل 3 مقایسه مقادیر اندازه‌گیری شده شوی در برای مقادیر پیشینی شده با مدل SWAP (پلاس) و معادله 1 LEACHC (پلاس) در تیمار D1L1

جدول 5. شاخص‌های آماری برای مقایسه مقادیر اندازه‌گیری شده شوری و پیشینی شده توسط مدل‌های LEACHC و SWAP در چهار تیمار آزمایشی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>R²</th>
<th>CRM</th>
<th>EF</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEACHC</td>
<td>SWAP</td>
<td>LEACHC</td>
<td>SWAP</td>
<td>LEACHC</td>
</tr>
<tr>
<td>D1L1</td>
<td>0.68</td>
<td>0.90</td>
<td>0.93</td>
<td>0.0</td>
</tr>
<tr>
<td>D2L1</td>
<td>0.78</td>
<td>0.97</td>
<td>0.99</td>
<td>0.0</td>
</tr>
<tr>
<td>D1L2</td>
<td>0.88</td>
<td>0.99</td>
<td>0.99</td>
<td>0.0</td>
</tr>
<tr>
<td>D2L2</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.0</td>
</tr>
</tbody>
</table>

چاپ از اطلاعات مربوط به این تیمار در فراورده‌کننده کلیه مدل استفاده شده در محاسبه شاخص‌های آماری مالیه است.
ارزیابی مدلهای رایانه‌ای LEACHC و SWAP در آب‌دریایی مزرعه‌ای املاح

گرایش تأثیر گچی ایک در محیط و با استفاده از یک زیر برنامه مجا محاسبه می‌کند.

در کل نتایج نشان می‌دهد که علی رغم اختلاف بین

پیش‌بینی مدل‌ها و مقادیر اندان‌گیری شده، شوری مخصوصاً در مرحله اولیه آب‌بری (شبیه‌سالی نیم‌برگ خاک)، مدل‌ها توانستند روند کاهش شوری خاک را به خوبی پیش‌بینی نمایند. مقایسه نتایج حاصل از کاربرد مدل‌های محدود

شوزی‌داری به دست آمده از اطلاعات تمامی مدل‌ها در

پیش‌بینی شوری خاک به صورت جداگانه در هر کدام از

تیمارهای با مقادیر اندان‌گیری شده و پیش‌بینی شده شوری خاک TOSAP و LEACHC و SWAP و

نشان دهنده تأکید آن است که

بودن استفاده از چنین مقادیری در تخمین مقادیر شوری نیم‌برگ

خاک است.

با اصلاح خاک و کاهش خاک و به دست آمده شرایط

ماندگار در ارتباط با مقدار شوری نیم‌برگ خاک، پیش‌بینی مدل‌ها

هم‌خوانی بیشتری با مقادیر اندان‌گیری شده دارد و این می‌تواند

از نظر کاربردی کاشت‌های مدل‌ها بسیار قابل توجه باشد.

است رطوبت نیم‌برگ خاک بر بالای مختلف به درستی

پیش‌بی‌نی می‌کند. اما که اساس معادلات به کار رفته در هر دو

مدل برای شبیه‌سازی حرش آب در خاک پیکان است و

که مدل SWAP

مدل

ماتور استفاده می‌کند (2) حکاک، و همچنین بانک تک چاله‌ها

TDS

مورد استفاده

که در مدل

استفاده می‌شود) مورد بررسی قرار می‌دهد

و

مورد استفاده

شیمیایی محلول خاک بر اساس غلظت‌های

جدید بونهای فاز محلول، فاز جامد، و رسوب کرده‌با در نظر

1. ابطحی، ع. 1380. واکنش نهال دو رقم پستی نسبت به مقدار و نوع شوری خاک در شرایط گلخانه. علوم و فنون کشاورزی و منابع


2. شباینی شهرتانی، م. س. ف. موسوی، م. ف. موسوی، م. ایفانی و. س. سعادت. 1379. انتقال برماید در شرایط مزرعه. علوم خاک و آب

14 (1) : 49-87.

3. وزیری، ز. 1374. ارزیابی مدل‌های شوری‌زایان خاک با آزمون مزرعه‌ای. پایان نامه کارشناسی ارشد آب‌پزشی و زیست‌کشاک

صانعی اصفهان، 133 صفحه.


