مدل طبقه‌بندی شایستگی مرتع برای چرای گوسفنده در مناطق البرز مرکزی،
اردستان و زاگرس ایران

حسین ارزانی، محمد چکیم‌دوه، حسن شمس، سعید محتشمی‌نیا، مجد آقابخشی فشنی، حسن احمدی، محمد جعفری، علی اصغر درویش صفی، احسان شهریاری

چکیده
شایستگی مرتع و یا طرفی قابلیت چرایی مرتع از موارد مهم در مرتع است. اپتیمیسم روند تعیین شایستگی مرتع بر اساس می‌گردد. بنابراین از جمله عوامل فیزیکی و چگالی گیاهی سه عامل تولید علف، سبزیجات و حساسیت به فرسایش انتخاب شد. هدف از پژوهش حاضر بررسی تأثیر مراجع لازم، دشت بکان، سیاه‌رود و اردستان و اثرات مدلی برای چرای گوسفنده‌ای است. این تحقیق در ۴ منطقه به ترتیب ۲ منطقه سیاه‌رود و لاز مرتبط به شکوه‌های البرز، اردستان در منطقه مرکزی و دشت بکان در منطقه زاگرس انجام گرفت. نتایج پژوهش حاکی از زیادی‌ترین نشان داد که در مناطق مورد مطالعه از بین عوامل فیزیکی چرایی، دوری از منابع آب و فرسایش پیشرفت عوامل گیاهی در تعیین قابلیت چرایی نقش داشتند. به طور کلی در منطقه سیاه‌رود، گزارش‌گیرندگان سویی بیش از مورد دیگر مناطق به سیاه‌رود عوامل محدود کننده بودند.

شب زیاد، حساسیت سبزیجات و خاک به فرسایش و نحوه بهره‌برداری از اراضی در منطقه لاز قابلیت آن را کاهش داد. در منطقه اردستان تولید کم و وجود بهره‌برداری از اراضی به فرسایش و همچنین سایر فعالیت‌های فرعی باعث کاهش شایستگی آن شد. چهار گوسفنده کمک کند.

واژه‌های کلیدی: قابلیت چرای گوسفنده، سیاه‌رود، لاز، دشت بکان، اردستان، البرز مرکزی، زاگرس، ایران

1. بی‌ترتیب دانشگاه تهران.
 2. استادان دانشگاه تهران.
 3. دانشگاه تهران.

273
مقدمه
مراتع که از نظر اقتصادی و فرهنهگی در نواحی کوهستانی ایران و دیگر نقاط جهان مهم هستند، به عنوان یکی از منابع تعدادی شوند. اکوسیستم‌های پیچیده‌ای بوده که بین اجزای تشکیل دهنده آنها تعلقات طرفین وجود دارد. به‌هم‌بستگی از مراتع از گذشته‌ها ناکوون‌هایی بدون در نظر گرفتن قابلیت‌ها و استعداد‌های آنها در هر مقطعه بوده است که هیچ یکی از می‌توان علم آشنا با مفهوم شایستگی مرتع دانست. فاوان (1991) قابلیت استفاده از سرویمین را یک نوع بهبودیار مرتعی با نظر گرفتن استفاده پایدار بر اراضی شایستگی می‌داند. از طرفی جهت برنامه‌ریزی پایدار در مرتع ارزیابی شایستگی مرتع را لازم می‌دانند (آرونولد و دودریتسکی 1988). طی مطالعاتی یان ناموندند که یک‌کلوگری مرتع در مراتع که حکusalات‌های مناطق خشک است. ژیتوندار روزانه ۱۲ کیلومتر راه‌پیمایی کند (ویکت ۲۰۰۰) در ارزیابی مصادف آب و محصولات‌های آن برای چهار جزء شکا و فاصله از منابع آب چرا ب را تعیین نمود که با تلفیق یکند. در مراتع شایسته برای چرا بر را مشخص کرد (۲۴). ژیتوندار (۱۳۷۳) با توجه به شرایط موجود در منطقه خشک و با تغییر در‌ ارزیابی و روشن نبودن قابلیت‌های چراوسیون که ۴ منطقه بر مورد و روشن ها برای مطالعه و ارزیابی قابلیت‌های چراوسیون ۴ منطقه به ترتیب در منطقه، از (۳۵)، ۲۰۰۵ طول شرقی و ۵۰.۲ میلی‌متربنازی (۱۶۸۷) به می‌تواند به شرایط محیطی، کیفیت (سیستم‌های حیات) مدل کیفی‌زیستی، برای گوسیند و حیاتی، بر اساس تحقیق مختلف چراوسیون و روی گزیدن آنها مدل‌های نهایی کیفی و زیستگاه‌ها را ارائه داد (۱۵). یکی نمود که حل‌کننده‌هایی که گوسیند ژیتوندار جهت شرایط منطقه مختلف ارائه نمایند به ترتیب در مراتع مساحت ۶-۴ کیلومتر مربع، ۹-۵ کیلومتر مربع و ۲-۰ کیلومتر مربع در مراتع با شرایط منطقه. در ارزیابی (۱۳۷۹) مقدار نزدیک به ۱۸ نمونه گوسیند چراگردنی در منطقه جهت شرایط آب و هوایی و حیاتی در دسترس ۱۴-۲۴ لیتر بیان نمود (۱۸). طهماسبی (۱۳۷۰) در بررسی‌های منطقه سیزکوک از مرتع‌های ابی استراتیستیچه چهارمحال و بختیاری، شیب را به عنوان عامل مهم در تعیین شایستگی مرتعات این منطقه

۲۷۴
دشت یکان با اقلیم تابستانی مرطوب سرد طبقه‌بندی شد.
از لحاظ پوشش گیاهی در این مناطق پس از بازید صحرایی تیپ‌ها به قرار زیر تعبین گردید. منطقه سیاه‌رود دارای 19 تیپ گیاهی و تیپ اصلی (Astragalus-Artemisia) اردستان 13 تیپ گیاهی و تیپ اصلی (Onobrichis-Festuca) دشت یکان 15 تیپ Artemisia-Artemisia. در مورد استفاده هر نوع طبقه‌بندی، کتاب اینجا شایستگی اراضی و ارائه نشانده است. در عمل‌کردن عامل مورد نظر استفاده می‌شود.

جدول ۱. راهنمای نحوه درج شدن عامل‌ها

<table>
<thead>
<tr>
<th>طبقه شایستگی</th>
<th>هزینه موردیاز</th>
<th>درصد عملکرد موردانتظار</th>
</tr>
</thead>
<tbody>
<tr>
<td>خوب</td>
<td>S1</td>
<td>۸۰%</td>
</tr>
<tr>
<td>متوسط</td>
<td>S2</td>
<td>۸۰-۲۰%</td>
</tr>
<tr>
<td>کم</td>
<td>S3</td>
<td>۲۰-۰%</td>
</tr>
</tbody>
</table>

 hashes به وسیله انی‌دیلی و هزینه‌ها به ندرت امکان‌پذیر بوده و با اصلاً ممکن نیست.

جدول ۲. کیفیت و نقوش اراضی که در این پژوهش از آنها استفاده شد.

<table>
<thead>
<tr>
<th>کیفیت اراضی</th>
<th>ردیف</th>
<th>خصوصیات اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td>حساسیت به فرسایش</td>
<td>۱</td>
<td>شیب، نحوه بهره‌برداری اراضی، سبک‌سازی خاک‌شناختی، فرسایش‌های محدود، وضعیت مرتع</td>
</tr>
<tr>
<td>تولید علفه</td>
<td>۲</td>
<td>سهولت دسترسی به منابع آب، مقدار متابع آب، کیفیت متابع آب</td>
</tr>
<tr>
<td>متابع آب</td>
<td>۳</td>
<td>به خاک و زمین‌سازی با کار میدانی و استفاده از منابع موجود</td>
</tr>
</tbody>
</table>

۱. بهبود شده است.
همچنین برای تکمیل نمره‌دهی به شایستگی اراضی، از روشنی شرایط محدود کننده (فاز 1991) استفاده شد (۲۰). در این روشنی عاملی که کمترین امتیاز را در ارزیابی کسب کرده باشد، به عنوان تعبیه‌کننده تهیه کننده در نظر گرفته می‌شود. محاصره در این سادگی کاربرد آن و عدم برآورد شایستگی پیش از مقدار خیلی که است. بنابراین با توجه به این مسئله مراحل زیر انجام گرفت.

۲. تهیه نقشه‌های پایه
در این بخش نقشه‌های پایه شامل نقشه‌های توپوگرافی، زمین‌شناسی، خاک‌شناسی، قابلیت اراضی، تپه‌های گیاهی، سامانه‌های خریفی، موقعیت متابع آب، واحدهای هیدرولوژیکی و کاربری اراضی پس از تصمیم‌گیری با استفاده از نرم‌افزار GIS وارد گردید. پسی نقشه‌های موقعیت متابع آب، زمین‌شناسی، تپه گیاهی، سامانه‌های خریفی، کاربری اراضی با استفاده از تفسیر عکس‌های هوایی و پایداری از منطقه تصمیم‌گیری گردید.

۳. تهیه مدل‌ها
پس از بررسی اطلاعات، به عامل تولید، فرسایش و متابع آبی به عنوان می‌گذاری در برنامه برای تعیین شایستگی انتخاب گردید. از

۲۷۶
مدل طبقه‌بندی شایستگی برای جرای گوستند در مناطق البرز مرکزی ...

طرحی برای ارزیابی مانده شبیه کیفیت آب، خوش‌شعله‌روکایی، در این عوامل نهفته هستند.

1-مدل حسابیت بر فرسایش

برای تهیه نقشه حسابیت بر فرسایش از مدل پتانسیل FPA

مرتبط در حوزه ی بارش هر شهر که از مقایسه با جدول 3 از

لحاظ شایستگی طبقه‌بندی گردید. نمودار مدل طراحي شده

برای تهیه نقشه شایستگی FPA در شهر دوم شهر 2. (در زمان شده

است.)

2.مدل منابع آب

در استفاده از منابع آب به عوامل مهم کمیت، کیفیت و فاصله از

منابع آب، نقش اساسی دارند. بنابراین در تهیه مدل منابع آب از

ین سه عامل استفاده و برای هر مقر یک شاخص تهیه گردید.

الف) زیر مدل فاصله از منابع آب

برکش منابع آب در یک منطقه از عوامل مهم مؤثر در چرای

دامیه دارد و راه پرکش دام در مرتبط نیز تأثیر دارد. اصولاً

زمانی که آب عمدتاً در مناطق محصور رود رود رود رود رود رود رود.

مصادف بی‌پوسته سه تونست داد توجه به یکینه شدن (آتانوله و

دوردنیکثی) 1 (مشخص گردید) (17). در این انتخاب شیب کلاس‌بندی شده و سپس نقشه سطح هم فاصله از منابع آب در

هر کلاس شیب تهیه شد تا برای هر کلاس شیب یک نقشه

کلاس‌بندی شده و سپس نقشه سطح هم فاصله از منابع آب به دست آمد. مسیس از

هموبالان نر تهیه کلاس شیب با نقشه کلاس شیب هم فاصله

نقشه تهیه ی مدل فاصله از منابع آب به دست آمد.

ب) زیر مدل کمیت منابع آب

در این بخش مقدار نیاز آبی گوستندان به آب در هر سالانه

عشر به مقدار آب موجود در آن سالانه علی‌وقت مقایسه و نوشته

کمیت منابع آب تهیه شد. نیاز آبی روزانه دام‌های موجود در

مرتبط به شرایط آب و هوایی، کیفیت علوفه، نزدیک شدن عمومی و

خصوصی سیستمی که در زمان تهیه گیری نیاز آبی انجام تحقیقات جامعه صورت گرفته

با استفاده از منابع علی‌وقت مناسب با شرایط مناطق، نیاز آبی

Z = y.xa^2+1/5 (1)

در اینجا نهایی تهیه شد. یکی از استفاده از شاخص FPA در حوزه‌های

مرد نظر از اطلاعات موجود با توجه به اینکه که در

هر یک FPA منطقه مشخص شده بود استفاده گردید. همین

مورد نظر استفاده از اثرات، توجه به اینکه که به معنی اعظم

منطق انتخاب شده را از مدل ممکن تشکیل می‌دهد، از نقشه

طبیعت و وضعیت منطق (روش چهار فاکتوری) (12) و نقشه

تحویل استفاده از اثرات استفاده شد و بر طبق جداول مخصوص

روش نهایی به آن تعلق گرفت. نقشه سنگی خاصی EPM بر حسب حسابیت بر FPA و نقشه

ارزانی بیانگر حسابیت سناها بر FPA روی دارد. حسابیت سناها بر FPA روی دارد. حسابیت

فرسایش پذیری سنگ و خاک دارای تفاوت بسیار از اطلاعات و

هموبالان دو نقشه سنگی خاصی و خاکشناسی با یکدیگر

نقش حسابیت سنگ و خاک دارای FPA تهیه گردید. با ورد

روش رابطه به محیط و اختصاص نمرات هر یک از

عوامل آن ضریب شدت فرسایش براز هر یک از تهیه‌های
جدول 3. طبقات شایستگی حساسیت به فرسایش

طبقه شایستگی	محدوده Z	رنگ	نویس
S1	> 0/2	1	قهوه‌نیک
S2	0/2-0/7	2	قهوه‌قهوه‌یاهی
S3	0/7-1	3	قهوه‌روز و سرخ
N	≤ 1	4	سبزه‌یاض

شکل 2. مدل طراحی شده برای تهیه نقشه شایستگی از نظر فرسایش

گوسفند تعین شد (18) که با بر نور گرفتن عوامل اقلیمی، خصوصیات پوشش گیاهی، فصل بهار/بادی، نوع دام و برسی متغیر آب در این مناطق انجام شد. برای محاسبه‌ی مقادیر تیزاب آب در هر سامان عرفی از همبستگی نقشه سامان‌ها عرفی و نقطه لزجت تیپ‌ها، تعداد دام مجاز در هر سامان عرفی تیزاب و با توجه به تیزاب آب روزانه دام، مقادیر نیاز آب در هر سامان عرفی محاسبه‌گراید. از طرفی اطلاعات مربوط به موقعیت و دیگر منابع آب‌های زیرزمینی از مطالعات سازمان آب منطقه‌ای، مناطق مورد مطالعه تهیه و مقادیر آب موجود در هر سامان عرفی مشخص شد. سپس در هر سامان مقدار متوسط دیپ مانع آب که بر حسب لیتر در ثانیه بوذه به هم جمع گردید. در تابع مقادیر دبی در هر سامان به لیر در روز تبدیل گردید تا مقادیر آب موجود در هر سامان به دست آید (2، 4، 12) از مقایسه مقادیر آب موجود در هر سامان عرفی و مقادیر نیاز آب تعیین شده، شایستگی کشید منابع آب حاصل گردید.
جدول ۲: مقدار تولید (کیلوگرم علفه کحش در هکتار) (Kg/ha) تیپ‌های مختلف در ۲ منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>تولید (Kg/ha)</th>
<th>تیپ</th>
<th>منطقه</th>
<th>تولید (Kg/ha)</th>
<th>تیپ</th>
<th>منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>Thymus - Asterolagalus</td>
<td>لار</td>
<td>108</td>
<td>Acantholimon</td>
<td>لار</td>
</tr>
<tr>
<td>165</td>
<td>Ferula - Asterolagalus</td>
<td>لار</td>
<td>710/2</td>
<td>Astragalus - Hordeum</td>
<td>لار</td>
</tr>
<tr>
<td>120</td>
<td>Asterolagalus - Cousinia</td>
<td>لار</td>
<td>510/5</td>
<td>Ferula - Asterolagalus - Perrenial Grasses</td>
<td>لار</td>
</tr>
<tr>
<td>210</td>
<td>Onobrychis - Cousinia</td>
<td>لار</td>
<td>288/8</td>
<td>Astragalus - Phlomis</td>
<td>لار</td>
</tr>
<tr>
<td>85</td>
<td>Onobrychis - Eremorus</td>
<td>لار</td>
<td>375/5</td>
<td>Phlomis - Asterolagalus</td>
<td>لار</td>
</tr>
<tr>
<td>240</td>
<td>Asterolagalus - Rumex</td>
<td>لار</td>
<td>297/1</td>
<td>Astragaluss - Perrenial Grasses - Convolvulus</td>
<td>لار</td>
</tr>
<tr>
<td>280</td>
<td>Ferula - Onobrychis</td>
<td>لار</td>
<td>1060/5</td>
<td>Gundelia - Asterolagalus</td>
<td>لار</td>
</tr>
<tr>
<td>6</td>
<td>Salvia - Asterolagalus</td>
<td>لار</td>
<td>260/2</td>
<td>Perrenial Grasses - Prangos - Acantholimon</td>
<td>لار</td>
</tr>
<tr>
<td>180</td>
<td>Thymus-Ferula</td>
<td>لار</td>
<td>379</td>
<td>Perrenial Grasses - Asterolagalus - Thymbra</td>
<td>لار</td>
</tr>
<tr>
<td>180</td>
<td>Onobrychis - Johanria</td>
<td>لار</td>
<td>540</td>
<td>Eleocharis - Butomus</td>
<td>لار</td>
</tr>
<tr>
<td>230</td>
<td>Ferula - Onobrychis</td>
<td>لار</td>
<td>882/4</td>
<td>Gundelia - Cousinia - Surpoides</td>
<td>لار</td>
</tr>
<tr>
<td>350</td>
<td>Agropyron - Onobrychis</td>
<td>لار</td>
<td>247</td>
<td>Astragalus - Eryngium - Phlomis</td>
<td>لار</td>
</tr>
<tr>
<td>160</td>
<td>Agropyron - Asterolagalus</td>
<td>لار</td>
<td>310/4</td>
<td>Mentha - Juncus - Trifoliumr</td>
<td>لار</td>
</tr>
<tr>
<td>533</td>
<td>Asterolagalus - Festuca</td>
<td>لار</td>
<td>1456/2</td>
<td>Carex - Trifoliums - Cynodon</td>
<td>لار</td>
</tr>
<tr>
<td>240</td>
<td>Onobrychis - Festuca</td>
<td>لار</td>
<td>710/2</td>
<td>Astragalus - Perrenial Grasses</td>
<td>لار</td>
</tr>
<tr>
<td>240</td>
<td>Onobrychis - Bromus</td>
<td>لار</td>
<td>375</td>
<td>مرغاب مخربه</td>
<td>مساهوم</td>
</tr>
<tr>
<td>150</td>
<td>Thymus - Bromus</td>
<td>لار</td>
<td>223/9</td>
<td>Astragalus-Thymus</td>
<td>مساهوم</td>
</tr>
<tr>
<td>150</td>
<td>Onobrychis - Bromus</td>
<td>لار</td>
<td>123/3</td>
<td>Astragalus - Aegilops</td>
<td>مساهوم</td>
</tr>
<tr>
<td>240</td>
<td>Thymus-Bromus</td>
<td>لار</td>
<td>758/8</td>
<td>Astragalus - Psathyrostachysh</td>
<td>مساهوم</td>
</tr>
<tr>
<td>300</td>
<td>Astragalus-poа</td>
<td>لار</td>
<td>40/66</td>
<td>Astragalus - Acantholimon</td>
<td>مساهوم</td>
</tr>
<tr>
<td>150</td>
<td>Astragalus - Onobrychis</td>
<td>لار</td>
<td>130/54</td>
<td>Astragalus - Onobrychis</td>
<td>مساهوم</td>
</tr>
</tbody>
</table>
جدول ۲: مقدار تولید (کیلوگرم علفه خشک در هکتار (Kg/ha) تیپ‌های مختلف در ۴ منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>رقم</th>
<th>میوه‌سازی</th>
<th>تولید (Kg/ha)</th>
<th>بیانگر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰</td>
<td>Poa -Cousinia</td>
<td>۸۸/۸</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۹۰۰</td>
<td>Ranunculus-Alopecurus</td>
<td>۶۸/۳</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۱۱۳</td>
<td>Agropyron-Ferula</td>
<td>۴۱/۸</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۷۱۰</td>
<td>Agropyron-Ranunculus</td>
<td>۴۳/۵</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۹۰۲</td>
<td>Agropyron-Ferula</td>
<td>۴۳/۹</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۳۷</td>
<td>Scorpiola-Lamnaeae-Artemisia Peganum-Herita-Scriapia</td>
<td>۸۷/۶</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۳۷</td>
<td>Artemisia-Siberi</td>
<td>۸۷/۶</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۴۰</td>
<td>Artemisia-Anabasis</td>
<td>۸۷/۶</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۴۲</td>
<td>Scariole-Cornulaca</td>
<td>۵۱/۴</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Artemisia-Scriapia</td>
<td>۸۲/۸</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Artemisia-Pterapryon</td>
<td>۴۰/۶</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Astracana-Scriaola</td>
<td>۵۸/۶</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Artemisia-Peganum</td>
<td>۳۳</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Artemisia-Artemisia Cornulaca-Salsola</td>
<td>۳۶</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Artemisia-Artemisia</td>
<td>۲۰</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Artemisia-Stipa</td>
<td>۲۰</td>
<td>سیاه‌رود</td>
</tr>
<tr>
<td>۱۵</td>
<td>Artemisia</td>
<td>۱۰۰</td>
<td>سیاه‌رود</td>
</tr>
</tbody>
</table>
شکل 3. مدل شیاستگی منابع آب از طریق تلفیق سه زیر مدل فاصله، کیفیت و کیفیت منابع آب

ج) زیرمدل کیفیت منابع آب

به طور کلی کیفیت شیمیایی آب‌های زیرزمینی در هر منطقه بستگی به نوع ترکیبات شیمیایی لایه تشكیل دهنده منبع تغذیه مسیر جریان و منبع ذخیره آن دارد. اطلاعات کیفیت منابع آب مناطق مورد مطالعه از مطالعات سازمان آب منطقه‌ای استخراج شده در این زیر مدل با استفاده از جدول پیشنهادی مهدوی (۱۳) و مقایسه اطلاعات استخراج شده با مقادیر توصیه شده کیفیت منابع آب در هر سامان غرفه مشخص شد و بر اساس نتایج حاصل کیفیت منابع آب تعیین شد. در پایان نتیجه‌های به دست آمده از سه زیر مدل مربوط به منابع آب با استفاده از روش شرایط محیطی نهایی که تهرک شدن. به منظور تهیه نقشه شیاستگی منابع آب، نتیجه‌های کیفیت و کیفیت منابع آب با هم تلفیق شده و نحوه جدیدی به دست آمده که نتیجه جدید با نقشه فاصله از منابع آب همبستگی شد و به روش شرایط محیطی کنیده (۲۰) امتیاز گرفت و به نهایی شیاستگی منابع آب حاصل شد. مدل شیاستگی

۲۸۱
شکل ۴ مدل تعیین ظرفیت و شیاستگی تولید

فرشاد و مدل شیاستگی متابع آب، مدل نهایی قابلیت چرایی گوسنده برای این مناطق تهیه شد.

نتایج

مدل حساسیت به فرشاد

نتایج مدل حساسیت به فرشاد در جدول ۵ نشان داده شده است.

در حوزه‌های سیاه‌رود و اردهستان شدت فرشادی شدید تا متوسط تعیین گردید. در دشت بکان فرشادی از مقدار کم تا متوسط (شکل ۵) و در حوزه آبخیز وار هم مقدار فرشادی متوسط برآورد کردید.

مدل متابع آب

نتایج مدل متابع آب در جدول ۶ نشان داده شده است.

از نظر شیاستگی حوزه‌های اردهستان، سیاه‌رود و لار در

و توزین. در نظر گرفتن ضریب برداشت مجاز با توجه به شدت فرشادی در تپه، گراش و وضعیت، درصد ضیب و یا باید باید خاک و استفاده به طرح‌های انجام شده و خوش‌خورایی با استفاده از کتاب کد گیاهان مرتعی و داشت بومی به دست آمد (12).

گراش وضعیت مربوط از طریق ترازوی گراش (۱۲) و شدت فرشاد در هر تپه از رو PM به دست آمده و از تلفیق این دو مدل، ضریب برداشت مجاز به دست می‌آید. در نهایت با تلفیق دو مدل ضریب برداشت مجاز و مقدار علوفه قابل برداشت مدل شیاستگی مربوط از نظر تولید علوفه به دست می‌آید. مدل تعیین ظرفیت و شیاستگی تولید در شکل ۴ نشان داده شده است.

۴-۲ مدل نهایی

با تلفیق سه مدل شیاستگی از نظر تولید علوفه حساسیت به
جدول ۵. نتایج مدل حساسیت به فرسایش در مناطق مورد بررسی

<table>
<thead>
<tr>
<th>کلاس شایستگی</th>
<th>منطقه</th>
<th>دشت بکان</th>
<th>اردستان</th>
<th>سیاهه‌رود</th>
<th>لار</th>
</tr>
</thead>
<tbody>
<tr>
<td>(خوب) S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24/62</td>
</tr>
<tr>
<td>(متوسط) S2</td>
<td></td>
<td>44/14</td>
<td></td>
<td>55/74</td>
<td>81/9</td>
</tr>
<tr>
<td>(کم) S3</td>
<td></td>
<td>55/15</td>
<td></td>
<td></td>
<td>13/9</td>
</tr>
<tr>
<td>(غیرشایسته) N</td>
<td></td>
<td></td>
<td></td>
<td>74/60</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل ۵. نقشه شایستگی حساسیت به فرسایش دشت بکان

جدول ۶. نتایج مدل منابع آب در مناطق مورد بررسی

<table>
<thead>
<tr>
<th>کلاس شایستگی</th>
<th>منطقه</th>
<th>دشت بکان</th>
<th>اردستان</th>
<th>سیاهه‌رود</th>
<th>لار</th>
</tr>
</thead>
<tbody>
<tr>
<td>(خوب) S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24/62</td>
</tr>
<tr>
<td>(متوسط) S2</td>
<td></td>
<td>44/14</td>
<td></td>
<td>55/74</td>
<td>81/9</td>
</tr>
<tr>
<td>(کم) S3</td>
<td></td>
<td>55/15</td>
<td></td>
<td></td>
<td>13/9</td>
</tr>
<tr>
<td>(غیرشایسته) N</td>
<td></td>
<td></td>
<td></td>
<td>74/60</td>
<td>-</td>
</tr>
</tbody>
</table>

۲۸۳
شکل ۶ نقشه شایستگی منابع آب دشت بکان

جدول ۷: نتایج مدل تولید در مناطق مورد مطالعه

<table>
<thead>
<tr>
<th></th>
<th>کلاس شایستگی</th>
<th>منطقه</th>
<th>دشت بکان</th>
<th>اردستان</th>
<th>سیاهدرود</th>
<th>لار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(نحوه)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>S1</td>
<td>۱۱/۴۷</td>
<td>۱۷/۶۹</td>
<td>۹/۷۰</td>
<td>۵۱/۸۸</td>
<td>۳۲/۴</td>
<td>۶/۰</td>
</tr>
<tr>
<td>S2</td>
<td>۵۸/۱۹</td>
<td>۱۸/۷۰</td>
<td>۲۵/۸۸</td>
<td>۶۱/۳۳</td>
<td>۵/۰</td>
<td>۵/۰</td>
</tr>
<tr>
<td>S3</td>
<td>۸۴/۰۴</td>
<td>۳۷/۶۴</td>
<td>۱۴/۴۰</td>
<td>۶۶/۴۴</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
</tr>
<tr>
<td>N</td>
<td>۵۰/۰</td>
<td>۲۸/۱۲</td>
<td>۵/۰</td>
<td>۶۶/۳۳</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
</tr>
</tbody>
</table>

مدل تولید

محدوده شایستگی خوب تا متوسط و دشت بکان در حد متوسط و غیر شایسته قرار دارد (شکل ۶). همان‌گونه که در جدول ۷ نشان داده شده است، از نظر شایستگی تولید مناطق مورد مطالعه به ترتیب دشت بکان، شایستگی تولید متوسط و کم (شکل ۷)، اردستان و سیاهدرود شایستگی متوسط و کم شایستگی تولید خوب تا متوسط دارند.

مدل نهایی شایستگی منعکس کننده تلفیق بهترین مدل تولید علوفه حسابی به فرسایش و منابع آب به شرح جدول ۸ می‌باشد.

در حوزه سیاهدرود کلاس شایستگی خوب وجود ندارد و در حوزه‌های دیگر کلاس شایستگی خوب سطح کمی از حوزه را شامل می‌شود. در حوزه‌های بکان (شکل ۸)، اردستان و لار عمدتاً در کلاس شایستگی متوسط قرار می‌گیرند، در حالی که در حوزه سیاهدرود سطح عمدتاً در کلاس شایستگی کم چرا هستند.

۲۸۴
شکل ۷ نقشه شاپیستگی تولید دشت بکان

شکل ۸ نقشه نهایی شاپیستگی مرتع دشت بکان
بحث و نتایج گیری

به طور کلی سه عامل اصلی مورد توجه و نظر آب و حمایت به فرسایش
عامل محور محدودیت‌های دسترسی هستند که در طبقه‌بندی فرسایش‌های گروهی
مربوط می‌شوند.

از نظر فرسایش در منطقه بکان وجود فرسایش‌های حدودی
محور کننده است، این مسئله در حوزه سیاه‌آباد به سبب
وجود سازندگان حساس به فرسایش بیشتری مشاهده می‌شود. از
طرحی‌های‌های باید توجه در این مناطق به فرسایش فرسایش
کمک نموده است. این امر در مقدار پوشش محافظات و منابع را
کاهش داده و در نتیجه مقدار فرسایش را افزایش می‌دهد (19).

26 و ۳۴). در حوزه آبخیز که هم شیب بالا و خاک یک عمق،
فرسایش کارایی‌شدن و شکست و زرع سالهای کاشته شده به اکنون
رها شده محیط مناسب برای فرسایش ایجاد کرده که سبب
کاهش شیب گرفته شده در این منطقه می‌شود. کمی یوشو سطحی,
شیب بالا و رفتار سبب هزینه سبب بالا رفتن فرسایش در حوزه
آبخیز ارتدکس و کاهش فرسایش‌های چرای داماش می‌شود.

مطالعات بسیار الهیت یوشو سطحی را به پایدار داشت که تا
تولد علوفه نشان داده‌اند (29 و ۳۰). طهماسبی (۱۳۸۳) در
بررسی منطقه سیرکو به بانک کرده که حساسیت خاک به فرسایش
عامل مهمی‌هایی که به سبب زمینه‌های و شیب زیاد در
این حوزه، شرایط مورد نیاز و وجود آب کافی و دانی و شیب
زاویه مسیر حرکت داشته داریم از مناطق مشکلاتی را ایجاد

جدول ۸ نتایج مدل نهایی شیبگذاری مرتع در مناطق مورد مطالعه

<table>
<thead>
<tr>
<th>کلاس شیبگذاری</th>
<th>دشت یکن</th>
<th>ارتدکس</th>
<th>سیاه‌آباد</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب گسترده</td>
<td>4/29</td>
<td>2/65</td>
<td>0/75</td>
</tr>
<tr>
<td>شیب متوسط</td>
<td>4/29</td>
<td>2/65</td>
<td>0/75</td>
</tr>
<tr>
<td>شیب کم</td>
<td>4/29</td>
<td>2/65</td>
<td>0/75</td>
</tr>
</tbody>
</table>

می‌کند از طرفی در منطقه سیاه‌آباد سرپریز زودرس و موقتی
بوند منابع آب از یک طرف و طول زیاد سیروپسکت دام‌ها
مشکلاتی را برای چرا ایجاد می‌کند. مقدم (۱۳۷۹) بیان نمود که
با فرسایش شیب سرعت به‌بیان شده نسبتاً دام کاهش می‌یابد.

در منطقه ارتدکس دیگر مشابه بخش معروف ۹۰ نسبتاً
بکار می‌رود. هم‌نام‌های نشان داده که تغییر در مناطق دور
از منابع آب بسیار می‌شود که نسبتاً اطراف منابع آب بیشتر
چرا شود (۱۲). مارتینو و وارد (۱۹۷۰) بیان نمودند که فاصله
بین منابع آب به‌بیان می‌شود که نسبتاً اطراف این مناطق بیشتر
چرا شده و به همین سبب گیاه‌شناسی ودای تولید
بیشتر را می‌شود در نقاط دورتر از منابع آب مشاهده می‌نمود.

(۲۴). مطالعات طیفی‌های حاکم شده داشت که تغییر در مناطق دور
از منابع آب بسیار می‌شود که دام‌ها از گریز به شیب مصرف کنند
(۲۱، ۲۸). از طرفی در منطقه‌های و
سیاه‌آباد مشابه از حذف کمی وکیفی در منابع آب وجود دارد
وی شیب زیاد شیب محدود بیشتری بیان می‌شود. ون می‌شود
که شیب بالا توانایی دام‌ها را برای چرا یکشته داده و سبب
صرف انرژی زیادی در آنها می‌شود (۲۵).

طهماسبی در مطالعه منطقه سیرکو بانک نمود که شیب تند,
حساسیت به فرسایش و اثر شیب در حوزه برداشت و بیشتر
در ترسیم بانک قابلیت جایگزینی دام‌ها را در منطقه
کاهش می‌دهد (۲۱). در منطقه دشت بکان از حذف تولید
مرتع، پتانسیل بالایی وجود دارد و همیشه قسمت از مناطق در
طبقه غیرشیبگذاری قرار داردند. علت این امر بالا بودن سطح آب

دوست‌دارنده اول (بهار ۱۳۸۵)
مدل طبقه‌بندی شایستگی مرجع برای جرای گوسفند در مناطق پر اصل، ...
1. جنگل یزد آم، م. 1375. تعبین شایستگی مرتع با استفاده از GIS. پایان‌نامه کارشناسی ارشد مرتع‌داری، دانشکده منابع طبیعی، دانشگاه تهران.

