ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در آبی‌های مزرعه‌ای املاح خاک در منطقه

چهار افضل استان بزد

وحید خاکساری، سیدعلی‌کیار موسوی، سیدعلی محمد چراغی، علی‌اکبر کامگار حفیقی، و
شاهرخ زند پارسا

چکیده

انجام آزمایش‌های مزرعه‌ای به منظور تعیین مقدار بهینه آب مصرفی برای اصلاح شوری خاک، وقت‌گیر و پرهزینه بوده، بنابراین استفاده از مدل‌های کامپیوتری (رایانه‌ای) آب‌رسایی رایج سه‌شانه است. ولی قبل از به کارگیری جدید مدل‌هایی، درستی نتایج آنها باید در مقایسه با نتایج آزمایش‌های مزرعه‌ای ارزیابی شود. در این پژوهش دو مدل رایانه‌ای LEACHC و SWAP مورد بررسی قرار گرفتند. در سه‌سالیانه رطوبت و شوری خاک حاصل از انجام آزمایش‌های آب‌رسایی مورد ارزیابی قرار گرفتند. ارزیابی مدل LEACHC در پیشینه رطوبت خاک، بر اساس شاخص‌های آماری محاسبه شده، هر چند مدل مطرح رضایت‌بخشی داشتند. در پیشینه شوری نیز خاک در سه‌سالیانه مدل LEACHC به بالاترین رتبه‌گیری از سه مکانیسم انتقال املاح عنی جهانی، انتشار و به‌خیزه‌گی و نیز از نظر گرفتن برهم کنش‌های شیمیایی در محیط خاک، مانند جذب، رسوب، احیال و غیره در مقایسه با مدل SWAP تایید بهتری را نشان داد. هر دو مدل با وجود اختلاف مفهومی پیشینی شده و اندام‌گیری شده شوری در آب‌رسایی‌های انگلچه، توانستند روند شوری‌زاپدایی خاک را به نحو قابل قبول‌یابی نمایند.

LEACHC, SWAP, واژه‌های کلیدی: آب‌رسایی، چهار افضل، ...
از طریق مجموعه‌ای از معادلات دیفرانسیل که به کمک کامپیوتر حل می‌شوند، با دقت‌پذیر شکل توصیف می‌شود.

SWAP در این تحلیل سیستم مخلوط مواد (Soil, Water, Atmosphere, Plant) مربوط به شوری در خاک‌های آهکی از مدل LEACHM و LEACHC است (Van Genuchten and Mualem). سایر فرآیندهای اصلاح از نگرش خاک به کارگری شده یک مدل شیبی شیبی بیلان آب و املاح در بک خاک زیرکشت یا آشپ از نوع مختلف شرایط مرزی و با در نظر گرفتن مکانیزم‌های مختلف و آبیاری است. مدل SWAP معماره ریچاردز را برای حکمت آب در خاک به کار می‌گیرد. توابع هیدرولوگی خاک به سبلی بیان‌های تحلیلی وان کوچن (Van Genuchten and Mualem) و با به وسیله مقادیر جدول‌بندی شده تعیین می‌شوند (32). حضور عدید معادله ریچاردز طوری تطبیق بانده شده که نمای برابری مطلقه اشباع و هم عدید منطقه اشباع و هم عدید منطقه غیر اشباع که کار می‌رود. منطقه غیر اشباع SWAP روندهای مختلف انتقال املاح جابه‌جایی، بخش‌بندی و انتشار جذب غیر خطي، انتقال مرتبه اول و جذب به وسیله ریشه را شبیه‌سازی می‌کند. این امر شبیه‌سازی انتقال معمولی نکه و عضف کش، شاخص تأثیر شوری بر رشد گیاه را مجاز می‌کند. در زیر کاق در انتقال به شبیه‌سازی تغییرات شوری در SWAP فقط از مکانیسم‌های جابه‌جایی و انتشار استفاده می‌کند و از جذب توسط ریشه و درختان خاک به نیز انتقال صرف‌نظر شده است.

توسط هاگنسون و واکت (12) در بخش علمی LEACHM خاک، گیاه و انباشت در دانشگاه Cornell سوسن بافتی است. به‌طوری که انتقال هیدرودینامیکی و انباشت معادله ریچاردز و انتقال - گرفتار اندازه‌گیری و تحلیل در LEACHC انتشار شرح شده است. در معادله انتقال - انتشار به عنوان یکچند های که در این روش نشده است. در عوض، فرآیندهای شیمیایی شامل انتقال کاتالیزور، تبادل هم‌نوع، تبادل انتقال و تبادل - اندازه در یک زیر برنامه تعادل مواد شیمیایی مجزا (18) شبیه سازی شده است. مدل CHEM
ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در آزمایش‌های املاح...

همرودیک و خصوصیات فیزیکی نمک خاک، یکی از عوامل مهم در
املاح در خاک (10 و 11). اکستنسیون رور و کیفیت آب آلاین و
شوری خاک (7)، مدل‌های کیفیت و کیفیت آلاین و شوری
خاک (19). مورد استفاده قرار گرفته و مناسب تحقیق داده
شده است. همچنین قابلیت مدل LEACHC انتقال املاح در بالای
یا ایستگاه کم عمق و بررسی تأثیر
گزینه‌های مختلف مدیریت و شرایط اولیه بر شرایط منطقه
ریشه، مورد بررسی برقرار گرفته و توانایی به دست آمده
رضایت‌بخش بوده است (3 و 6 و 11).

در این پژوهش آزمایش‌های خاک استفاده کرده‌ایم. در
تحقیقات شوری، روز، و در منطقه چاه‌افغال، مورد مطالعه
قرار گرفت. اهداف این پژوهش به شرح زیر است:
1. پیشینه‌های نمک رطوبت و املاح خاک با استفاده از
مدل‌های LEACHC و SWAP در طول مدت آبسیون خاک.
2. ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP و رطوبت و شوری خاک در مقایسه با نتایج آزمون
مزه‌ی آبسیون در چاه افضل زیده، به دو روش (الف)
مقایسه تحلیلی (ب) استفاده از شاخص‌های آماری.

مواد و روش‌ها
این پژوهش در استان‌های مرکزی و شرقی ترقیات شوری در منطقه
چاه افضل یزد انجام گرفت. این استادیاپژوهش در فاصله
۷۰ کیلومتری شمال غربی یزد، در مجاورت روستای چاه افضل
واقع است. چاه افضل بوکخیشی در اکثریت کویر سبلکوه
می‌باشد. به طور کلی تمام آب منطقه چاه افضل از حوزه‌ای به
وسعت ۳۸۱۵۰ کیلومتر مربع تأمین می‌گردد. در حقيقة این
منطقه شامل زهکی حوزه‌ای آخرین شهرک‌های یزد - اردکان،
نایین - علیا و هریش است (15). مرحله مختلف اصل
خاک سوره که در این پژوهش مورد استفاده قرار گرفته بود
صورت اگر گرفت که با تحقیق محل انجام آزمایش در استادیا
تحقیقات شوری در چاه افضل تلقیه‌برداری دیق برای تعیین
ابعاد و فاصله بین کرده‌ها انجام شد. به منظور تعمین عوامل

59
ازم، اطلاعات مورد نظر در این فاصله ها وارد بود. از جمله
شانسیتهای ازار، درجه‌هایی مربوط به آب‌های کیسه و تیمک خاک
است که شامل انتحاب مدل‌های تیمک از منابع تیمک و
تیمک خاک و
می‌باشد. مدل انتحاب شده در این
پژوهش مدل بالا و همکاران (5) است.
در این فاصله، اعداد لایه‌ای خاک (در صورت مطلق بودن
خاک) و نام قابل ورود، اطلاعات فیزیکی و هیدرولوژیکی برای
نظامی شدن، به برداشت لایه‌ای خاک می‌باشد. برای هر
لایه عوامل مربوط به غیرکه تیمک و انگیزه، نهایت
یعنی، (د) (مقدار اولیه تیمک) و (ه) (نیز)
مقدارهای مبتنی بر (Van Genuchten)
پارامترهای مدل (Van Genuchten)
مقدارهای مبتنی بر (Van Genuchten)
شکل اشاعه خاک) وارد شده.
برای همه استادان این پارامترها بدين ترتيب عمل شده که
با ریگ‌های مخصوص نمونه‌ها است. سپس در تمام
لایه‌ها برداشت شده. این نمونه‌ها با آزمایشگاه‌ها و
مقدار رطوبت (Pressure plate)
جدول 1. برخی خصوصیات شیمیایی لاشهای مختلف خاک قبل از آیوشی خاک (ابسته به تحقیقات چه افضل)

<table>
<thead>
<tr>
<th>SAR</th>
<th>SO₄²⁻</th>
<th>HCO₃⁻</th>
<th>Cl⁻</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>pH</th>
<th>dS/m</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق خاک (سانتیمتر)</td>
<td>0-15</td>
<td>15-40</td>
<td>40-70</td>
<td>70-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میلی اکی/ولان در لتر</td>
<td>37/5</td>
<td>33/4</td>
<td>34/6</td>
<td>35/7</td>
<td>36/7</td>
<td>38/8</td>
<td>30/9</td>
<td>28/4</td>
<td>28/9</td>
</tr>
</tbody>
</table>

جدول 2. برخی خصوصیات فیزیکی لاشهای مختلف خاک قبل از آیوشی (ابسته به تحقیقات چه افضل)

<table>
<thead>
<tr>
<th>درصد حجمی رطوبت</th>
<th>پیکانه ظاهری در ظرفیت زراعی (gr/cm³)</th>
<th>سیلنت</th>
<th>روس</th>
<th>درصد</th>
<th>عمق خاک (سانتیمتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>یوم شنی</td>
<td>62</td>
<td>1/24</td>
<td>19/5</td>
<td>34/4</td>
<td>21</td>
</tr>
</tbody>
</table>

کارایی مدل کردن (EF) (Modeling efficiency)، ضریب چرم (CRM) (Coefficient of Residual Mass) باقیمانده و ضریب (R²) (Coefficient of Determination) تا درآمد مد نظر آیا بازگشت‌های نمایشگری منابع بودن برای ارزیابی اجرای مدلها اسفاده شده است (9).

نتایج و بحث
برخی خصوصیات فیزیکی و شیمیایی لاشهای مختلف خاک قبل از آیوشی آزمایش‌های ایشان در منطقه چه افضل در جدول‌های 1 و 2 نشان داده شده است. میانگین صورت در نتیجه خاک برابر با 27/8 دسی‌زمینگ بر متر بوده و بنابراین جزو خاک‌های خیلی شور ورود اطلاعات اسفاده شده است. دو‌ساینگ گروه داده‌ها شامل تناوب و مدت آیاره و بالاخرده‌ها می‌باشد. در سومین گروه داده‌ها نیز ترکیب بونی آب آیاره است که با نمونه‌گیری از آب مورد اسفاده برای آیوشی‌های که تا اینجا موجود در استفاده تحقیقات شوری تأمین می‌شود، در ابتدا و انتهای انجام آزمایش‌ها و با روش‌های استاندارد به دست آمد.

با آماده سه‌فولدی ورود اطلاعات، مدلها اجرا شده و نتایج حاصل در ارتباط با مقادیر رطوبت و شوری نتایج خاک با مقادیر اندک‌گری شده مورد مقایسه قرار گرفته.

بر این پژوهش ملاک‌های آماری شاخص جذر میانگین مجذور خطای (RMSE) (Root Mean Square Error) شاخص
جدول 3 پارامترهای محاسبه شده برای مدل وان گنخوتن - مدل. نتایج کمپیوتری و هدایت هیدرولوژیکی اشیاع اندازه‌گیری شده برای لایه‌های مختلف خاک مزرعه

<table>
<thead>
<tr>
<th>K_c</th>
<th>B</th>
<th>h_c(cm)</th>
<th>m</th>
<th>n</th>
<th>α</th>
<th>θ_s</th>
<th>θ_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm/day)</td>
<td>(cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Genuchten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>0.04</td>
<td>0.015</td>
<td>0.019</td>
<td>0.013</td>
<td>0.002</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برای تیمار 1 DIL1 این مقابله به ترتیب در شکل‌های 1 و 2 نشان داده شده است.

ملاحظه که مدل SWAP توانسته است رطوبیت را در نیم‌برخ خاک در عمق‌ها و زمان‌های مختلف و سرعت‌نور در طرفی و به کارگیری ۶۵ درصد بیش‌تری عمل می‌کند. در حالی که بر اساس شکل ۲ مدل LEACHC رطوبیت را در نیم‌برخ خاک بالاتر از مقدار اندازه‌گیری شده بیش‌تری کرده است.

در مدل DIL1، اکثر انتخابات جریان مقدار SAR مناسب در پارامترهای EC[−] سدبور و SAR[−] سدبور یا اصلاحاتی که به سمت سدیم-سیلیکای-آمیاک تجربه‌ای است. برای وزنده شدن کسب و کار کمتر من تناول می‌گردد (SWAP). به همین منظور این پژوهش در مدل SWAP و LEACHC شناخته شده است.

حرکت آب و ازایش در خاک در شرایط مزرعه ندارد. انتخاب شده و نتایج پیشین مدل‌ها با نتایج به دست آمده از آزمون‌های محاسبه‌ای سدبور مقدارهای قرار داده شده است.

برای پارامترهای محاسبه شده برای مدل وان گنخوتن - مدل با استفاده از اکثر منابعی که در جدول ۳ برای پیش‌بینی شده در مدل اندازه‌گیری شده رطوبیت در پارامترهای پیش‌بینی شده مدل‌ها به همراه خط یک به یک رسم شده که LEACHC و SWAP محدوده‌های مدل LEACHC و SWAP در نتایج تأثیر داشته است.
شکل ۱ مقایسه مقدار اندازه‌گیری شده رطوبت حجمی در برای مدل SWAP با مدل LEACHC در تیمار ۱

شکل ۲ مقایسه مقدار اندازه‌گیری شده رطوبت حجمی در برای مدل LEACHC با مدل SWAP در تیمار ۱

یکی از رایه‌های مقیاس‌های ایندیکاتوری برای اندازه‌گیری شده و پیش‌بینی شده ممکن است ناشی از محدودیت‌های ذرات مدل‌ها باشد. برای مثال، تأثیرات پیدا شده در سطح رطوبت (Hysteresis) و نزدیکی این مقایسه‌ها به مدل‌ها نشان دهنده است. این مکانیسم‌ها می‌توانند مقیاس‌های سرعت جریان آب به زیر عمق ۳۰ سانتی‌متر بعد از عمل نحوه را تغییر دهد. در ملکان ممکن دیگر برای
جدول 4. شاخص‌های آماری برای مقایسه مقدار اندازه‌گیری شده رطوبت و پیش‌بینی شده توسط دو مدل LEACHC و SWAP در چهار تیمار آزمایشی

<table>
<thead>
<tr>
<th>R²</th>
<th>CRM</th>
<th>EF</th>
<th>RMSE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEACHC</td>
<td>SWAP</td>
<td>LEACHC</td>
<td>SWAP</td>
</tr>
<tr>
<td>0.78</td>
<td>0.72</td>
<td>0.11</td>
<td>0.24</td>
</tr>
<tr>
<td>0.91</td>
<td>0.87</td>
<td>0.12</td>
<td>0.23</td>
</tr>
<tr>
<td>0.95</td>
<td>0.90</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>0.70</td>
<td>0.65</td>
<td>0.55</td>
<td>0.47</td>
</tr>
</tbody>
</table>

چون از اطلاعات مربوط به این تیمارهای فراوری خودکار کردن مدل SWAP استفاده شده در محاسبه شاخص‌های آماری متوسط نشده است.

در رطوبت نمی‌تواند به درستی باند شود. همچنین غیر قابلیت و غیر دقیق بودن داده‌های مربوط به همین‌گیری با مقدار میانگین مشاهده‌های منجر به تفاوت‌های بین پیش‌بینی مدلها و اندازه‌گیری‌ها قابل توجه است. نتایج هم‌اکنون‌ها K(h) و 0(h) از تابع دست نخورده خاک به محدوده دو نقطه در سطح مربوط به همین‌گیری با مقدار میانگین حاصل از نتایج اصلاح نکرد که بهتر باشد. این ترتیب نتایج مناسبات شاخص‌های آماری برای هیچ‌کدام از تیمارهای قابل به کامی کمتر از LEACHC گرچه در تیمار LEACHC کمتر از LEACHC است ولی مقایری نهایی به صورت یک یا دو دارد. مدل LEACHC نسبت به مدل SWAP به نظر مناسب‌ترهاید که محل مقادیر رطوبت را در تیمارهای دور آبی‌اشین و پیش‌بینی‌شده از تیمارهای دور آبی‌اشین بیشتر از تیمارهای دور آبی‌اشین سیاست‌های K(h) و 0(h) نسبت به تیمارهای دور آبی‌اشین باشد. زیرا در مکان‌های سطحی رطوبت‌های نزدیک به صفر، مقدار رطوبت بر اساس ناب قابل برای مقادیر رطوبت اشعر است که در تیمارهای دور آبی‌اشین روز به روز که تیپخانه‌های رطوبت‌های نزدیک اشعر دارد، می‌تواند عامل برای یک باند.
ارزیابی مدل‌های رابطه‌ای LEACHC و SWAP در آشوبی مزرعه‌ای املاح...

با این که مدل SWAP دقت مدل LEACHC را در شبیه‌سازی‌های دقیق‌تری در شبیه‌سازی، فعالیت و اعمال‌های شبیه‌سازی LEACHC به مدل محلول خاک توانسته باشد، در مقایسه با مدل LEACHC همانطور که در شکل 2 دیده می‌شود، مقدار LEACHC
پیش‌بینی شده بالاتر از مقدار انداده‌گیری شده است. این تخمین
پیش‌بینی از مشاهدات مدل LEACHC در شبیه‌سازی دور آشوبی
روز تا حدودی تعیین شده است. مدل SWAP را در شبیه‌سازی
دو روز از آشوبی دور آشوبی شده است.

در ارتباط با شوری نیکرخ خاک در SWAP و LEACHC مقدار
شش برابر را بهتر از مدل LEACHC به‌طوری‌که در مدل LEACHC
مقدار را در حد نسبتاً کوچک پیش‌بینی کرده است.
چنانچه ذکر شد، علاوه بر رطوبت، پیش‌بینی مدل‌های
فاصله مورد استفاده در LEACHC و SWAP در ارتباط با شوری نیکرخ خاک است. علاوه بر رطوبت، پیش‌بینی مدل‌های
اشخص شاخص‌های آماری مورد بحث، مدل LEACHC استنادی تیمار
(D1L1) توانسته مقدار شوری انداده‌گیری شده را
پیش‌بینی نماید. مقایسه مقدار پیش‌بینی شده، پرتره مدل‌های
را نشان می‌دهد. بر اساس مدل SWAP و LEACHC
اساس شاخص‌های آماری محاسبه شده نیز ضعف مدل‌های
1 مدل سه‌بعدی به دو مدل مورد بحث آمار است.
بررسی نتایج به دست آمده از اولین مرحله آشوبی نشان
داد که مدل‌ها نیز ناشناس‌تر بوده و در شبیه‌سازی از میزان
شبیه‌سازی با مقدار انداده‌گیری شده داشته است. بنابراین با کند
شدنش تغییرات املاح در مراحل بعدی. شبیه سازی به
عوامل بکرگی و تغییر در شوری خاک در
دیگر نمودار فقط رای تیمار D1L1 صورت گرفته، ولی برای
سایر تیمارها نیز نمودارهای رسم شده و برای رعایت اختصاص
نتایج عددی آنها در جدول‌های 2 و 5 ارائه شده است.

نتیجه‌گیری
نتایج نشان می‌دهد که هر دو مدل در حد قابل قبولی توانسته‌اند
مقدار
NTAN دهده تیمار برآورده بالاتر یا
پایین‌تر از مقدار انداده‌گیری هاست. مقدار برابری
نشان دهده برابر مدل دقت مدل و مقدار منفی
معنی‌دار بیشتر مدل نسبت به انداده‌گیری هاست. در مدل
LEACHC مقدار طویل آن 2 دیده می‌شود، مقدار
پیش‌بینی شده بالاتر از مقدار انداده‌گیری شده است. این
تخمین
پیش‌بینی از مشاهدات مدل LEACHC در شبیه‌سازی دور آشوبی
روز تا حدودی تعیین شده است. مدل SWAP را در شبیه‌سازی
دو روز از آشوبی دور آشوبی شده است.

\[
\frac{(E_{f} - E_{c}^{eq})}{(E_{c}^{eq} - E_{f})} = \left(\frac{D_{w}}{D_{s}}\right)^{0.151} + 0.151
\]

در این معادله
\(E_{c}^{eq}\) به ترتیب هیدرات انتقایی
\(E_{f}\) به ترتیب هیدرات
\(D_{w}\) به ترتیب
\(D_{s}\) به ترتیب
\(\text{عمق آب آشوبی و عمق خاک است. رسم مدل‌های}
\text{اندازه‌گیری شده شوری خاک در تیمار مقدار باستندی شده مدل تایباد در شکل 3 نشان داده}
\text{برای تیمار LEACHC و SWAP}
\text{شده است.}

\[\text{NTAN همبستگی به}% - 151 \right) + 0.151
\]
شکل ۳ مقایسه مقادیر اندازه‌گیری شده شوری در برای مقادیر پیش‌بینی شده با مدل SWAP (بالا راست) و معادله ۱ LEACHC (پایین) در تیمار D1L1

جدول ۵: شاخص‌های آماری برای مقایسه مقادیر اندازه‌گیری شده شوری و پیش‌بینی شده توسط مدل‌های LEACHC و SWAP و معادله ۱ در چهار تیمار آزمایشی

<table>
<thead>
<tr>
<th>Tیمار</th>
<th>R²</th>
<th>CRM</th>
<th>EF</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEACHC</td>
<td>SWAP</td>
<td>LEACHC</td>
<td>SWAP</td>
<td>LEACHC</td>
</tr>
<tr>
<td>معادله ۱</td>
<td>معادله ۱</td>
<td>معادله ۱</td>
<td>معادله ۱</td>
<td>معادله ۱</td>
</tr>
<tr>
<td>D1L1</td>
<td>۰/۸۰/۹۰/۰۹/۰۱/۰۰</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
</tr>
<tr>
<td>D2L1</td>
<td>۰/۸۰/۹۰/۰۹/۰۱/۰۰</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
</tr>
<tr>
<td>D1L2</td>
<td>۰/۸۰/۹۰/۰۹/۰۱/۰۰</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
<td>۰/۵۲/۰۸/۲۹/۰۰/۰۹</td>
</tr>
</tbody>
</table>

جواب از اطلاعات مربوط به این تیمار دارای کلیه بهترین مدل استفاده شده. SWAP استفاده شده در محاسبه شاخص‌های آماری مظهر نشده است.
ارزیابی مدل‌های یادگیری LEACHC و SWAP در آبیاری مزرعه‌ای املاح

کشف تأثیر گچ از آهک در محیط و با استفاده از یک زیر برنامه مجا محااسبه می‌کند.

در کل نتایج می‌شود که علی رغم اختلاف بین
پیشینی، مدل‌ها و مقدار انداع‌گیری شده، نتایج مطابق مدل‌ها در
مراحل اولیه ای ساده‌تر (شماری بالای نیم‌برخ خاک) مدل‌ها
نواستانه روند کاهش شوری خاک را به خوبی پیشینی
نواخته. مقایسه نتایج حاصل از کاربرد مدل‌های تحقیق
شوری داده‌ی به دست آمده از اطلاعات تمامی مدارها در
پیشینی، شوری خاک به صورت چند‌رازه در هر کدام از
تیمارها با مقادیر انداع‌گیری شده و پیشینی شده شوری خاک
توسط مدل LEACHC و SWAP نشان دهنده نتایج آن مدل
بدون استفاده از چنین مدل‌هایی در تخمین مقدار شوری نیم‌برخ
اخته.

با اصلاح خاک و کاهش شوری به دست آمده شرایط
ماهیگیر در ازاب‌ها با مقدار شوری نیم‌برخ خاک، پیشینی مدل‌ها
هم‌اکنون بیشتری با مقادیر انداع‌گیری شده دارد و این می‌تواند
از نظر کاربردی هدایایی شوری خاک به‌سیار قابل توجه باشد.

است طراحی نیم‌برخ خاک و آن در زمان‌های مختلف به‌درستی
پیشینی کند، بنابراین کاربرد این مدل‌ها به وسیله
مدل SWAP شیمیایی حرکت آب در خاک یکسان است ولی
روش‌های حل یافته به کار گرفته شده برای حل چنین
مدل‌هایی در این و در مدل‌های است و در کل مدل
توانسته پیشینی که به‌تسیع را انجام دهد. با وجود اینکه
سیدی در شیمیایی حرکت و توزیع طبیعی در خاک
SWAP نسبت به مدل LEACHC مدل LEACHC، مدل
پیشینی که در استفاده با شیمیایی رایان‌دهی سیمپاپیو
محیط خاک وارد در محیط شوری نیم‌برخ به چهره در
اراه‌های که این مدل SWAP مدل LEACHC و SWAP
به‌طور خاص خصوصیت از آن (زا سه مکانیسم شناسایی شده انتقال
املاح استفاده می‌کند) که در مدل

تیکان‌هایی پیشینی معرفی و توصیع

 keto محیط خاک در اثر

باست

تیکان

روش

نواخته

سیدی

برای

باتری

پیشینی

پیشینی

سیدی

پیشینی

پیш

