از زیایی توان تجزیه لیگنوسولولز برخی از باکتری‌های جدا شده از انواع خاک و مواد در حال پسودگی

صحن برچی

چکیده

اکنون دیکتومونومی‌ها برای تبدیل بیوماس گیاهی به بسیاری از فرآورده‌هایی که ارزش نادیگیری مورد بررسی قرار گرفته است. تعدادی از فرآورده‌های خاکی از بیوماس گیاهی در حال پسودگی و کوته‌های دامی پوسیده، شده از بخش‌های مختلف استان مکزیک به منظور جداسازی و تیمین‌سازی باکتری‌های هوازی که قادر به استفاده از فرآورده‌های لیکن‌های چودری از تیمین‌سازی چندین بخش شده، جمع آوری شده‌اند. باکتری‌ها با استفاده از سیمینونه لیگن‌های کلش گندم و نزدیک آرگیا به عنوازه گیری شده، با آب داغ جداسازی شده‌اند. فروش باکتری جداسازی شده که (Pseudomonas sp.) و سودوموناس (Streptomyces sp.) از جنس‌های استرپتومایس و سودوموناس در محیط دارای خاک گندم بهترین محیط حاصل خاک اره بود. نتایج نشان داد که فرآوری باکتری‌بای میکرووری مواد لیگنوسولولوزی و استفاده از مکمل آزت در محیط کشت، آثار قابل توجهی بر ترکیب شیمیایی کلش و خاک اره داشت است. سپس افزایش افزایش و همچنین باکتری‌های موجب فرآوری و نیز باکتری‌های لیگن سودوموناس شبدین (Pseudomonas sp.) با کاهش کروپهیدرات‌های لیگن منجر به کاهش گندم و خاک اره در مقایسه با شاهد بدون باکتری شبدین (Pseudomonas sp.) با کاهش کروپهیدرات‌های لیگن منجر به کاهش گندم و خاک اره در مقایسه با شاهد بدون باکتری شبدین (Pseudomonas sp.) به عنوازه مخر (به خاک اره داده شده چاوشی‌های باکتری‌های جدیده شده چاوشی‌های باکتری‌های جدیده شده باکتری‌های جدیده شده باکتری‌ها را به وجود بخشید. نتیجه این پژوهش این است که باکتری‌ها می‌توانند برای بهینه سازی بیولوژیکی بازموده‌های کشاورزی به منظور تغذیه دام مورد استفاده قرار گیرند.

واژه‌های کلیدی: لیگنوسولولز، تجزیه بیولوژیکی، استرپتومایس، سودوموناس، کلش گندم، خاک اره

مقدمه

بر اساس داده‌های FAO در سال 1994، سطح عفونت‌ها در جهان 3/4 میلیارد هکتار است که حداقل هرم (Grassland) سال 300 میلیارد تن گیاه علفی (بر اساس وزن خشک) در

1 مربی علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد اراک

41
وجود لیگنین می‌باشد. عمده تحقیقات به شکستن اتصال بین
این ماده و هلولولورها و یا تجزیه خود مکمل لیگنین متمرکز
شد. است (11). دو نوع مهم از بیکارکارگی‌های تجزیه
کندن لیگنین که تا کنون پیش‌تر مورد بررسی قرار گرفته‌اند
(Panerochaete chrysosporium) و نوعی از اکتیومیکسوها
(Streptomyces viridosporus) است.

این دسته از مایع‌های رشته‌ای
اکتیومیکسوها (Actinomycetes) به وفور در اکتا سایر لیگنین و بدون
خوصوص لیگنین گیاهان گرام‌پوزیتیوی را به لیگنین میری قابل ترسبی در
آسید (Acid precipitable polymeric lignin) (APPL) یک لیگنین تغییر بیدله
در نظر سنجیده است. این حد وسیعی از نظر سنجیده یک لیگنین
بلی مخلوط با آب و قابل ترسبی در آسید است که کک
ساخته است. برای این مناسب نتایج، ترسبی در ۲۰۰۰۰
است (13). همچنین که نوع گونه مختلف ناکامی‌ها یکی
در نتایج معمولی نشان دار را معدنی محصول
در دست لیگنین مصنوعی نشان داده‌است (۱۷).

اما علاوه بر اکتیومیکسوها تجزیه لیگنین به وسیله
باکتری‌های غیر رشته‌ای نیز توسط های‌دی و نیروانسکی (۱۷).
بریستولوی و همکاران (۱۸) و موری و همکاران (۲۰)
گزارش شده است. همچنین شدن لیگنین به وسیله سودوموراماس
پوئیدا (Pseudomonas putida) و سریالیا مارسیسسان
بوژ-اکر (Seratia marcescens) تا ۴ درصد لیگنین را مخلوط
نموده (۲۹). باکتری‌های جدیدی از کمپست با خاک
به تولید غذای انسان اختصاص یافته و با بنابراین زمین کمتری
برای تولید علوفه مورد نیاز دام‌ها در دسترس است. با افزایش
جهت، مقدار غله قابل مصرف در خروکاخ دام‌ها به تدریج
کاهش خواهد یافت. به علاوه به افزایش میزان خروکاخ‌های
پارسی به حدود ۰.۴ درصد در این جسم دام‌ها تغذیه تدریج
قابل استفاده برای تولید خروکاخ دام به تدریج استفاده از کاک
کلس و سایر محصولات فرینی در جریه دام‌افزایی خواهد
یافته.

کاکه در مدت طولانی به عنوان منبع تأمین انرژی در
تغذیه نشان دادهکنندگان در اهمیت بوده، اگرچه در هنگام
برداشت غلات، یافته به کامل رسیده و کاکه دارای ارزش
غذایی قابل تابعی است. اینکه در حالی است که این ماده
جدیدی به دلیل ۴۰ درصد کربوهیدرات است. بنابراین می‌تواند به
عنوان یک منبع بالقوه مهم تأمین کندن انرژی برای حیوانات مدول
نظر قرار گیرد (۱۱). در نتیجه هر روش فراوری که به‌عنوان
راندنان تولید انرژی این مواد را حداکثر به‌عنوان
بخش‌تی، افزایش بسیاری در منابع خوراکی دام داده بوده و به
خواهید آورد (۱۱). از این رو ممکن است با کاربرد
روش‌های میزان رتان تمیز استفاده از کربوهیدرات‌های موجود در
کاک افزایش یابد که مهم‌ترین آنها، عامل روش‌های فیزیکی،
شیمیایی و بیولوژیکی است (۱۲). روش آخر می‌تواند مزایای
خصوصی به علاوه به روش دیگر داشته باشد (۱). فرض بر این
است که روی فراوری بیولوژیک نسبت به سایر روش‌های
فراوری، ارزش غذایی را به میزان بیشتری افزایش داده، آلودگی
کمتری برای دام، انسان و محیط زیست را کمتر می‌کند، کاربردی
آن است. بطور استحکامی کمتری در تأمینات و تجهیزات
اتجاه می‌گیرد، البته از این است (۱).

در صورتی که تجزیه بیولوژیک لیگنین به عنوان بهترین
روش تجزیه ساختن انسان بهبود می‌یابد و در محدود فاصله
الافاقی، مورد بررسی قرار گرفته است (۱۱). از انجام‌که
پیشرفت مشکلات مرتب با فراوری مواد لیگوسولولزی به دلیل

۴۲
1. لیگنین دی اکسان (Dioxane lignin)
25 گرم کلیش یا خاک ارائه داده که در بهای اکسان مخلوط گراد ژنتیک گردیده و به سه روش مختلف استخراج شد (20).

1.4-Dioxane, or 1,4-diethylene oxide, Merck Co. LTD.)

2. لیگنین کلیسون (Klason-lignin)
25 گرم کلیش یا خاک ارائه عصاره گیری که با آب داغ (همچنان که در بالا توصیف شد) با 50 میلی لیتر اسید سولفوریک 72 درصد در 15 دقیقه سانتیگراد برای مدت 2 ساعت فراوری شد. مخلوط میلی لیتر آب تا 23 گلیک تا 32 گلیک این رقیق شد و فراوری تا 4 ساعت دیگر ادامه یافت. بقا این کاملاً با آب نشیش داده شد (20).

3. لیگنین اسید هیدروکلریدیک (HCl-Lignin)
25 گرم کلیش یا خاک ارائه اسید شده (به اندازه یک میلی متر) از 50 میلی لیتر محلول اسید هیدروکلریدیک (40%) (وزن مخصوص 1/15 در 5 درح، سانتیگراد) با 5 میلی لیتر مخلوط 4 درجه سانتیگراد گراد به شدت و برای 2 ساعت حد زیات برای حفظ دمای 4 درجه سانتیگراد به مخلوط میلی لیتر اضافه گردیده و اجيابه داده شد که 18 ساعت باقی بماند. رروب پس از صاف کردن یا آب جوش شسته و خشک شد (20).

به نام آزوتروپاکتر (Azotobacter), و سرسبزیا مارسینس، قاده هر رنگ برای محلول گردیدن لیگنین ویژیک (26، 24) (24، 26). این سرسبزیا مارسینس آنیمیک لافازی گردیدن میتود که معمولی به قابلیت دانه‌ای برای جایگزینی نور از آنجا که می‌تواند با معدن و محلول گردیدن لیگنین داشته باشد (24).

3.2.2. ارگنیک و همکاران (25) 12 باکتری برای منفی هوایی از خانواده‌های سودوموناس و بیمارسیزی را در گروه‌های تنها دانه‌ای برای محلول نمونه لیگنین دی اکسان صورت دادند. میزان تجزیه لیگنین در اکسان میتواند به تا 20 روز، 10 درصد تغییر نشود.

بر اساس نظر مهمیکین (15) سودوموناس که باکتری‌های میله‌ای گرم منفی هوایی است. تا در دنیای نتان که برای باکتری‌های اتیک داده شده است. ازجمله این گونه‌ها می‌توان به سودوموناس پوئیسا (Pseudomonas putida) و سودوموناس فلوریسن (P. fluorescens) اشاره نمود.

دف از پروتئین حاصل، جداسازی باکتری‌های قادر بر تجزیه لیگنین و با پتاسیم‌های موجود خشک و برسری توانایی تجزیه بالای باکتری‌های جدا شده بود. می‌توان در این بررسی تأثیر کلیه یک میکرو بهتر از برای بهبود فعالیت باکتری‌ها نیز مورد بررسی قرار گرفت.

مواد و روش‌ها
تهیه لیگنین و پیلی ساکاریزه
کلیش گندم و خاک ارده (به دلیل داشتن لیگنین زیاد) تهیه شد و با استفاده از اکسیابای دوگلوپ یک میلی متر خرد گردیدند. سپس کلیش و خاک ارده چهاربار با آب جوش عصاره‌گیری شدند (عمل عصاره‌گیری تا زمانی ادامه می‌افت.

ارزیابی توان تجزیه لیگنوسولول برخی از باکتری‌های جدا شده از اکسان خاک و...
چادسازی باکتری‌ها

برای چادسازی استرتدومایپزها از نمونه‌های جمع‌آوری شده از دو محيط کشت ماده و مایع استفاده شد (۱۲ و ۳۱).۱/۰ میلی‌لیتر از نمونه‌های ترش شده مایکروبی (که بقای دلک شد) بر روی بستر های که با استفاده از آگار، محلول تک‌هایک معدنی با اکسید یکی از انواع لیکتین، کلس گندم با خاک شده (به میزان ۵/۰۰ درصد) و عصاره معطر (به میزان ۰/۵ درصد و زننی به حجمی) به عنوان مکمل ازت (فقط در محيط‌ها به که دارای لیکتین بود) بر شده بود، کشت شدند. اکستراکسیون در دماي اطاق و چندمی‌های ۳۵ درجه سانتی‌گراد انجام شد. دماي ۳۵ درجه سانتی‌گراد، دماي بهبده براي تجزيه لیگوسولوژ نمي‌توان

شده است (۳۱). چادسازی باکتری‌ها

در این پژوهش برای چادسازی باکتری‌ها از مواد مختلف مانند مواد گیاهی در حال پودرزدن، خاک چربی، خاک معاملی، رسوبات روغن و مواد کودی در حال پودرزدن استفاده شد (۳۷). با توجه به اهميت و توانايي استرتدومایپزها در تجزيه لیکتین بر استفاده از محيط‌هاي اختصاصي به منظور جداسازی نيون باکتري‌ها استفاده مي‌شود.

جلاپي‌ها

برای چادسازی باکتری‌ها به ۹۹ میلی‌لیتر از همان محيط کشت غنى شده استرييل بدو نگار اضافه شد. از ماده اکتیبدوین (Trade name of cycloheximide) به عنوان ضد قارچ استفاده شد که در محلول تک‌هایک معدنی پایه استرييل شده (دماي ۱۲۱ درجه سانتی‌گراد، فشدار ۱۵ انسیم به مدت ۲ ساعت) به شكل محلول به محيط کشت اضافه شد. فلکس‌ها با براي یک هفته در ۳۵ درجه سانتی‌گراد اکتیبدوین شدند. یک براي در ميان نمونه‌هايي از هم محيط توسط لوب نمونه براي روی ترفند پيرو حاوي توريتو - عصاره محضر اکاردار منتقل شد. پس از ظهر کلاک‌ها، کشت مجدداً از آنها انجام شد. نمونه‌هايي که پس از سه ظهر محيط‌هاي باعث کلن کشت چاپ کرده‌اند (عصاره‌گري‌شده با آپ جوش) در طول ۰/۵ گرم در لیتر در هر دو محيط کشت چاپ و مایع مورد استفاده قرار گرفت.

نتيجه لیگوسولوژ کلس گندم و خاک اره

کلس گندم و خاک اره با استفاده از یک آسیب تیغه‌ای در جناد مرحله تا روانه‌شده شد. سپس ابتدا با آب داغ (نما مرحله تغییر تکرار رنگ آب آب داغ) تا مرحله درم با مخلوط جينون (۹۸/۷) - استوانه (۹۸) در مرحله آخر دوباره با آب داغ خاص به و بعد از آن در هوا خشک شدند. از اين لیگوسولوژ برای جداسازی باکتری‌ها و نيز بررسی نمونه‌ها

تجزيه‌ها باکتري‌ها نست در دستورالعمل مورد استفاده شد (۳۱).
ارزیابی تجزیه لیگوسولوز برخی از باکتری‌های چند جدایه‌ای در...

درجه سانتی گراد برای 10 روز ایکوکیوی شدن. بعد از طی این مدت بطری‌ها از آنتی‌بایوکس خارج شدند. پس از خشک کردن محیط‌های بطری‌ها در داخل خشک کن، کاهش وزن ماده خشک آنها (در مقایسه با وزن اولیه = 1 کرم) محاسبه شد (۱۳ و ۲۰). به منظور بررسی تأثیر باکتری‌های چند جدایه‌ای بر ترکیب شیمیایی لیگوسولوز مورد مطالعه، روند انجم آزمایش به شکل فوق بود، این تفاوت‌ها می‌توانند تأثیر باکتری‌های ۷ هفته بود. در پایان آنکوپاسیون موارد لیگوسولوز باقی ماندند، با استفاده از کاغذ صافی جدایی و درصدی بودند (APPL).

(8) لیگوسولوز در اسید سولفوریک ۷۲٪ و لیگوسولوز نامحلول در اسید سولفوریک ۷۲٪ (۲۸٪) تعیین شد. برای تعیین مقدار APPL از طی دوره آنکوپاسیون بطری‌ها خارج و به هر ۵۰۰ میلی‌لیتر آب مغذی اضافه شد. آب اضافه شده با قرار دادن بطری‌ها در دمای ۲۰۰ درجه سانتی گراد برای ۲ ساعت تبخیر شد. محلول بطری‌ها با استفاده از کاغذ صافی (واتمن شماره ۱) صاف شد. محلول زیر صافی با استفاده از اسید گلریدیمک ۱۲ مولار تا pH ۱ تا ۲ اسیدی و رسوب داده شد. pH استفاده از سانتریوم (۱۰۰۰۰۰) دور برابر ۳۰ دقیقه) جمع آوری شد. سپس دوبار با آب اسیدی شسته و پس از آن که در دمای آزمایشگاه خشک شد وزن گردید. مقدار تولیدی با نمونه شاهده (بدون تلفیح باکتری‌ای) مقایسه شد. برای تعیین لیگوسولوز پس از هیدرولیز موارد لیگوسولوز از اسید سولفوریک ۷۲٪ و سپس اسید سولفوریک چند درصد و صاف کردن نمونه چند درصد محیط‌های زیر صافی در طول موج ۵۰ نانومتر قرار شد. برای تعیین لیگوسولوز در اسید به بقا‌پایل لیگوسولوزی خشک شد. اسید سولفوریک ۷۲٪ اضافه شد. پس از هیدرولیز کامل مواد غذایی در گلوکز کاهش یافت. سپس محیط‌های اول آنها با استفاده از کاغذ صافی (APPL) صاف و کارآمدی‌ها در دمای ۱۵ ± ۵ درجه سانتی گراد (تناسقیان به وزن ثابت) برای دو ساعت خشک...
جدابی باکتری دیگری که در این پژوهش سابقه‌ای حدید داشت، به جنس پسودوموناس (Pseudomonas sp.) تعقیب داشت. سپس سودوموناس‌ها با درکی‌های ویژه شکل‌گیری غربی تحقیقات نشان دادند که سودوموناس‌ها از خانواده سودوموناس‌ها و یک دسته از پوستی‌های فرمول‌های موجود تبعیضی شدند. در این آزمایش دیگر آغاز استفاده از عصاره مخمر به میزان 10 درصد به عنوان مکمل بیوتون دار همراه با غواصی باکتری‌ای مورد بررسی قرار گرفت. اگر شرایط آزمایش با آنچه که در بالا ذکر شد مشابه بود، در آزمایش تعیین تعداد باکتری ها (متنهی شد) و تغییر pH محیط کشت از طریق قلم هوایی توسط تغییرات محیطی ساپورت سیستم است. فاکتورهای تاثیرگذار که عامل‌ها (فناکورها) شامل استفاده یا عدم استفاده از باکتری (سپس سطح) و ماده لیگوسولوژی (سپس بودن). در تعیین تجزیه لیگوسولوژی زیو عامل آزمایشی همانند آزمایش فوق بود. در هر دو آزمایش برای هر گروه (پیچیده) سه تکرار در نظر گرفتند. برای محاسبه و ارزیابی داده‌ها از نرم‌افزار Excell برای تجزیه و تحلیل داده‌ها در قالب تجزیه آماری یا طرح‌های آزمایشی از مدل خطی نرم‌افزار SAS استفاده شد. به منظور مقایسه باکتری‌ها آزمون چند دانش‌های دانکن در سطح 5/0 به کار رفت.

تاکید و بحث

از بین انواع متعادل باکتری‌های رشد یافته در نهایت دو جنس باکتری‌ای پس از چندین پارت کشت رفت و شناسایی شد. یکی از آنها متفاوت به جنس استرپتومایس (Streptomyces sp.) است که به خانواده استرپتومایسیستان (Streptomyces sp.) اطلاق می‌شود. این باکتری همچنین عضوی از راسته Streptomyces sp. شکل و بار تکیه یا خاصیت شکل‌دهی بیولوژی می‌باشد. این باکتری یا بر روی انواع محیطی آزمایشگاهی و ماده یا بی‌خودی امکان رشد داشته که باکتری‌های موجود در اغلب کار خاصی هستند و نیز از نظر کاربرد صنعتی، حائز اهمیت‌اند (21).
پیشگیری در دارای تأثیر سیاسی معنی‌داری (P<0.05) روی یکدیگر دارای کلش گندم و عصاره مخمر نسبت به سایر محیط‌های کشت بیشتر بوده است (جدول ۱ و ۲). نتایج مشابه با نتایج رشد باکتری‌ها بود. از این فاکتورهای مورد بررسی نوع ماده لیگوسولوزی و گونه
چند جدول 1. نتایج تجزیه واریانس داده‌های حاصل از بررسی تأثیر فراوری باکتری‌ای در مقایسه با شاهد (بدون باکتری) بر رشد باکتری، pH محیط کشت، کاهش وزن و تغییر ترکیبات شیمیایی مواد لیگوسولوزی (کلش گندم و خاک اره)

<table>
<thead>
<tr>
<th>شیمیایی مواد لیگوسولوزی (کلش گندم و خاک اره)</th>
<th>منابع تغییر</th>
<th>درجه تعداد باکتری</th>
<th>تعداد باکتری (کارگیری)</th>
<th>وزن باتری مانده (گرم)</th>
<th>کروپیدازات (ر)</th>
<th>پروتئین (ر)</th>
<th>pH محیط کشت</th>
<th>APPL</th>
<th>لیگوسولوز (٪)</th>
<th>لیگوسولوز (٪)</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده لیگوسولوزی (A)</td>
<td>1</td>
<td>1</td>
<td>124/155</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>مکمل نیتروژن دار (B)</td>
<td>1</td>
<td>1</td>
<td>67/67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>وجود و نوع باکتری (C)</td>
<td>2</td>
<td>2</td>
<td>118/118</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A*B</td>
<td>1</td>
<td>1</td>
<td>18/18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A*C</td>
<td>1</td>
<td>1</td>
<td>18/18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B*C</td>
<td>2</td>
<td>2</td>
<td>118/118</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>خطا</td>
<td>1</td>
</tr>
</tbody>
</table>

نطاق دهندگی عدم معنی‌دار بودن ** و ***: به ترتیب نطاق به دست آمده معنی‌دار بودن از عوامل آزمایش در سرطان احتمال 0.001 و 0.05 را دارد.

1. جدبر در طول موج 400 نانومتر تغییر شده است.
2. درجه آزادی خطای برای تعداد باکتری و pH 168 و برای سایر معیارهای آندازه‌گیری شده 24 بوده است.
جدول 2 مقایسه مانگان و حیال از بررسی تأثیر فراوری باکتریایی در مقایسه با شاهد (بدون باکتری) بر رشد باکتری.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

محیط کشت، کاهش وزن و تغییر ترکیبات شیمیایی مواد لیگنوسولولزی (کلش گندم و خاک)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

هفاوة از طول موج 600 نانومتر تعیین شده است.

1. جذب در طول موج 600 نانومتر تعیین شده است.
2. در هر ستون مانگان‌هایی که دارای ارقام حروف غیر همسان است در سطح 5% دارای اختلاف معنی‌دار می‌باشد.
3. میزان پروتئین نمونه اولیه کلش گندم 3/5 درصد و خاک اره 2 درصد بود. نسبت کریم به این که در کلش 38 درصد و در خاک اره 156 بود.
4. میزان کربوهیدرات نمونه اولیه کلش گندم 5 درصد و خاک اره 60 درصد بود.
5. میزان لیگنین نمونه اولیه کلش گندم 16 درصد و خاک اره 28 درصد بود.
در میکروفیلمیهای کشت دارای pH خاک در صورتی که در حال حاضر در مورد مایز بین‌گردی پدید افتاده و عصاره مخمر مشابه و به دلیل اختلالات موجود در مقایسه با مایز بین‌گردی کشت به عصاره مخمر دیده نشده (جدول 1). رشد
این نتایج حائز اهمیت است که در محیط کشت‌هایی که رشد
باکتری‌ای بیشتر بود pH بالاتری نیز تعبیه شد.
املای رشد باکتری‌ها نشان دهنده نوآوری آنها در تولید و
ترش آنزیم‌های کشت‌های گندم اجزای دیواره سلولی است، زیرا
در محیط‌های کشت، نوا مایز دیگر لیگنسولوز است. که
بنا بر اینکه تعداد ارزش از آنزیم‌های سلولز، زایلانژ و پراکسیدارهای
مایز موجود افزایش گرفتند (39). از آنجایی که تقریباً
مامای شرایط رشد باکتری‌ها (از جمله فاکتور اکسیژن، pH، شما و
در ترکیب مایز) یکسان بوده است، نوا تولید اثر بهداشتی
می‌توان نوع باکتری، تعداد افزایش تولید محصولات افزودنی,
از مایز مغذی که در رشته کلش گندم خود افت‌دار
نیز توانسته کهبه وأنیکه شده تولید
این گونه از همان‌کاملاً ایبداً به رشد است.
یکی از مهم‌ترین عوامل مؤثر در روند رشد و فعالیت
باکتری‌ها می‌تواند میکروژواورتی رضویه‌های
فیزیکی سرپرستی یا سایر اجزای دیواره
سلولی، وجود کربوهیدرات‌های غیر ساختاری و محلول، و وجود
و مایزات و نسبی کشت به اثر باشند (10) که قابلیت
استفاده از مایز حسی به سیله باکتری‌ها تحت تاثیر قرار
می‌گیرد. به عنوان مثال مایز لیگنسولوز که چاوداری (27/2 درصد)
تقریباً بیشتری به مایز لیگنسولوز جواب درخت توراسا (15/8 درصد)
است. در حالی که قابلیت فرم که چاوداری بیشتر است
(34). خود مایز لیگنسولوز نیز از جمله عوامل مهم در

ترخیص لیگنسولوز می‌باشد. ریچارد (34) به‌خوبی ترخیص
روزنهام (با 21/9 درصد لیگنس) 1/4 درصد ذکر نمود در روزنهام (با
که بخش کافی ترخیص کافی ادواری (کاغذ سفید با 2/5 لیگنس) 2/5 درصد بود. نسبت کشت به این طبقی از عوامل مهم در
تهیه بیولوژیک لیگنسولوز است. حال آن که ترخیص بیولوژیک
کشت لیگنسولوز می‌باشد (با نسبت کشت به این طبقی از عوامل مهم در ترخیص بیولوژیک لیگنسولوز است. حال آن که ترخیص بیولوژیک
کشت لیگنسولوز می‌باشد (با نسبت کشت به این طبقی از عوامل مهم در ترخیص بیولوژیک لیگنسولوز است. حال آن که ترخیص بیولوژیک
کشت لیگنسولوز می‌باشد (با نسبت کشت به این طبقی از عوامل مهم در ترخیص بیولوژیک لیگنسولوز است. حال آن که ترخیص بیولوژیک
کشت لیگنسولوز می‌باشد (با نسبت کشت به این طبقی از عوامل مهم در ترخیص بیولوژیک لیگنسولوز است. حال آن که ترخیص بیولوژیک
کشت لیگنسولوز می‌باشد (با نسبت کشت به این طبقی از عوامل مهم در ترخیص بیولوژیک لیگنسولوز است. حال آن که ترخیص بیولوژیک
کشت لیگنسولوز می‌باشد (با نسبت کشت به این طبقی از عوامل مهم در ترخیص بیولوژیک
محيط کشت می‌شود و دوم آن که خصوصیات
شیمیایی کلس‌گند موجب افزایش میزان رشد باکتریاها خواهد کرد که در نتیجه فعالیت آنها pH
محیط تغییر نموده است. به علاوه افزایش رشد باکتریاها در نتیجه pH
محيط کشت، یکی از دلایل اصلی در افزایش pH
آفیز امیکن. می‌تواند در نتیجه فعالیت تجریبی پروتئن
لیگوسولوزیی و سیلیکا باکتری‌های می‌باشد (16). به همین دلیل
در محیط دارای کلس به دلیل نسبت کریت به ازت کمتر (در
مقاومت با خاک اره) و همچنین زمین‌های که ترکیبات
لیگوسولوزی در محیط افزایش یافته است. عامل دیگری را می‌توان
تأثیر محيط pH
حاوی املاح تامینی در نظر گرفت. طبق
نظر اینکه pH
میکروب و همکاران (10) پیشنهاد می‌کنند، می‌توان
مطلب برای رشد باکتری‌ها تحت تأثیر قرار می‌دهد. این
توجه نمود که در پژوهش حاضر نیز وجود محلول
که شامل ترکیبات بافای قابل توجهی (هیمن استقلال‌های
هیدروژن سیلیکا، یکی از هیدروژن سیلیکا، کریستال
محیط pH
و کلرید آمین) است. این می‌تواند از تغییرات زیاد
جلوگیری کند. افزایش pH
در نتیجه افزایش از عصاره مخمر
نیز قابل توجهی به نظر می‌رسد. در این‌جا ترکیبات
مجره به بهبود عملیات باکتری‌پرورشی (در نتیجه
pH
محيط کشت باکتری‌پرورشی) DATE 마
بهم‌گران (20) نتایج می‌شود. هم‌گران که در پژوهش شرایط باکتری‌پرورشی و همکاران
از اندک کلرید آمین‌دار شرایط باکتری‌پرورشی را بهبود
به بهبود
نتایج حاصل از بررسی تأثیر
فرآوری باکتری‌پرورشی و انواع
عصاره مخمر (در مقایسه با شاهدنازی بی‌ستون باکتری و
بدون عصاره مخمر) بیشتر نمایانی و ترکیب شیمیایی مواد
لیگوسولوزی در جدول (2) نشان داده شده است. در
ارتباط با میزان پروتئین، مشخص شد که فاکتور مواد
بررسی تأثیر بسیار معمولی داری بر پروتئین مواد لیگوسولوزی
داسنت (جدول (1) به توجه که در بعضی از
موارد، باکتری‌های مورد بررسی (به خصوص در صورت

نتایج کلی نشان می‌دهد (جدول ۲) که استرپتوماپرز نسبت به سودوماس نیاز بیشتری دارد که تجربیات مکانیکی در نهایت این نتایج را تکرار کرده و نتایج به‌طور گسترده‌ای از سیستم آزمایشگاه‌های باشد. هایدر میتوکندریک (ATP) و نیز مقدار انرژی که ممکن است از بیشترین هایان از دیدگاه انرژی می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد.

در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقه، سیستم آزمایشگاه‌های مکانیکی به‌طور گسترده‌ای از سیستم اکسیژن می‌تواند نسبت به سیستم آزمایشگاه‌ها باشد. در این تحقیق، نتایج تجربیات نشان داد که در حدود ۵ دقیقة

