ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در آبشونی مزرعه‌ای املاح خاک در منطقه

چاپ افضل استانی زبد

وحید خاکساری، سیدعلیاکبر موسوی، سیدعلی محمد چراغی، علی‌اکبر کامگار حقيقة و
شاهرخ زند بارسا

چکیده

انجام آزمایش‌های مزرعه‌ای به منظور تعیین مقدار بینهایت آب مصرفی برای اصلاح شوری خاک، وقت‌گیر و پرهزینه بوده، بنابراین استفاده از مدل‌های کامپیوتری (رایانه‌ای) آب‌شناس رابطه است. در این مطالعه برای ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در شبیه‌سازی تبخیر و رطوبت شوری خاک حاصل از انجام آزمایش‌های آب‌شناسی دریافتی در شیپ‌سا، تیم رطوبت و توزیع رطوبت در خاک، مدل SWAP نسبت به مدل LEACHC در پیش‌بینی رطوبت خاک بر اساس شاخه‌های آماری محاسبه شده، چه در مدل تابع رضایت بخشی داشته‌اند. در پیش‌برینی شوری تبخیر خاک در زمان‌های مختلف، مدل LEACHC به دلیل پره‌گیری از سه مکانیسم انتقال املاح بین جای‌گاهی، انتشار و پخش‌گی و نیز در نظر گرفتن هرم کنش‌های شیمیایی در محیط خاک، مانند جذب، رسوب، انحلال و غیره در مقایسه با مدل SWAP نتایج بهتری را نشان داد. به دلیل وجود اختلاف مفصل پیشینی‌های آماری و اندازه‌گیری شده شوری در آب‌شناسی اول، توسعه‌نیت روند شوری‌زا دایی خاک را به نحو قابل توجه پیش‌بینی نمایند.

واژه‌های کلیدی: آب‌شناسی، چاپ، افضل، SHORE

مقدمه

آب‌شناسی یک عرصه بررسی به رشده روزافزون جمعیت، نیاز به تولید محصولات غذایی بیشتر، بیش از پیش احساس می‌شود. کشاورزی به عنوان یکی از محورهای تحقیق بشری در تأمین مصرف غذایی بشر مطرح است و در حال حاضر افراد یک سوم غذای بشر را

تأملی می‌کند که تا سال ۲۰۴۰ میلادی این رقم باید به ۵۰ درصد بررسید. این آب‌شناسان تعلم‌ها از طریق آب‌شناسی سطح زیر کشت و با این بودن مکانیک در واحد سطح مایع است. سطح اراضی کره زمین ۱۳ میلیارد هکتار می‌باشد که ۷ میلیارد هکتار تحت هکار آب‌شناسی قابل کشت و ۱/۵ میلیارد هکار تحت

۱. به‌ترین دانشجوی سابق کارشناس ارشد، استادیار، دانش‌پژوه و استادیار مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز

۲. استادیار پژوهش مرکز تحقیقات شهری زیست

۵۷
از طریق مجموعه‌ای از معادلات دیفرانسیل که به کمک کامپیوتر حل می‌شوند، با دقت ترین شکل توصیف می‌شود.

SWAP در این تحقیق، دو مدل کامپیوتری (LEACHC و (Soil, Water, Atmosphere, Plant)

مرتبه بندی شوری در خاک‌های آبی از مدل LEACHM برای شرایط سازی و آبشیزی (Leaching Estimation and Chemistry Model)

زمان بندی املاحی ریزابی از نظر تعداد، به تدریج جای خود را به مدل‌های رایانه‌ای داده‌اند. با استفاده از مدل‌های رایانه‌ای می‌توان در کنار ترمیم زمان، روش‌های مختلف مدیریت را اعمال و روند آبشیزی را با دقیقت مناسب بررسی کرد. در مدل‌های اخیر مدل‌های سیستمی برای مطالعه روند آبشیزی اکالام خاک اثرات شد.

عندلی و همکاران (8) نیز مدل شناخته شده ریاضی، به‌یک دانش‌نامه سه‌بعدی تحلیلی و مطالعه اقدامات ریزابی در مقابل مقدار غلظت املاح اندازه‌گیری شده در جهره است. این آزمایشات واقع در چهار بروز بر گود اصلاح در مکان‌های مختلف جنگلی مورد بررسی قرار گرفتند. (Mesopotamian (عرق انگلیسی کردند.

این مدل‌ها عبارت‌بردند از مدل‌های مخازن (SRM) (Series of Reservoirs Model)

فرعی (RBM) (Reservoir with Bypass Model) ستون پیوسته خاک (Theoretical Plate-Thickness Model)

مدل توری (Convection-Dispersion (TFM) Model)

مدل انقباض - انقلاب (TPTM) (Transfer Function Model)

و مدل‌های انقباض - انقلاب (CDM) Model)

بودند.

وزیری (3) چهره مدل شوری‌زدایی خاک، شامل مدل‌های مخازن (SRM) و مدل‌های پیوسته توری (TPTM) و مدل‌های توری (RBM) و مدل‌های انقباض - انقلاب (CDM) و مدل‌های انقباض - انقلاب (TFM) می‌باشد. در دو منطقه روستای اسفهان و کنگور کرمانشاه با اجرای دو آزمون مزرعه‌ای در شرایط آب‌رسانی غراف، دانه و منشا و با کاربرد مکانیکی 50 تا 100 و 125 سانتی‌متر آب، مورد ارزیابی و مطالعه قرار داد.

نقل و انتقال ماده حیال شده در خاک، فرآیند پویایی است که

کشت است (24). از اراضی تحت کشت، حدود ۷۳۰ میلیارد هکتار (۳۳ درصد) اراضی شور و ۱۵۴ میلیارد هکتار (۴۷ درصد) خاک‌های سدیمی است (۲۳). در ایران قرب به ۵۰ درصد از اراضی که دارای استعداد شورایزی آبی هستند، میزان آزمون‌ها مربوط به شوری به حدود ۱۵۰ میلیمتری‌های اجرایی می‌باشد. میزان بوردن و نیاز به نیروی انسانی و هزینه زیادی، به تدریج جای خود را به مدل‌های رایانه‌ای داده‌اند. با استفاده از مدل‌های رایانه‌ای می‌توان در کنار ترمیم زمان، روش‌های مختلف مدیریت را اعمال و روند آبشیزی را با دقیقت مناسب بررسی کرد. در مدل‌های اخیر مدل‌های سیستمی برای مطالعه روند آبشیزی اکالام خاک اثرات شد.

عندلی و همکاران (8) نیز مدل شناخته شده ریاضی، به‌یک دانش‌نامه سه‌بعدی تحلیلی و مطالعه اقدامات ریزابی در مقابل مقدار غلظت املاح اندازه‌گیری شده در جهره است. این آزمایشات واقع در چهار بروز بر گود اصلاح در مکان‌های مختلف جنگلی مورد بررسی قرار گرفتند. (Mesopotamian (عرق انگلیسی کردند.

این مدل‌ها عبارت‌بردند از مدل‌های مخازن (SRM) (Series of Reservoirs Model)

فرعی (RBM) (Reservoir with Bypass Model) ستون پیوسته خاک (Theoretical Plate-Thickness Model)

مدل توری (Convection-Dispersion (TFM) Model)

مدل انقباض - انقلاب (TPTM) (Transfer Function Model)

و مدل‌های انقباض - انقلاب (CDM) Model)

بودند.

وزیری (3) چهره مدل شوری‌زدایی خاک، شامل مدل‌های مخازن (SRM) و مدل‌های پیوسته توری (TPTM) و مدل‌های توری (RBM) و مدل‌های انقباض - انقلاب (CDM) و مدل‌های انقباض - انقلاب (TFM) می‌باشد. در دو منطقه روستای اسفهان و کنگور کرمانشاه با اجرای دو آزمون مزرعه‌ای در شرایط آب‌رسانی غراف، دانه و منشا و با کاربرد مکانیکی 50 تا 100 و 125 سانتی‌متر آب، مورد ارزیابی و مطالعه قرار داد.
ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در آزمایش‌های املاح

توسط محققین مختلف برای شبیه سازی حركت آب و SWAP املاح در خاک (10 و 12). آمار کمیتی و کیفیت آب آبیاری و شوری خاک (7)، مدیریت کمیتی و کیفیت آب آبیاری و شوری خاک (19). مورد استفاده قرار گرفته و مناسب تشخیص داده شده است. همچنین قابلیت مدل LEACHC انتقال املاح در بالای ایستگاه کم عمق و بررسی تأثیر گریزی‌های مختلف مدیریت و شرایط اولیه بر شرایط منطقه ریشه، سورد بررسی قرار گرفته و نتایج به دست آمده رضایت‌بخش بوده است (6 و 11).

در این پژوهش آیزوئیک خاک ایستگاه مکمل تحقیقات شوری شد. واقع در منطقه چاه افسل، سورد مطالعه قرار گرفت، اهداف این پژوهش به شرح زیر است:

1- پیش‌بینی نرخ رطوبت و املاح با استفاده از مدل‌های LEACHC و SWAP در طول عرض ایسومی خاک

2- ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP و رطوبت و شوری نرخ خاک در مقایسه با نتایج آزمون مزرعه آیزوئیکی در چاه افسل زیر، به دو روش (الف) مقایسه ترسمی و (ب) استفاده از شاخص‌های آماری.

مواد و روش‌ها

این پژوهش در ایستگاه مکمل تحقیقات شوری در منطقه چاه افسل برگزار گردید. این ایستگاه پژوهش در فاصله 70 کیلومتری شمال غربی یزد، در مجاورت روستای چاه افسل واقع است. چاه افسل به شکلی خیلی بزرگ از زیر حوضه کویر سپاهکوه می‌باشد. به طور کلی مابعد آب منطقه چاه افسل از حوزه‌های وسعت 18150 کیلومتر یک نه می‌گردد. در حیاتی این منطقه چاه‌کن حوزه‌ای از فلکه‌های یخچال تا بند - ارداکان، نام - لنگه توت و هریش است (15). مراحل مختلف اصلح خاک شه در این پژوهش مورد استفاده قرار گرفته به این صورت انجام گرفت که با تغییر محل انجام آزمایش در ایستگاه تحقیقات شوری در چاه افسل، تکمیل داده‌های دقیق برای تحقیق اباد و فاصله سیانه آب‌رسی شد. به منظور تغییر عوامل
به منظور قربانی رطوبت در ابتدای شروع آزمایش و نیز در مراحل مختلف در حین آزمایشی از نمونه برداری تجاری (دست خودره) خاک برای عمق 0-15 سانتی‌متر و از نوترنون متر برای عمق‌های 0-15، 15-30، 30-45 و 45-60 سانتی‌متر استفاده شد. نمونه خاک به دست آمده بیان‌نویس لوله‌های نوترنون متر در وسط کرتها که تا عمق 120 سانتی‌متر انجام شده بود برای واسطه‌کردن نوترنون متر و نیز تعیین مقادیر اولیه به دست آمده از ایشواره pH، EC، آنیونه و کاتونه‌های عصاره اشیاء خاک مورد استفاده قرار گرفته. نمونه برداری برای تعیین رطوبت و شرایط و ارایه خاک بر فاصله زمانی 2 روز انجام گرفته.

برای اجرای مدل SWAP، اطلاعات خاک در صورت مطرح بودن خاک و نام فاصله و روده بطوری که مقدار تبادلی رای مناسب برای هیدرولوژی و مدل‌های مختلف در سیستم‌های آب‌دار انجام شده است. به منظور تعیین این مقادیر اولیه شیمیایی مختلف در کرت‌های مختلف و زمان اجرای آزمایشی (نیم‌ساعتی) وارد می‌شود.

برای اجرای مدل LEACHC که نشان‌دهنده سیستم‌های خاکی واقع در نزدیکی محل آزمایش و مدل‌هایهایی از کارشناسان محیط‌شناسی استفاده شده است. با اجرای این متIDGET\activity\document� بیش از 30 مارت اقدام به تعیین مقادیری از عناصر مختلف خاک و ضرایب بهره‌برداری به دست آمده است. این اطلاعات شامل اطلاعات اولیه، رطوبت خاک و ویژگی‌های خاک است. کنترلی اولیه در اندازه‌گیری شده است. به‌طور کلی، این مدل‌ها به بهبود مصرف آب و افزایش کنترلی اولیه پایداری به‌صورت باعث شده است. به‌طور کلی، این مدل‌ها به بهبود مصرف آب و افزایش کنترلی اولیه پایداری به‌طور کلی به‌طور کلی به‌طور کلی به‌طور کلی به‌طور کلی به‌طور کلی
جدول 1. برخی خصوصیات شیمیایی لاههای مختلف خاک قبل از آبشیبی خاک (ابسته تحقیقات جاه افضل)

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>SAR</th>
<th>SO₄²⁻</th>
<th>HCO₃⁻</th>
<th>Cl⁻</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>pH</th>
<th>dS/m</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>222.3</td>
<td>375/4</td>
<td>1/42</td>
<td>124/100</td>
<td>37/34</td>
<td>15/55</td>
<td>8/20</td>
<td>131/80</td>
<td>0-15</td>
<td></td>
</tr>
<tr>
<td>15-40</td>
<td>120.3</td>
<td>167/1</td>
<td>4/46</td>
<td>89/39</td>
<td>23/38</td>
<td>8/45</td>
<td>8/30</td>
<td>71/40</td>
<td>15-40</td>
<td></td>
</tr>
<tr>
<td>40-70</td>
<td>80.2</td>
<td>1/43</td>
<td>24/41</td>
<td>11/60</td>
<td>24/27</td>
<td>7/65</td>
<td>8/6</td>
<td>7/40</td>
<td>40-70</td>
<td></td>
</tr>
<tr>
<td>70-100</td>
<td>38.3</td>
<td>1/45</td>
<td>118/46</td>
<td>24/41</td>
<td>11/60</td>
<td>24/27</td>
<td>7/65</td>
<td>8/6</td>
<td>7/40</td>
<td>70-100</td>
</tr>
</tbody>
</table>

جدول 2. برخی خصوصیات فیزیکی لاههای مختلف خاک قبل از آبشیبی (ابسته تحقیقات جاه افضل)

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>درصد حجمی رطوبت</th>
<th>درصد</th>
<th>شن</th>
<th>سیلت</th>
<th>رس</th>
<th>پچکی ظاهري</th>
<th>در طرفیت زراعی (gr/cm³)</th>
<th>عمق</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>2.4</td>
<td>1/42</td>
<td>131</td>
<td>8/20</td>
<td>131/80</td>
<td>0-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-40</td>
<td>24</td>
<td>1/46</td>
<td>33/5</td>
<td>19/5</td>
<td>48</td>
<td>15-40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-70</td>
<td>22</td>
<td>1/47</td>
<td>33/5</td>
<td>19/5</td>
<td>48</td>
<td>40-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-100</td>
<td>28</td>
<td>1/47</td>
<td>58/4</td>
<td>136</td>
<td>28</td>
<td>70-100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

کارایی مدل کردن (EF) (Modeling efficiency)، ضریب جرم (R²) (Coefficient of Determination)، و ضریب مانندی (CRM) (Coefficient of Residual Mass) و اتوراداری (RMSE) (Root Mean Square Error) برای ارزیابی اجرای مدل‌ها استفاده شده است.

نتایج و بحث
برخی خوراک‌ها از ورود اطلاعات استفاده شده است. تناوب و مدت آبیاری توسط گروه‌هایی مشابه‌تری در سیستم‌های غیرآبیاری داده شده است. تناوب و مدت آبیاری برای آب‌بری در برابر جاه افضل نسبت به جاه افضل استفاده شده است (کارتیه و کالر، 1976).

فرآیندهای آب‌بری و جاه افضل برای افزایش بهره‌وری رطوبت و افزایش خاک با مقداری از باریتهای مختلف مواد مذکوری جای داده است. میانگین سوختگی در فرآیند برای جاه افضل با 0.87 درصد زیست‌محیطی بزرگی بود و با برابری بزرگ‌تری از جاه افضل برای جاه افضل. میانگین سوختگی در فرآیند برای جاه افضل با 0.87 درصد زیست‌محیطی بزرگی بود و با برابری بزرگ‌تری از جاه افضل برای جاه افضل.
جدول 3 پارامترهای محاسبه شده برای مدل وان گنوتخت - معلم. نتایج کمپیوتری و هدایت هیدرولیکی اشباع اندازه‌گیری شده برای لایه‌های مختلف خاک مزروعه

<table>
<thead>
<tr>
<th>شماره‌ی لایه</th>
<th>شمات ودودها</th>
<th>رطوبت اشباع</th>
<th>پارامترهای مدل Van Genuchten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0/01</td>
<td>0/01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0/12</td>
<td>0/12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0/10</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0/09</td>
<td>0/09</td>
<td></td>
</tr>
</tbody>
</table>

برای تیمار 1 این مقابله با ترتیب در شکل‌های 1 و 2 نشان داده شده است. ملاحظه می‌شود که نتایج SWAP توسعه‌ای است رطوبت را در نمود که در جهت و زمانی منتقل و صرف‌نظر از دو طرف به کارگیری آب در سطح خاک به همراه پیش‌بینی عملیاتی LEACHC عملیاتی انجام داده شده که بر اساس شکل 2 مدل قدار رطوبت را در طی بسیاری از مقدمات اندازه‌گیری شده پیش‌بینی کرده است.

برای مدل 1 اینکه انتخاب و با تعبیه مشابهی LEACHC و SWAP در مدل وان گنوتخت دارد. LEACHC را در سطح مساحی به مدل وان گنوتخت تغییرات ناگهانی در مقدار رطوبت و جو و داده دارد. در حالی که در مدل وان گنوتخت اگزسیون عملاً باید پیکر بیشتری در انتخاب فعال مفهوم معرفت بر لایه‌های مختلف خاک وجود دارد.

این مسئله می‌تواند در جایگاه که تغییرات در مقدار رطوبت وجود دارد از طرف دیگر دوگانه تغییراتی در لایه‌های مختلف خاک تأثیر بسزایی در بهبود نتایج اجرای مدل داشته باشد. در مورد این مطلوبیت نیز به دلیل تفاوت در ضخامت ورودی‌ها در نتایج تأثیر داشته است.

lezachc مجدداً برای مدل وان گنوتخت در نتایج تأثیر داشته است. به همراه خط که به یک رسم شده که LEACHC و SWAP
شکل 1 مقایسه مقدار اندازه‌گیری شده رطوبت حجمی در برای مقدار پیش‌بینی شده با مدل SWAP در تیمار 1

این رخ‌های مقادیر رطوبت اندازه‌گیری شده و پیش‌بینی شده ممکن است ناشی از محدودیت‌های ذاتی مدل‌ها باشد. برای مثال، تأثیرات پیوسته بسیار به رطوبت Hysteresis (هیسترهزیس) و درمان (مانند رطوبت) ممکن است باشد. این معبری این می‌باشد که در مدل‌ها منظره نشده است. این مکانیسم‌ها می‌تواند مقدار سرعت جریان آب به زیر عمق ۴۰ سانتی‌متر بعد از عمل نفوذ را تغییر دهد. دلیل ممکن دیگر برای

شکل 2 مقایسه مقدار اندازه‌گیری شده رطوبت حجمی در برای مقدار پیش‌بینی شده با مدل LEACHC در تیمار 1

این رخ‌های مقادیر رطوبت اندازه‌گیری شده و پیش‌بینی شده ممکن است ناشی از محدودیت‌های ذاتی مدل‌ها باشد. برای مثال، تأثیرات پیوسته بسیار به رطوبت Hysteresis (هیسترهزیس) و درمان (مانند رطوبت) ممکن است باشد. این معبری این می‌باشد که در مدل‌ها منظره نشده است. این مکانیسم‌ها می‌تواند مقدار سرعت جریان آب به زیر عمق ۴۰ سانتی‌متر بعد از عمل نفوذ را تغییر دهد. دلیل ممکن دیگر برای
جدول 4: شاخص‌های آماری برای مقایسه مقدار اندازه‌گیری شده رطوبت و پیش‌بینی شده توسط دو مدل LEACHC و SWAP

<table>
<thead>
<tr>
<th>تیمار</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R²</td>
<td>CRM</td>
<td>EF</td>
<td>RMSE (%)</td>
<td>Tیمار</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.58</td>
<td>0.61</td>
<td>0.45</td>
<td>0.47</td>
<td>12.47</td>
<td>6.43</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.64</td>
<td>0.44</td>
<td>0.45</td>
<td>13.43</td>
<td>6.42</td>
<td>0.27</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>0.68</td>
<td>0.43</td>
<td>0.45</td>
<td>14.45</td>
<td>6.47</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.67</td>
<td>0.42</td>
<td>0.43</td>
<td>11.67</td>
<td>6.44</td>
<td>0.28</td>
<td>0.27</td>
</tr>
</tbody>
</table>

* چون از اطلاعات مربوط به این تیمار برای فرآیند کالیبره کردن مدل SWAP استفاده شده در محاسبه نشان‌دهنده آماری منظر شده است.

می‌شود و در صورت اختلاف مقادیر پیش‌بینی شده و اندازه‌گیری شده، این اختلاف نسبت به اختلاف بین مشاهدات با مقدار میانگین مشاهدات صنعتی مناسب می‌شود و در صورت برگزیدن بودن اختلاف بین پیش‌بینی‌ها و مشاهدات منظور از تیمار LEACHC و SWAP می‌شود یعنی موثر، به‌طور کلی مدل LEACHC گرچه در تمام تیمارها کمتر از SWAP مدل است، ولی مقایسه ترکیبی به صورت یک بک دارد. به نظر می‌رسد که مدل LEACHC مقادیر رطوبت را در تیمارهای دور آبشیوی زوزبی خاصی به تیمارهای دور آبشیوی می‌شود که مدل LEACHC این موضوع به خاطر کاهش رطوبت نیروی خاک از رطوبت اشباع در تیمارهای زوزبی کرد است. این موضوع به میزان زایش کاهش رطوبت نیروی خاک از رطوبت اشباع در تیمارهای زوزبی کاهش دارند. یا در مکان‌های رطوبت نیروی خاک به صورت مقدار رطوبت برابر باسکال کمیل برابر مقدار رطوبت اشباع است که در تیمارهای دور آبشیوی می‌تواند عامل بر روی خاک باشد.

در صورتی که تمام پیش‌بینی‌ها برای با مشاهدات باشد، مقدار EF باید با یک
بررسی نتایج به دست آمده از اولین مرحله آزمایش نشان داد که مدل LEACHC بهتر از Dijkstra را در تمام شرایط در مطالعه قرار گرفت. با توجه به نتایج نمودار دیالوگ، عمیق‌گیر آزمایشی و عمیق کارایی الگوریتم LEACHC و SWAP به صورت مثالهای 1 به دست آمد. نتایج نمودار دیالوگ به صورت جدایگان تعیین شد.

\[
\frac{\left| C_{f} - C_{eq} \right|}{\left| C_{i} - C_{eq} \right|} \leq \frac{C_{w}}{D_{w}} + 0.151
\]

در این معادله به ECی قطب‌هایهای CRM به نام عضویت حقوقی CRM به نام Un
شکل ۳ مقایسه مقادیر اندازه‌گیری شده شوری در برای مقادیر پیش‌بینی شده با مدل LEACHC و معادله ی (پایین) در تیمار D1L1

جدول ۵. شاخص‌های آماری برای مقایسه مقادیر اندازه‌گیری شده شوری و پیش‌بینی شده توسط مدل‌های LEACHC و SWAP و معادله ۱ در چهار تیمار آزمایشی

<table>
<thead>
<tr>
<th>R²</th>
<th>CRM</th>
<th>EF</th>
<th>RMSE</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>معادله ۱</td>
<td>LEACHC</td>
<td>SWAP</td>
<td>LEACHC</td>
<td>SWAP</td>
</tr>
<tr>
<td>D1L1</td>
<td>۰.۴۶</td>
<td>۰.۹۰</td>
<td>۰.۵۳</td>
<td>۰.۲۹</td>
</tr>
<tr>
<td>D2L1</td>
<td>۰.۷۸</td>
<td>۰.۹۰</td>
<td>۰.۷۸</td>
<td>۰.۷۸</td>
</tr>
<tr>
<td>D1L2</td>
<td>۰.۲۸</td>
<td>۰.۹۰</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>D2L2</td>
<td>۰.۵۸</td>
<td>۰.۹۰</td>
<td>۰.۵۸</td>
<td>۰.۵۸</td>
</tr>
</tbody>
</table>

پیامدهای اصلی این مطالعه می‌تواند شامل ایجاد یک روش جدید برای پیش‌بینی شوری با استفاده از روش LEACHC باشد. برای این‌که تیمار D1L1 بهترین نتایج را داشته باشد، لازم است که تیمار‌های دیگر نیز بهتر شوند. با در نظر گرفتن این امر، تیمار D1L1 بهترین روش برای پیش‌بینی شوری است.

*چون از اطلاعات مربوط به این تیمار در فراوانی کالیبره ی کردن مدل استفاده شده است.
ارزیابی مدل‌های رایانه‌ای SWAP و LEACHC در آلودگی مزرعه‌ای املاح...

گریختن تأثیر چگچ از بهتر در محیط و با استفاده از یک زیر برنامه مجزا محاسبه می‌کند.

در کل نتایج مشابه به کلیه آزمایشات مسدود و مقدار افزایش ماهیت در مسیر اولیه آبی‌سیاه (شیرینی نیرم خاک)، مدل‌ها توانسته‌اند روند کاهش شرایط قابل بخور پیش‌بینی نمایند. مقایسه نتایج حاصل از کاربرد مدل‌های مختلف LEACHC و SWAP به معادله منحنی شرایط نایل گردیده است.

در حال حاضر، در محیط خاک دراز، در مدل‌های SWAP و LEACHC به دست آمده منحنی شرایط در محیط خاک و در محیط خاک سطحی و در محیط خاک، مدل‌ها پیش‌بینی مدل‌ها به شیرینی نیرم خاک، بخشی مدل‌ها به شیرینی نیرم خاک و به دست آمده منحنی شرایط مدل‌ها به تخمین مقدار شرایط خاک است

با اصلاح خاک و کاهش شرایط به دست آمده منحنی شرایط مدل‌ها به دست آمده منحنی شرایط مدل‌ها به تخمین مقدار شرایط خاک است

متابع مورد استفاده

3. وزیری، ز. 1374. ارزیابی مدل‌های شرایط‌زا دای خاک با آزمون مزرعه‌ای. پایان‌نامه کارشناسی ارشد آب‌یاری و زهکشنی دانشگاه صنعتی اصفهان. 133 صفحه.

است رطوبت نیم‌خاک در زمان‌های مختلف به‌وکثرت
پیش‌بینی می‌کند. با این که هم‌مانی معادله‌ها که در رفت‌های مدل‌های سازمانی حاکم در حالت نزدیک است و
لی روش‌های حل عددی به کار رفته شده برای حلهای
معادلاتی در این دو دو مدل شناخته و در کل مدل
دو مدل برتری در
پیش‌بینی‌های بهتری را ارائه دهد. با وجود برتری نسبی
شیب‌پذیری در مدل SWAP مدل
پیش‌بینی با نسبت به مدل
LEACHC، مدل
SWAP

توانسته شیب‌پذیری‌های بهتری را ارائه دهد. با وجود برتری نسبی
شیب‌پذیری در مدل SWAP مدل
پیش‌بینی با نسبت به مدل
LEACHC، مدل
SWAP

پیش‌بینی‌های بهتری را در انتخاب با شیب‌پذیری‌های شیب‌پذیری در
محیط خاک دراز، در مدل‌های SWAP و LEACHC از یک مدل نیز انتخاب کرده است. این برتری‌ها به طور
خلاصه عبارتند از: از هر سه مکانیسم شناخته شده انتقال
املاح استفاده می‌کند (هکر) و جابجایی کن تک

TDS موجود در محلول خاک به جای کل محلول

(که در مدل

SWAP استفاده می‌شود) مورد بررسی قرار می‌دهد و

(3) تعداد شیب‌پذیری محلول خاک را بر اساس غلظت‌های

جدید پهنه‌های فاز محلول، فاز چاپ و رسوب کرده بی‌نا در نظر

می‌گیرد.

