مدل طبقه‌بندی شایستگی مرتع برای چراچی گوسفند در مناطق البرز مرکزی، اردستان و زاگرس ایران

حسين ارزانی، محمد چگچو، حسین شمس، سعید محشمتیا، مجد آقاحسین فشی
حسین احمدی، محمد جعفری، علی اصغر دروشی صفت و احسان شهریاری

چکیده
شایستگی مرتع و یا طرفی قابلیت چراچی مرتع از مواد مه در ام آنالیز و ارزیابی مرتع بوده و شناخت عوامل مؤثر بر آن، خود از اهمیت زیادی برخوردار است. از آننجبایی که تقریباً همه اجزای کوکیست مرتع روی تغییر شایستگی مرتع تأثیر می‌گذارند، با پایان این موضوع عوامل بیشگی و پوشش‌گیری سه عامل نیاز می‌باشد. در این طرح، از پژوهش‌ها و نتایج این تکمیل بررسی تأثیر عوامل فیزیکی و پوشش‌گیری به فرسایش اندازه‌گیری شده. مدت این تحقیق در 4 منطقه سیاه‌وحده و لر در رشته‌های البرزی زیادتر و در منطقه مرکزی و در منطقه زاگرس اندازه‌گیری گرفته. نتایج پژوهش حاصل نشان داد که در مناطق مورد مطالعه علاوه عوامل بیشگی و پوشش‌گیری به عوامل فرسایش محدود کننده بودند به طور کلی در منطقه سیاه‌وحده، فراوانی بیشتری که راکان به بهره‌برداری از اراضی در منطقه که تا کنون مورد تهیه در منطقه اردستان مرتع دیده می‌شود، وجود بیش‌تری روی اراضی به فرسایش عوامل محدود کننده بودند. شیب زیاد، حساسیت سرسبز و خاک به فرسایش و نحوه بهره‌برداری از اراضی در منطقه لازم قابلیت آن‌را کاهش می‌دهد. در منطقه اردستان توپلیت، کم وجود بهره‌برداری از اراضی به فرسایش‌های فعال باعث کاهش شایستگی آن می‌شود. در این شیب، نحوه پراکندگی مانع آب و عدم وجود مانع دانه‌ای آب، ایجاد محدودیت می‌کند. به طور کلی، هر نوع بهره ویژه‌ای که تا زیمت‌های مناسب در حق واد حاصل رشته‌ای که می‌تواند به این نتایج بهره‌برداری از اراضی به فرسایش کاهش چراچی گوسفند به کار باشد. از نظریتی چراچی، چراچی به آمادگی مرتع و به کاربردی زیست‌محیطی در مراتع مورد مطالعه می‌تواند در افزایش قابلیت مرتع یکی از ارائه‌گوشاسب برای چراچی گوسفند کمک کند.

واژه‌های کلیدی: قابلیت چراچی، شایستگی مرتع، سیاه‌وحده، لر، دشت کلان، اردستان، البرز مرکزی، زاگرس، ایران

۱. به ترتیب دانشیار، استاد، کارشناس ارشد، دانشجویان دکتری، استاد و دانشجویی دکتری مرتع‌دراز، دانشکده منابع طبیعی، دانشگاه تهران
۲. استاد آبی‌زیاری، دانشکده منابع طبیعی، دانشگاه تهران
۳. دانشیار سنجش از دور، دانشکده منابع طبیعی، دانشگاه تهران
مقدمه
مراتع که از نظر اقتصادی و فرهنگی در نواحی کوهستانی ایران و دیگر نقاط جهان محسن هستند به عنوان یکی از منابع تجدید شونده، اکوسیستم‌های بی‌پایه‌ای بوده که به ایجاد تشکیل داده‌ها تعلیق‌های طریفی وجود دارد. به‌علت مرادی از مراعات از گذشته ناگهند و بدون در نظر گرفتن قابلیت‌ها و استعدادهای آنها در هر منطقه بوده است که در آن را می‌توان کمک روشنی سایه‌ای یا مراتع دانست. فاصله (1991)، قابلیت استفاده از سرمایه‌های را یک نوع به‌پایدار مرتعی با در نظر گرفتن این استفاده‌های پایدار از اراضی شایستگی می‌دانست، و از طرفی جهت بررسی رزی و کنترل‌کننده برای کاهش یا مراعات از منابع آب و مهندسی‌های مناسب برای اجرای چرایی‌های در مناطق مورد مطالعه و ارائه راهکارهای مدیریت مناسب با توجه به نتایج به دست آمده از هر منطقه می‌باشد.

مواد و روش‌ها
برای مطالعه و ارزیابی قابلیت‌های چرایی گوسفند 4 منطقه، به ترتیب در منطقه‌های: اکسیر (33°50' طول شرقی و 52°35' عرض شمالي)، بارون‌کوهان (5987/5 میلی‌مت) با متوسط بارندگی، میلی‌متر، سیاه‌رود (43°40' 50' طول شرقی و 32°35' عرض شمالي) با متوسط بارندگی 220 میلی‌متر در منطقه البرز، اردستان (100°30' 50' طول شرقی و 32°20' عرض شمالي) با متوسط بارندگی (18687/5 میلی‌متر در منطقه مرکزی و منطقه استان البان) (5'70' 29' 50' طول شرقی و 33°50' 30' عرض شمالي) با متوسط بارندگی (78/524 میلی‌متر در منطقه زاگرس انتخاب گردیدند (شکل 1). از لحاظ اقتصادی و با استفاده از روش لیست‌سازی، بارور و مناطق مورد مطالعه شامل سیاه‌رود با اقلیم نیمه مرطوب سرد، اردنستان با اقلیم خشک، اکسیر با اقلیم خشک،
دانش یکان با اقیان تیپه مربوط به طبقه‌بندی شید.

از لحاظ پوشش گیاهی در این مناطق پس از از پودرگیری صحرایی تیپه‌ها به قرار زیر تعبیه گردید. منطقه سیاه‌رود دارای ۱۹ تیپ گیاهی و تیپ اصلی (Astragalus-Artemisia) که در نسبت ۱۳:۳۳ تیپ گیاهی و تیپ اصلی (Onobrichis-Festuca) داشت. دشتن ۱۵ تیپ: Artemisia, Acantholimon-Asperula, Cynodon, Carthamus-Trifololium, Gundelia-Astragalus

روش تحقیق برای انجام این تحقیق از روش فانو (۱۹۹۱) استفاده شد (۲۰).
جدول ۱. راهنماي نحوه درجه‌بندی عامل‌ها

<table>
<thead>
<tr>
<th>طبقه شایستگی</th>
<th>علامت</th>
<th>درصد عملکرد موردانتظار</th>
</tr>
</thead>
<tbody>
<tr>
<td>خوب</td>
<td>S۱</td>
<td>صفر</td>
</tr>
<tr>
<td>متوسط</td>
<td>S۲</td>
<td>۸۰-۴۰</td>
</tr>
<tr>
<td>کم</td>
<td>S۳</td>
<td>۴۰-۲۰</td>
</tr>
</tbody>
</table>

جله بر محدودیت‌ها به وسیله اعمال مدیریت و هزینه‌ها به ندرت امکان‌پذیر بوده و با اصلاً ممکن نیست.

جدول ۲. کیفیت و خصوصیات اراضی که در این پژوهش از آنها استفاده شد.

<table>
<thead>
<tr>
<th>خصوصیات اراضی</th>
<th>کیفیت اراضی</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب، نحوه بهره‌برداری اراضی، سنگشناسی، خاکشناسی، فرسایش‌های محدود، وضعیت مرتع</td>
<td>حساسیت به فرسایش</td>
<td>۱</td>
</tr>
<tr>
<td>مقدار عطله قابل استفاده، طوفان، وضعیت، گراش مرتع</td>
<td>تولید عطله</td>
<td>۲</td>
</tr>
<tr>
<td>سهولت دسترسی به منابع آب، مقدار منابع آب، کیفیت منابع آب</td>
<td>منابع آب</td>
<td>۳</td>
</tr>
</tbody>
</table>

به خاک و زمین‌شناسی با کار میدانی و استفاده از منابع موجود تهیه شد (۲۳، ۸۴، ۵۰ و ۱۴). ۲.

تهیه نقشه‌های بایه در این بخش نقشه‌های بایه شامل نقشه‌های توبوگرافی، زمین‌شناسی، خاکشناسی، قابلیت اراضی، تیپ‌های گیاهی، سازمان‌های عضو، موقعیت منابع آب، واحدهای هیدرولوژیکی و کاربری اراضی پس از تصویج زمین‌با استفاده از نرم‌افزار GIS به سیستم WARD-GRDI. سپس نقشه‌های موقعیت منابع آب، زمین‌شناسی، تیپ گیاهی، سازمان‌های عضو، کاربری اراضی با استفاده از نفس‌پیوند به یکدیگر و بازدید از منطقه تصویج شد.

تهیه مدل‌ها

پس از بررسی اطلاعات، سه عامل تولید، فرسایش و منابع آبی به عنوان مهم‌ترین ارزش برای تعیین شایستگی انتخاب گردید.

در این پژوهش از اطلاعات مربوط به پوشش گیاهی شامل لیست فلورستیک، درصد پوشش، وضعیت، گراش و اطلاعات مربوط به همچنین اطلاعات مربوط به تغییرات ظریف و اهلیه مورد استفاده قرار گرفت.

آورد شده است.

۲. تهیه اطلاعات بایه

نقشه‌ها و اطلاعات بایه شامل نقشه‌های توبوگرافی، زمین‌شناسی، عکس هوایی، اطلاعات مربوط به اقلیم، منابع آب، وضعیت بهره‌برداری اراضی، تعادل دام، نوع دام و محدودیت‌ها مالکیند (سازمان‌های عضو) هر منطقه مطالعه جمع‌آوری گردید. همچنین اطلاعات مربوط به پوشش گیاهی شامل لیست فلورستیک، درصد پوشش، وضعیت، گراش و اطلاعات مربوط به

۲۷۶
طوری باراپرهیزی ماند، شیب کیفیت آب، خوش‌خواهی، در این عوامل نهفته هستند.

1- مدل حسابیت بر فراشی

برای تهیه حسابیت بر فراشی از ابزار بررسی بر EPM استفاده گردید. کلیه عوامل مؤثر در روش EPM و ضریب بردشته مناسب تر که در ابزار EPM مورد نیاز است تأیید دارد (همان‌گونه که در ابزار بردشته خواهنه اندام یکی از ورودی‌ها به ابزار تهدی حسابیت بر فراشی قرار گیرد). در روش 2 EPM ضریب شدت فراشی از 2 عامل ضریب فراشی، حوزه آبی‌خیز (7)، ضریب ابزارهای از زمین (Xa)، ضریب حسابیت سک و خاک به فراشی (7) و شیب متغیر حوزه (بر حسب درصد) (I) تشکیل شده است که از رابطه زیر به

\[Z = y.x.a(\Psi + 1/\pi) \]

\[1 \]

در اینجا نهایی فراشی مانع مناطق انتخاب شده طبق روش تقریب دهنده شد مات روش ترین بسیار عامل EPM مورد نظر از اطلاعات مربوط به تبدیل‌های اراضی که در هر یک فراشی منطقه مشخص شده بود از استفاده گردید. همین طور نهایی شیب منطقه مورد مطالعه به کار گرفته شد. در اینجا، شدت ابزار استفاده از اراضی با توجه به این که به محل اعظم مناطق انتخاب شده را اثرات منفی ممکن شد. از نهایی فراشی طبقات و وضعیت مرتین (روش چهار فاکتوری) (12) و نهایی

تهیه استفاده از اراضی استفاده شد و بر طبق جداول مخصوص روش نهایی خاصی به آن تعلق گرفت. نهایی سنجش‌نامه EPM منطقه بر حسب حسابیت بر فراشی و طبق روش تقریب دهنده گردید. حسابیت سنجش‌نامه به فراشی را حداکثر یک بانگر فراشی پذیری سک و خاک نمی‌باشد. سپس از اطلاعات و خوب‌شانی و نهایی سنجش‌نامه و خاک‌شانی با یکدیگر

تهیه حسابیت سک و خاک به فراشی تهدی گردید. با ورود رابطه به محیط و اختصاص نمرات یک از EPM عوامل آن ضریب شدت فراشی برای هر یک از تبدیل‌های
جدول ۳ طبقات شایستگی حساسیت به فرسایش

<table>
<thead>
<tr>
<th>طبقه شایستگی</th>
<th>رده</th>
<th>محورهای Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>S۱</td>
<td>0/۳</td>
<td>۱</td>
</tr>
<tr>
<td>S۲</td>
<td>۰/۲۸۰/۷</td>
<td>۲</td>
</tr>
<tr>
<td>S۳</td>
<td>۰/۷-۱</td>
<td>۳</td>
</tr>
<tr>
<td>N</td>
<td>>۱</td>
<td>۴</td>
</tr>
</tbody>
</table>

شکل ۲ مدل طراحی شده برای تهیه نفه شایستگی از نظر فرسایش

گوسفند تعیین شد (۱۸) که با در نظر گرفتن عوامل اقلیمی، خصوصیات چیت، چیتگی، فصل و بیماری به روش معمولی که بررسی می‌شود در این مناطق انجام شد. برای محاسبه مقادیر نیاز آب در هر سامان عفکی از هموگلوبن نفه سامانه‌های عفکی و نقشه ظرفیت نیاز سامانه‌های عفکی تبعیض نهایی توسط نیاز آب در هر سامان عفکی محاسبه می‌گردد. از مقایسه مقدار آب موجود در هر سامانه عفکی و مقدار نیاز آب تعیین شده، شایستگی کهیت منابع آب خاصی گردد.
جدول ۲. مقدار تولید (کیلوگرم علفه خشک در هکتار) (Kg/ha) تیپ‌های مختلف در ۴ منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>(Kg/ha) تولید</th>
<th>تیپ</th>
<th>منطقه</th>
<th>(Kg/ha) تولید</th>
<th>تیپ</th>
<th>منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰</td>
<td>Thymus- Asteragalus</td>
<td>لار</td>
<td>۱۰۸</td>
<td>Acantholimon</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۱۷۵</td>
<td>Ferula- Asteragalus</td>
<td>لار</td>
<td>۷۰۱/۲</td>
<td>Astragalus- Hordeum</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۱۲۰</td>
<td>Asteragalus- Cousinia</td>
<td>لار</td>
<td>۵۱۰/۵</td>
<td>Ferula- Astraagalus- Perrenial Grasses</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۲۴۰</td>
<td>Onobrychis- Cousinia</td>
<td>لار</td>
<td>۲۷۸/۸</td>
<td>Astragalus- Phlomis</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۸۵</td>
<td>Onobrychis- Eremurus</td>
<td>لار</td>
<td>۳۷۵/۵</td>
<td>Phlomis- Astraagalus</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۴۰</td>
<td>Ferula- Onobrychis</td>
<td>لار</td>
<td>۲۴۷/۱</td>
<td>Astragaluss - Perrenial Grasses - Convolvolus</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۸۰</td>
<td>Salvia- Astraagalus</td>
<td>لار</td>
<td>۴۰۶/۱</td>
<td>Gundelia - Astraagalus</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۱۸۰</td>
<td>Thymus-Ferula</td>
<td>لار</td>
<td>۳۷۹</td>
<td>Perrenial Grasses – Prangos – Acantholimon</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۱۸۰</td>
<td>Onobrychis- Johnenia</td>
<td>لار</td>
<td>۵۴۶</td>
<td>Perrenial Grasses – Astraagalus - Thymbra</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۳۵۰</td>
<td>Ferula- Onobrychis</td>
<td>لار</td>
<td>۸۸۲/۴</td>
<td>Gundelia – Cousinia - Surpoides</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>Agropyron- Onobrychis</td>
<td>لار</td>
<td>۴۷۷</td>
<td>Astragalus – Eryngium – Phlomis</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>Agropyron- Astraagalus</td>
<td>لار</td>
<td>۳۱۰۴</td>
<td>Mentha – Juncus – Trifoliumr</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۵۴۳</td>
<td>Astraagalus- Festuca</td>
<td>لار</td>
<td>۱۴۵۸/۲</td>
<td>Carex - Trifoliums – Cynodon</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۴۰</td>
<td>Onobrychis- Festuca</td>
<td>لار</td>
<td>۷۱۰/۶</td>
<td>Astraagalus – Perrenial Grasses</td>
<td>دشت بکان</td>
</tr>
<tr>
<td>۴۰</td>
<td>Onobrychis- Bromus</td>
<td>لار</td>
<td>۳۷۵</td>
<td>مرانع مخربه</td>
<td>سیاه‌زه</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>Thymus - Bromus</td>
<td>لار</td>
<td>۲۴۳/۹</td>
<td>Astragalus-Thymus</td>
<td>سیاه‌زه</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>Onobrychis - Bromus</td>
<td>لار</td>
<td>۱۲۵/۳</td>
<td>Astragalus- Aegilops</td>
<td>سیاه‌زه</td>
</tr>
<tr>
<td>۴۰</td>
<td>Thymus-Bromus</td>
<td>لار</td>
<td>۷۵/۸۸</td>
<td>Astragalus - Psathyrostachys</td>
<td>سیاه‌زه</td>
</tr>
<tr>
<td>۳۰</td>
<td>Astragalus-poa</td>
<td>لار</td>
<td>۴۰/۶۶</td>
<td>Astragalus - Acantholimon</td>
<td>سیاه‌زه</td>
</tr>
<tr>
<td>۱۵۰</td>
<td>Astragalus - Onobrychis</td>
<td>لار</td>
<td>۳۰/۵۴</td>
<td>Astragalus -Onobrychis</td>
<td>سیاه‌زه</td>
</tr>
</tbody>
</table>
اهمیت جدول ۲: مقدار تولید (کیلوگرم علفه خشک در هکتار) (Kg/ha) تیپ‌های مختلف در ۴ منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>کد</th>
<th>گیاه‌شناسی ۱</th>
<th>گیاه‌شناسی ۲</th>
<th>کیلوگرم/هکتار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰</td>
<td>Poa - Cousinia</td>
<td>لار</td>
<td>۸۸/۸ Astragalus - Artemisia</td>
</tr>
<tr>
<td>۹۰</td>
<td>Ranunculus - Alopecurus</td>
<td>لار</td>
<td>۲۱۱/۳۷ Astragalus - Diplothenia</td>
</tr>
<tr>
<td>۱۱۱۳</td>
<td>Agropyron - Ferula</td>
<td>لار</td>
<td>۱۲۱/۸ Astragalus - Ferula</td>
</tr>
<tr>
<td>۷۰۰</td>
<td>Agropyron - Ranunculus</td>
<td>لار</td>
<td>۴۸/۶۵ Thymus - Ferula</td>
</tr>
<tr>
<td>۹۰</td>
<td>Agropyron - Ferula</td>
<td>لار</td>
<td>۱۸۳/۹ Bromus-Dianthus-Thymus</td>
</tr>
<tr>
<td>۳۷</td>
<td>Scariola - Launaea-Artemisia Peganum-Herita-Scariola</td>
<td>اردهستان</td>
<td>۷۶/۷ Thymus-Psathrosthachys</td>
</tr>
<tr>
<td>۳۷</td>
<td>Artemisia-Siberi</td>
<td>اردهستان</td>
<td>۸۶/۹ Thymus - Acantholimon</td>
</tr>
<tr>
<td>۴۰</td>
<td>Artemisia-Anabasis</td>
<td>اردهستان</td>
<td>۷۵/۸۸ Artemisia-Acantholimon</td>
</tr>
<tr>
<td>۴۳</td>
<td>Scariola - Corulaca</td>
<td>اردهستان</td>
<td>۵۱/۴ Acantholimon-Hultemia</td>
</tr>
<tr>
<td>۴۵</td>
<td>Artemisia-Scariola</td>
<td>اردهستان</td>
<td>۸۲/۸۷ Aegilops-Acantholimon</td>
</tr>
<tr>
<td>۵۱</td>
<td>Artemisia - Pterapryron Astracana - Scariola</td>
<td>اردهستان</td>
<td>۶۴/۵۶ Acantholimon-Kochia</td>
</tr>
<tr>
<td>۵۲</td>
<td>Artemisia - Aegilops-Peganum</td>
<td>اردهستان</td>
<td>۵۸/۶ Euphorbia-Rumex</td>
</tr>
<tr>
<td>۶۰</td>
<td>Artemisia-Artemisia Cornulaca-Salsola</td>
<td>اردهستان</td>
<td>۳۳ Sophora - Astragalus</td>
</tr>
<tr>
<td>۶۱</td>
<td>Artemisia-Artemisia</td>
<td>اردهستان</td>
<td>۳۶۰ Festuca-Poa</td>
</tr>
<tr>
<td>۶۲</td>
<td>Cornulaca-Salsola</td>
<td>اردهستان</td>
<td>۲۳۰ Bromus - Festuca</td>
</tr>
<tr>
<td>۶۴</td>
<td>Artemisia</td>
<td>اردهستان</td>
<td>۵۰۰ Agropyron - Poa</td>
</tr>
<tr>
<td>۷۴</td>
<td>Artemisia-Stipa</td>
<td>اردهستان</td>
<td>۳۵۰ Oryzopsis-Melica</td>
</tr>
<tr>
<td>۱۰۴</td>
<td>Artemisia</td>
<td>اردهستان</td>
<td>۲۴۰ Thymus - Onobrychis</td>
</tr>
<tr>
<td>۱۰۸</td>
<td>Artemisia-Artemisia</td>
<td>اردهستان</td>
<td>۱۰۰ Onobrychis-Astragalus</td>
</tr>
</tbody>
</table>
شکل 3. مدل شایستگی منابع آب از طریق تلفیق سه زیر مدل فاصله، کیفیت و کیفیت منابع آب

ج) مدل کیفیت منابع آب

به طور کلی کیفیت شیمیایی آب‌های زیرزمینی در هر منطقه

یستگی به نوع ترکیبات شیمیایی لایه تشکیل دهنده منبع تغذیه

مسیر چربی و منبع ذیلی آن دارد. اطلاعات کیفیت منابع آب

مناطق مورد مطالعه از مطالعات سازمان آب مناطق‌های استخراج

شده در این زیر مدل با استفاده از جدول پیش‌نهادی مهدوی

(32) و مقایسه اطلاعات استخراج شده با مقصود توصیه شده

کیفیت منابع آب در هر سامان عفری مشخص شد و بر اساس

نتایج حاصل کیفیت منابع آب تعیین شد. در پایان نقشه‌های به

دست آمده از سه زیر مدل مربوط به منابع آب با استفاده از

روش شرایط محدودکننده به هم ترکیب شدند. به منظور تهیه

نقشه شایستگی منابع آب، نقشه‌های کیفیت و کیفیت منابع آب

با هم تلفیق شده و نقشه جدیدی به دست آمد که نقشه جدید

با نقشه فاصله از منابع آب همبستگی شد و به روش

شرایط محدود کننده (32) انتخاب گرفت و نقشه

نهایی شباهت‌گذار منابع آب حاصل شد. مدل شایستگی

281
شکل 4: مدل تعیین ظرفیت و شایستگی تولید

فرمایش و مدل شایستگی منابع آب، مدل نهایی قابلیت چرایی و توزین، در نظر گرفتن ضریب برداشت مجاز با توجه به شدت فرسایش در تیپ، گراش، وضعیت و سیب، پایداری تاخیر و استاند به طرح‌های تحقیقاتی انجام شده و خوش‌خوراکی با استفاده از کتاب کد گیاهان مرتعی و دانش بومی به دست آمده (14 و 20).

گراش وضعیت مرتع ۶ روش برداشت مجاز با توجه به EPM به دست آمده و از تلفیق این دو مدل، ضریب برداشت مجاز به دست می‌آید. در نهایت با تلفیق دو مدل ضریب برداشت مجاز و مقدار علوفه قابل برداشت شایستگی مرتع از نظر تولید علوفه به دست می‌آید. مدل تعیین ظرفیت و شایستگی تولید در شکل ۴ نشان داده شده است.

مدل منابع آب

نتایج مدل منابع آب در جدول ۴ نشان داده شده است.

از نظر شایستگی حوزه‌های اردستان، سیاه‌رود و لاز در

نتایج مدل حساسیت به فرسایش

نتایج مدل حساسیت به فرسایش در جدول ۵ نشان داده شده است.

در حوزه‌های سیاه‌رود و اردستان شدت فرسایش شدید تا متوسط تعیین گردید. در دشت بکان فرسایش از مقدار کم تا متوسط (شکل ۵) و در حوزه آبخیز لاز هم مقدار فرسایش متوسط برآورد گردید.

مدل نهایی

با تلفیق سه مدل شایستگی از نظر تولید علوفه، حساسیت به
جدول 5. نتایج مدل حساسیت به فرسایش در مناطق مورد بررسی

<table>
<thead>
<tr>
<th>منطقه</th>
<th>کلاس شایستگی</th>
<th>دشت بکان (%)</th>
<th>اردستان (%)</th>
<th>سیاهروود (%)</th>
<th>لر (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (خوب)</td>
<td>22/14</td>
<td>55/44</td>
<td>-</td>
<td>-</td>
<td>41/24</td>
</tr>
<tr>
<td>S2 (متوسط)</td>
<td>22/14</td>
<td>-</td>
<td>55/44</td>
<td>41/24</td>
<td>-</td>
</tr>
<tr>
<td>S3 (کم)</td>
<td>41/24</td>
<td>68/32</td>
<td>62/38</td>
<td>22/14</td>
<td>-</td>
</tr>
<tr>
<td>N (غیرشایسته)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل 5. نقشه شایستگی حساسیت به فرسایش دشت بکان

جدول 6. نتایج مدل منابع آب در مناطق مورد بررسی

<table>
<thead>
<tr>
<th>منطقه</th>
<th>کلاس شایستگی</th>
<th>دشت بکان (%)</th>
<th>اردستان (%)</th>
<th>سیاهروود (%)</th>
<th>لر (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (خوب)</td>
<td>22/14</td>
<td>55/44</td>
<td>-</td>
<td>-</td>
<td>41/24</td>
</tr>
<tr>
<td>S2 (متوسط)</td>
<td>22/14</td>
<td>-</td>
<td>55/44</td>
<td>41/24</td>
<td>-</td>
</tr>
<tr>
<td>S3 (کم)</td>
<td>41/24</td>
<td>68/32</td>
<td>62/38</td>
<td>22/14</td>
<td>-</td>
</tr>
<tr>
<td>N (غیرشایسته)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
شکل ۶ نتایج تولید خرابی در راستای چهار دسته بکان

جدول ۷ نتایج تولید در مناطق مورد مطالعه

| کلاس شایستگی | دشت بکان | اردستان | سیاهروود | گلوله
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N (غیرشایسته)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/45</td>
</tr>
<tr>
<td>S3 (کم)</td>
<td>30/84</td>
<td>14/40</td>
<td>27/46</td>
<td>33/2</td>
</tr>
<tr>
<td>S2 (متوسط)</td>
<td>49/19</td>
<td>25/8</td>
<td>16/80</td>
<td>43/6</td>
</tr>
<tr>
<td>S1 (خوب)</td>
<td>11/47</td>
<td>9/70</td>
<td>17/49</td>
<td>51/8</td>
</tr>
</tbody>
</table>

محدوده شایستگی خوب تا متوسط و دشت بکان در حد مدل تولید همانگونه که در جدول ۷ نشان داده شده است، از نظر شایستگی تولید مناطق مورد مطالعه به ترتیب دشت بکان، شایستگی تولید متوسط و کم (شکل ۷)، اردستان و سیاهروود شایستگی متوسط تا غیر شایسته و لار شایستگی تولید خوب تا متوسط دارند.

مدل نهایی شایستگی مرجع

نتیجه تلفیق سه مدل تولید علوفه، حساسیت به فرسایش و مانع آب به شرح جدول ۸ می‌باشد.

در جدول مورد نظر در حوزه سیاهروود کلاس شایستگی خوب وجود ندارد و در حوزه‌های دیگر کلاس شایستگی خوب سطح کمی از حوزه را شامل می‌شود. در حوزه‌های بکان (شکل ۸)، اردستان و لار عمده مران در کلاس شایستگی متوسط قرار می‌گیرند. در حالتی که در حوزه سیاهروود سطح عمده مران دارای شایستگی کم چرا هستند.
شکل ۷ نماینده شبیه‌سازی نولید دشت بکان

شکل ۸ نماینده شبیه‌سازی مراتع دشت بکان
بحث و نتیجه‌گیری

به طور کلی سه عامل تولید، منابع آب و حساسیت به فرسایش عمامل محدوده‌کننده‌ای هستند که در طبقه‌بندی قاب‌سازی‌های مرتفع مورد توجه است. از نظر فرسایش در منطقه به یکان وجود فرسایش نا‌حیده محدود کننده است. این مسئله در حوزه‌های سیاه‌های به سبب وجود سازندگی حساس به فرسایش بین شماشته می‌شود. از طرفی چرا این مقدار در این مناطق به افزایش فرسایش کمک نموده است. چرا شدید مقدار پوشش محیط و مانع از بهبود و بهبود فرسایش را کاهش داده و در نتیجه مقدار فرسایش را افزایش می‌دهد (16 و 24). در حوزه آبخیز لر هم شیب بالا خاک کم عمق، فرسایش کاتری در نشان می‌دهد و زرع بالایی گذاشته که اکنون در سطح همه منابع بار و فرسایش ایجاد کرده که سبب کاهش شاپسگی در این منطقه می‌شود. کمبود پوشش سطحی، شیب بالا و زرد زیاد سبب حوزه سبب بالا رفتن فرسایش در حوزه آبخیز ارتداد و کاهش شاپسگی‌های چوئای دام‌ها می‌شود. مطالعات سپاسی اهمیت پوشش سطحی را در پایداری خاک و تولید علف نشان داده‌اند (29 و 30). طهماسبی (1380) در بررسی منطقه سیرکوه بیان کرده که حساسیت خاک به فرسایش، عامل مهمی بوده که به سبب بافت ریزی و شیب زیاد در این حوزه، شرایطی می‌گردد و شاپسگی می‌دهد (10). در منطقه بیکان عدم وجود منابع آب کافی و دائمه و شیب زیاد می‌سیر حکم داشته و در بعضی از مناطق شاپسگی‌ها برداشته شده‌اند.

جدول 8 تناک مدل نهایی شاپسگی مراعات در مناطق مورد مطالعه

<table>
<thead>
<tr>
<th>کلاس شاپسگی</th>
<th>منطقه</th>
<th>دشت یکان</th>
<th>ارتدان</th>
<th>سیاه‌رود</th>
</tr>
</thead>
<tbody>
<tr>
<td>(نحوه)</td>
<td>(ضلع)</td>
<td>(ضلع)</td>
<td>(ضلع)</td>
<td>(ضلع)</td>
</tr>
<tr>
<td>S1</td>
<td>2/25</td>
<td>2/25</td>
<td>2/25</td>
<td>2/25</td>
</tr>
<tr>
<td>S2</td>
<td>56/37</td>
<td>56/37</td>
<td>56/37</td>
<td>56/37</td>
</tr>
<tr>
<td>S3</td>
<td>10/51</td>
<td>10/51</td>
<td>10/51</td>
<td>10/51</td>
</tr>
<tr>
<td>N</td>
<td>27/65</td>
<td>27/65</td>
<td>27/65</td>
<td>27/65</td>
</tr>
</tbody>
</table>

می‌کند از طرفی در منطقه سیاه‌رود سرمای زردوس و موثر
بود منابع آب از یک طرف و طول زیاد سفره کران دام‌ها مشکلات را برای جا ایجاد می‌کنند. قطر (37/24) بیان نمود که
با افزایش شیب منابع پیموده شده توسط دام کاهش می‌یابد.
در منطقه ارتدانی در منابع آب و شبیه محدودیت
ایجاد می‌کند و سبب می‌شود که نقشه اطراف مشابه آب بیشتر
چرا شهرت (134). ماریتین و وارد (167) بیان نمودند که فاصله
زا فنی منابع آب باعث می‌شود که نقشه اطراف این مناطق بیشتر
چرا شده و به همین سبب گیاهان مرغوبتر و دارای تولید
بیشتر را می‌توان در نقاط دورتر از منابع آب مشابه، نمود
(25). مطالعات دیرگی هم نشان داد که تغییر در منطقه دور
از منابع آب سبب می‌شود که دام‌ها نزدیک بیشتر مصرف کنند
(21، 22، 23، 24، 25، 26، 27، 28، 29). از طرفی در منطقه لاو
سیاه‌رود مشکلی از لحاظ کیفی و کیفی در منابع آب وجود دارد
وی شیب زیاد محدود کننده بیان می‌شود. ونلتین بیان نمود
که شیب بالا توابع دام‌ها را برای جا کاهش داده و سبب
صرف انرژی زیادی در آنها می‌شود (25).

طهماسبی در مطالعه منطقه سیروک که بیان نمود که شیب تن،
حساسیت به فرسایش و آخر شیب در ناحیه برداشت و دویان
دسترسی به منابع آب قابلیت چراپی دام‌ها را در منطقه
کاهش می‌دهد (10). در منطقه دشت بکان از لحاظ تولید
مراعات، یکنواختی باقی و وجود دارد و هیچ قسمتی از منابع در
طبقة غیرشایسته قرار ندارند. علت این امر با بودن سطح آب

286
بهتر استفاده نمود و به افزایش قابلیت آنها برای چرای گوسفند کمک کرد (۱۰). انجام این پژوهش در این ۴ منطقه که خود نمونه‌های بخش غمری از مراتب کشور می‌باشد، قابلیت ها و مواد محل کیفیت برای چرای گوسفند را نشان داد. همان گونه که قانون (۱۹۹۱)، گزارش‌های است سه برهم‌پیوندی از زمین نیازمندی‌های مشخص دارد و هر واحد زمین نسبت به آن بهره‌داری دارای کیفیت معنی می‌باشد. از آنجا که در این مطالعه طبقه‌بندی شایستگی مرتع بر مبنای چرای گوسفند بوده است در بررسی بندی شایستگی است نیازمندی‌ها و مدل طبقه‌بندی شایستگی مرتع بر اساس دو نیز انتخاب شود. همچنین استفاده از علائم مراتب چرای دام تناها یکی از بیشتری استفاده از می‌باشد. بنابراین در برنامه‌ریزی و طبقه‌بندی استفاده چند منظره از مراتب در مناطق مختلف آب و هوایی یکی به لحاظ پایداری پوشش گیاهی و حفاظت کیفی می‌توان مورد بررسی و توجه مورد که لازم است مدل و نیازمندی‌های سیاسی و اقتصادی استفاده علائم مشخص می‌شود و به درک این پژوهش باید نیت باشد.

سیاست‌گزاری

از دانشگاه تهران، دانشگاه تربیت مدرس و سازمان پژوهش‌های علمی کشور که می‌باشد انجام این پژوهش باید نیت باشد.

منابع مورد استفاده

۱. آقاحسنی فشمی، م. ۱۳۸۱. بررسی شایستگی مراتب منطقه ۱ که به کمک GIS بازی‌های کارشناسی آموزش مراجعان در منابع طبیعی و علمی دریایی. دانشگاه تربیت مدرس تهران.
۲. م. ۱۳۸۱. حضور جامعه آب‌زیایی‌ها، سپاهان و دانشگاه سازمانی. تهران.
۲. م. ۱۳۸۱. اندازه‌گیری از حضور آب‌زیایی‌ها در این منطقه که به کمک GIS بازی‌های کارشناسی آموزش مراجعان در منابع طبیعی، انتخاب تهران.
۴. م. ۱۳۸۱. مطالعات مربی‌های آب‌زیایی‌ها در منطقه ۱ که به کمک GIS بازی‌های کارشناسی آموزش مراجعان در منابع طبیعی، انتخاب تهران.
۵. م. ۱۳۸۱. حضور جامعه آب‌زیایی‌ها، سپاهان و دانشگاه سازمانی. تهران.
13. جنگلی برزل آباد. م. 1375. تیعنین شایستگی مرتع با استفاده از GIS پایان‌نامه کارشناسی ارشد مرتع داری، دانشگاه منابع طبیعی، دانشگاه تهران.

14. دفتر فنی مرتع. 1362. کاده‌سازی مرتع ایران. انتشارات سازمان جنگل‌ها و مرتع کشور، تهران.

15. رفاهی. ج. 1375. مرتعسازی و کاربرد آن. چاپ اول، انتشارات دانشگاه تهران. ص. 31.

16. شمس. ج. 1380. تیعنین شایستگی مرتع حوزه آبی از ارتفاعات اصفهان با استفاده از GIS پایان‌نامه کارشناسی ارشد مرتع داری، دانشگاه منابع طبیعی، دانشگاه تهران.

17. طهماسبی، ب. 1380. تیعنین شایستگی مرتع نیم‌اسیستی چهار محال و بختیاری با استفاده از GIS پایان‌نامه کارشناسی ارشد مرتع داری، دانشگاه منابع طبیعی و علوم دربایی، دانشگاه تربیت مدرس.

18. محتشم‌نیا، س. 1379. تیعنین شایستگی مرتع نیم‌استی جنوب شرقی استان سمنان، استان فارس، پایان‌نامه کارشناسی ارشد مرتع داری، دانشگاه منابع طبیعی و علوم دربایی، دانشگاه تربیت مدرس، تهران.

19. مقدم، م. 1377. مرتع و مرتع‌داری. چاپ اول، انتشارات دانشگاه تهران.

20. مهدوی، م. 1378. هیدرولوژی کریپ‌داری. چاپ دوم، انتشارات دانشگاه تهران.

21. وزارت جهاد کشاورزی. 1390. طرح جامع آبخزداری دام‌داری جهاد استان تهران.

22. نیازی، م. 1373. ارزیابی زیستگاه تابستان گوسفنده و حکایتی و میزان حیتی، پایان‌نامه کارشناسی ارشد مهندسی زیست، دانشگاه منابع طبیعی، دانشگاه تهران.

23. یوسفی، ش. 1383. تیعنین شایستگی مرتع با استفاده از GIS پایان‌نامه کارشناسی ارشد مرتع‌داری، دانشگاه منابع طبیعی، دانشگاه تهران.

