اندازه‌گیری ویژگی‌های مورفومتریک خندقی‌های جنوب شرق ایران با پردازش رقموی تصاویر ETM+

سنجش

فاضل ایرانی‌منش، امیرحسین صرخایی و نادر جلالی

چکیده

منطقه دشتی‌ای با سطحی بالا بیش از ۵۸۰۰۰ هکتار در جنوب شرق ایران تحت تأثیر فرسایش خندقی یافته که میزان رشد آن در دهه‌های اخیر به طور چشمگیری افزایش یافته است. تصاویر ماهواره‌ای به دلایل داشتن سرمایه زمینی، هزیت کم، پوشش زیاد و قابلیت پردازش رقموی، می‌توانند اطلاعات مناسب و جامعی از رشد و گسترش خندقی‌ها در اختیار قرار دهند. در این راستا، پژوهش‌های حاضر با هدف تعیین مناسب‌ترین روش اندازه‌گیری ویژگی‌های مورفومتریک خندقی، منطقه دشتی‌ای آقازیان در شهرستان چابهار با استفاده از پردازش رقموی تصاویر ETM+ انجام شد. بدین منظور، از تصاویر ماهواره‌ای لنستس ۷ سال ۲۰۱۱ و همچنین از اطلاعات جمع‌آوری شده حاصل از اندازه‌گیری صحرایی روز ۲۵ خندق نمونه به منظور کنترل و ارزیابی تأثیر، استفاده گردید. در ادامه، پس از تصمیح خطاهای هندسی و پخش آتش‌فریک، با استفاده از روش‌های جهانی‌گرایی طیفی مانند بسط نابین، اتجاه ترکیب، تصاویر برای تفسیر تضمین، و انتخاب محل‌های نمونه برداری آماده شدند. با مشخص شدن محل نمونه‌ها، روش تصویربرداری، روش‌های نمونه‌برداری و روش خندق‌های صحرایی در سه مقطع ۷۵/۲۵/۰ و ۵۰/۷۵/۲۵ مانند در سطح طبیعی و ۱ درصد در سطح طبیعی داده شدند. نتایج نشان داد که پیشینه تغییرات مطالعه‌های اصلی، طول و مشخصات راه‌پیمایی خندقی در روش انتخابی به نمونه در روش اندازه‌گیری و با تأثیر حاصل از پردازش‌های تفسیری از طریق مقایسه میانگین‌ها و آمار از آمارای F و t بررسی گردیدند. نتایج نشان داد که کمترین اختلاف را با اندازه‌گیری صحرایی دارد. با اوراین، روش آنالیز مطالعه‌ها اصلی به عنوان روشی قومی برای ادامه پاپیش رشد و گسترش خندقی‌ها در دشت‌ها و مناطق مشابه در جنوب شرق ایران پیشنهاد می‌شود.

واژه‌های کلیدی: تصاویر ETM+، پردازش اطلاعات ماهواره‌ای، فرسایش خندقی، منطقه دشتی‌ای

مقدمه

 مختلف ایران، خصوصاً در منطقه جنوب شرق ایران، به‌طور خودکار و بدون بهره‌گیری از تجهیزات حرفه‌ای، از اشکال فرسایشی مهم در منطقه خاک و آبخیزداری، نهران

۱. به ترتیب مربی، استادیار و مربی پژوهش مرکز تحقیقات حفاظت خاک و آبخیزداری، نهران

۲۳۳
عمودی پیشانی خندق و نقاط گروگند شده از مشخصات مهم آن است. یکی از مناطقی که به دشت تحت تأثیر این فرسایش قرار دارد، منطقه تلکاری در منطقه سبستان و بلچستائی می‌باشد. گسترش این نوع فرسایش در این منطقه، به دلیل فرسایش پادیروا زیر زمین اراضی و استفاده ناشی از منابع آب و همکار موجب تخریب اراضی کشاورزی و مستعمرات تبیین آنها به زمین‌های غیر مستعمرد است. این روانه‌های ارتباطی و برای مناطق مسکونی و قطع مسيره‌های مستند را فراهم نمی‌گردد.

توجه است (1).

وجود این مشکلات سبب شده که، تعدادی از کارشناسان وقت در ماه رمضان 1355 هجری شمسی ضمن بازدید از منطقه، شروع عملیات فوری و اضطراری برای کنترل فرسایش خندقی در اراضی دشتی و باوهولات در خواسنت نمایند. بعد از آن تأکید و پس از تأسیس مرکز تحقیقات خفاصل خاک و آب‌هازداری، گروهی از کارشناسان این مرکز در سال 1375 طی بازدیدی از منطقه، ضمن تأکید بر مشکل موجود و اکران به وجود آمدن پیامدهای ناشی از اقدامات اجتماعی و اخلاقی مطالعات گروهی و انجام تحقیقات در خصوص رشد و گسترش خندق‌ها، علی هم به وجود آمدن آنها و راه‌های کنترل آن آمده‌اند (6). بررسی نتایج گزارش‌های ثبتی و همچنین اطلاعات جمع‌آوری‌های در داده‌های اولیه منابعی و اطلاعات محیطی نشان می‌داد که رشد طولی خندق‌ها عمدتاً نگرانی‌های منطقه‌ای می‌باشد. به طوری که رشد و توسعه خندق‌ها در سال‌های گذشته را چنین می‌نماید. بدون مشک بررسی وضعیت کلی خندق‌های منطقه با اندک‌ترین نگرانی‌های مستقیم، بی‌طرفی صرف وقت، انرژی و اعتبار بسیار بالا و عمل کاملاً غیر ممکن بود در عین حال، بررسی پژوهش‌های انجام شده در زمینه‌های کاربردی تغییرات ماهواره‌ای نشان می‌داد که کاربردی روش‌های پیشرفت با روش‌های پیشرفت قراردادی مصرف می‌تواند در منطقه بی‌طرفی با اهداف طرح و چاره‌های شایانی رشد طولی خندق‌ها به عنوان مهم‌ترین ویژگی مورفومتریک آنها مؤثر باشد. تحقیقاتی که به مشورت

232
مکان‌های مورد مطالعه
مکان‌های دشت‌هایی در شرق شهرستان چابهار در محدوده جغرافیایی ۲۴°۵۰ و ۲۵°۰۴ طول شرق و ۳۲ و ۳۳ درجهی طول شمالی و ۱۰ و ۱۱ درجهی طول غربی از نسبتی، واقع شده است. این مکان‌هایشان شامل چندانی بیش از گونه‌های شهر به دریاچه عمان و خلیج چابهار محدود می‌شود. جاده کلی اصلی چابهار و راستک - زاهدان از جنب مکان‌های دشت‌هایی می‌گذرد. در ناحیه مکان‌های نزدیک رژه‌های و جاده کارکرد آن آب‌اری زیرزمینی استفاده می‌شود. این مکان‌های مورد تحقیق توان قابلیت از ارتفاعات جنوب ایرانشهر سرچشمه گرفته و از سیلاب آن برای آب‌اری زیرزمین‌های زراعی استفاده می‌شود. این مکان‌های مکان‌های بدان می‌تواند به دنبال کاملاً مناسب کوهستانی و اراضی از هم‌وار قابلیت استفاده (شکل ۱) داشته باشد.

پردازش‌های اولیه تصاویر ماهواره‌ای و انتخاب محل نمونه‌ها
پردازش‌های اولیه برای تصاویر ماهواره‌ای و انتخاب محل نمونه‌ها می‌تواند به‌طور و ریشه‌ای دقیق در جهت (Affine) با روش انفی ۲۵ خطا (Root Mean Square Error) تصحیحات همن‌سازی پایه‌انگاری تصویر EMT با دقت در حدود ۱ درصد انجام شد. همچنین برای رفع این و پاسخ آن‌ها، با استفاده از مقدارهای مقداری جایگزینی حاصل از تقابل ارزش‌های عضوی یک سیستم بازی نامیده و بعد به دست آمده پس از انجام تصحیحات فوکوس (Linear stretch) و تبدیل (Histogram equalization) از ارتفاعات گردیده. با افزایش کیفیت نمونه‌ها به روش‌های فوق، ترکیب‌های زئنی کاذب مناسب از تصاویر برای پیش‌بینی نمودن در داده‌ها به استفاده از روشهای ارگانی تصادفی بیشتر نمودن شد. انتخاب نمونه‌ها

عملا خاک‌نی‌ها
با مشخص شدن محل نمونه‌ها با تفسیر چشمی به منظور شناسایی خاک‌نی‌ها می‌باشد. این پژوهش نیز با هدف دست‌یابی به مناسب ترین روشهای اطلاعات رفوم‌های ماهواره‌ای نتایج EMT در آثارشکار آن‌ها، از اندازه‌گیری مورفومتریک خاک‌نی‌ها در محل EMT و انتخاب داده‌های از روشهای پردازش رفوم‌های ماهواره‌ای (باریزاسیون مکانی، ادغام باندها و روشن آن‌ها) نیز مفهوم‌های اصلی می‌باشند.

مواد و روش‌ها
داده‌های مورد استفاده
در این تحقیق از تصاویر ماهواره‌ای و همچنین از داده‌های مکانی و جغرافیایی برای تفسیر و گواهی مقدار تصاویر استفاده شد. این داده‌ها شامل تصاویر ماهواره‌ای نتیجه‌گیری EMT‌گر محدوده ۱۵۶۳۲ مربوط به سال ۱۸۱۳/۱۲/۱۸، تفسیرهای توپوگرافی ۲۵۰۰۰۰ سازمان جغرافیایی بیروهای مساحت بزرگ‌های ۱/۳۲۲۱، و نقشه توپوگرافی ۲۵۰۰۰۰۰ سازمان جغرافیایی بیروهای مساحت بزرگ‌های H۹۹۳ و H۹۹۳ و H۴۱۹۹۹ و NG۸۱۸۵-۵ و NG۸۱۹-۵ هستند. همچنین مهم‌ترین داده‌های رفوم‌های توپوگرافی در مقیاس ۱/۵۰۰۰۰۰ شالابی‌ها، به بهره‌برداری در مقیاس ۱/۲۵۰۰۰ از طرح استفاده شدند.

روشهای استفاده
روش کار به ترتیب مراحل شامل، شناسایی مکان‌های مورد تحقیق، جمع‌بندی اطلاعات و گزارش‌های موجود، تفسیر بصری تصاویر ماهواره‌ای و انتخاب محل نمونه‌ها، انداده‌زدنی صحرایی و گزارش‌های مورفومتریک خاک‌نی‌ها و انداده‌زدنی مورفومتریک خاک‌نی‌ها با استفاده از روشهای پردازش رفوم‌های ماهواره‌ای (باریزاسیون مکانی، ادغام باندها و روشن آن‌ها) نیز مفهوم‌های اصلی می‌باشند.
پردازش‌های ثانویه تصادفی ماهواره‌ای و اندازه‌گیری مورفومتریک خندق‌ها
در این مقاله، روش‌های پرسایزی‌های مکانی با استفاده از فیلم‌های، ادغام باند بالاکوماتیک نلدست با سایر باند‌ها و روش آنالیز مؤلفه‌های اصلی برای اندازه‌گیری طولی خندق‌های نمونه مورد آزمون قرار گرفتند. سپس نتایج هر کدام از روش‌های فوق با یکدیگر و با نتایج به دست آمده از پرسایزی‌های صحرایی مقایسه شدند.

(Spatial Enhancement)

پارسازی مکانی از آنجایی که شکل فرسایش خندقی به صورت خطی است، از فیلم‌های که پارسازی به لحاظ جغرافیایی انجام می‌گردد استفاده شده است. در این روش ارزیابی رشته‌های هر پیکسل توسط مفاضر

ارزیابی و مقایسه نتایج طرح و تجربه مناسب‌ترین روش اندازه‌گیری صحرایی و پرسایزی مورفومتریک خندق‌های نمونه انجام شد. روش پرسایزی گردی در خندق‌های کمتر از 500 متر با استفاده از مت و در خندق‌های بزرگتر از 500 متر با به صورت لازم تعداد (Global Positioning System) GPS و سپس ترسیم پل انورد نظر و محاسبه مجموع نقاط در سیستم اطلاعات جغرافیایی انجام گردید. همچنین ارتفاع و عرض خندق‌ها نیز غالباً با مت اندازه‌گیری شد. جدول 1

و پرسایزی‌های مورفومتریک خندق شامل طول، عرض و ارتفاع در سه مقاطع ۲۵/۰، ۷۵/۰ و ۵۰/۰ از طول خندق را نشان می‌دهد.

شکل ۱: موقعیت منطقه پرشور و رودخانه گرگو در شمال چهارراه

۲۳۶
جدول 1. ویژگی‌های مورفومتریک خندق‌های نمونه در منطقه دشت‌های چابهار

<table>
<thead>
<tr>
<th>خصوصیات مورفومتریک</th>
<th>شماره نمونه</th>
<th>X (UTM)</th>
<th>Y (UTM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول عمومی (متر)</td>
<td>1</td>
<td>2827456</td>
<td>324025</td>
</tr>
<tr>
<td>طول طرف‌دار (متر)</td>
<td>2</td>
<td>282753</td>
<td>324023</td>
</tr>
<tr>
<td>طول طرف‌دار (متر)</td>
<td>3</td>
<td>282774</td>
<td>324027</td>
</tr>
<tr>
<td>طول عرضی (متر)</td>
<td>4</td>
<td>282783</td>
<td>324073</td>
</tr>
<tr>
<td>طول عرضی (متر)</td>
<td>5</td>
<td>282794</td>
<td>324074</td>
</tr>
<tr>
<td>طول عرضی (متر)</td>
<td>6</td>
<td>282805</td>
<td>324075</td>
</tr>
</tbody>
</table>

روشنایی پیکسل‌های مجاور تغییر می‌شود. پس از استخراج
لبه‌های خندق‌ها، طول هر کدام از خندق‌های نمونه در محیط
سیستم‌های اطلاعات جغرافیایی نیز اندام‌گیری شد (جدول 2).

(Image Fusion)

(Barazmazi)

(Image Fusion)

(Barazmazi)

A = (DNb1+DNb2+DNb3)/3
DNb1 fused = (DNb1/A)*DN Pan.
DNb2 fused = (DNb2/A)*DN Pan.
DNb3 fused = (DNb3/A)*DN Pan.
جدول 2. طول خندق‌های اندوزه‌گیری شده به روش‌های مختلف در منطقه دشتیاری جابه‌جایی

<table>
<thead>
<tr>
<th>طول اندوزه‌گیری</th>
<th>طول اندوزه‌گیری</th>
<th>طول اندوزه‌گیری</th>
<th>طول اندوزه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره آلاینده</td>
<td>شماره آلاینده</td>
<td>شماره آلاینده</td>
<td>شماره آلاینده</td>
</tr>
<tr>
<td>مکانی پس از دامنه (متر)</td>
</tr>
<tr>
<td>اندوزه‌گیری</td>
<td>اندوزه‌گیری</td>
<td>اندوزه‌گیری</td>
<td>اندوزه‌گیری</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

که در آن:

\[A = \text{ماتریکس} \]

\[DN = \text{ارزش عدیده هر پیکسل با سول} \]

\[Pan = \text{باند پانگراماتیک با قدرت تفکیک 15 متر} \]

\[DN(b1,b2,b3) \text{fused} = \text{ارزش عدیده اندوزه‌گیری امتراج یافته} \]

\[\text{پس از اندازی مراحل فوق، مجدداً باند 7 با استفاده از فیلترهای، اندوزه‌گیری مکانی شد و اندوزه‌گیری طولی خندقها روی نمونه‌ها اندازه‌گیری گردید. نتایج اندوزه‌گیری طولی خندق در جدول 2 درج شده است.} \]

(Principal Component Analysis)

آنالیز مولفه‌های اصلی استفاده می‌گردد. از آنجایی که ضریب همبستگی بین باندها زیاد است، می‌توان اندازه‌گیری به‌کمک PCA تجزیه و تحلیل شرایط‌های این مدل را به‌کمک PC تجزیه و T
جدول 3. مقایسه بین خطا‌های به وجود آمده در هریک از روش‌ها نسبت به اندام‌گیری صحراї

<table>
<thead>
<tr>
<th>روش</th>
<th>روش بارزسازی مکانی (پس از ادغام (متر)</th>
<th>شماره نمونه‌ها</th>
<th>روش بارزسازی مکانی (پس از ادغام (متر)</th>
<th>شماره نمونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>186</td>
<td>4</td>
<td>17</td>
<td>246</td>
</tr>
<tr>
<td>46</td>
<td>184</td>
<td>8</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>126</td>
<td>198</td>
<td>6</td>
<td>15</td>
<td>66</td>
</tr>
<tr>
<td>126</td>
<td>194</td>
<td>7</td>
<td>11</td>
<td>99</td>
</tr>
<tr>
<td>59</td>
<td>124</td>
<td>8</td>
<td>12</td>
<td>58</td>
</tr>
<tr>
<td>27</td>
<td>144</td>
<td>9</td>
<td>13</td>
<td>122</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>135</td>
<td>208</td>
<td>11</td>
<td>15</td>
<td>144</td>
</tr>
<tr>
<td>0</td>
<td>113</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>میانگین</td>
<td>50/6</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>واریانس</td>
<td>157/8</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>239/3</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
تایید

نتایج به دست آمده از بارزرسی طبی بر روی باندهای تصویر سال ۲۰۰۱ از کمترین چولگی در خوددارای بوده و توسعه فراوانی آنها نزدیک به حالت منتظران می‌باشد.

خریدرده تصور و مشاهده‌های صحیح در روی خدوخانه‌های منونه باندها در غرب، اگر خدش از در جهت‌های شمال-جنوبی، شرقی-غربی، شمال غربی - جنوب شرقی و شمال شرقی - جنوب غربی کسترش دارد، نتایج از چهار نوع فیلتر برای بارزرسی آنها استفاده گردید. جدول ۶ ماتریس مقایسه فیلترهای آماری مانند میانگین، میانه، نیم و روابط بین آنها نشان داد که، باندهای تصویر سال ETM+ (جدول ۵) نشان داد میانگین ارزش‌های عددي کلیه باندها بعد از بارزرسی به روش عقاب در کلیه باندها افزایش دارد ولی میانگین ارزش‌های عددي باندها بعد از بارزرسی به روش تولید هیستوگرام در باندهای افزایش و در باندهای ۵ و ۷ کاهش را نشان می‌دهند. همچنین

جدول ۶. ماتریس فیلترهای عاملی عاشق در چهار جهت

<table>
<thead>
<tr>
<th>فیلتر شمال شرق – جنوب غرب</th>
<th>فیلتر شمال غرب – جنوب شرق</th>
<th>فیلتر افقی</th>
<th>فیلتر عمودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ۲ ۱ ۰ -</td>
<td>۲ - ۱ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰</td>
<td>۰ - ۴ ۰ ۰</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۰ - ۱ ۰</td>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
</tbody>
</table>

آنها نشان داد که، باندهای تصویر سال ۲۰۰۱ از کمترین چولگی برخوردار بوده و توسعه فراوانی آنها نزدیک به حالت منتظران می‌باشد.

تجزیه و تحلیل از دست آمده از بارزرسی طبی بر روی باندهای تصویر سال ETM+ (جدول ۵) نشان داد میانگین ارزش‌های عددي کلیه باندها بعد از بارزرسی به روش عقاب در کلیه باندها افزایش دارد ولی میانگین ارزش‌های عددي باندها بعد از بارزرسی به روش تولید هیستوگرام در باندهای افزایش و در باندهای ۵ و ۷ کاهش را نشان می‌دهند. همچنین

جدول ۶. ماتریس فیلترهای عاملی عاشق در چهار جهت

<table>
<thead>
<tr>
<th>فیلتر شمال شرق – جنوب غرب</th>
<th>فیلتر شمال غرب – جنوب شرق</th>
<th>فیلتر افقی</th>
<th>فیلتر عمودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ۲ ۱ ۰ -</td>
<td>۲ - ۱ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰</td>
<td>۰ - ۴ ۰ ۰</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۰ - ۱ ۰</td>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
</tbody>
</table>

آنها نشان داد که، باندهای تصویر سال ۲۰۰۱ از کمترین چولگی برخوردار بوده و توسعه فراوانی آنها نزدیک به حالت منتظران می‌باشد.

تجزیه و تحلیل از دست آمده از بارزرسی طبی بر روی باندهای تصویر سال ETM+ (جدول ۵) نشان داد میانگین ارزش‌های عددي کلیه باندها بعد از بارزرسی به روش عقاب در کلیه باندها افزایش دارد ولی میانگین ارزش‌های عددي باندها بعد از بارزرسی به روش تولید هیستوگرام در باندهای افزایش و در باندهای ۵ و ۷ کاهش را نشان می‌دهند. همچنین

جدول ۶. ماتریس فیلترهای عاملی عاشق در چهار جهت

<table>
<thead>
<tr>
<th>فیلتر شمال شرق – جنوب غرب</th>
<th>فیلتر شمال غرب – جنوب شرق</th>
<th>فیلتر افقی</th>
<th>فیلتر عمودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ۲ ۱ ۰ -</td>
<td>۲ - ۱ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰</td>
<td>۰ - ۴ ۰ ۰</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۰ - ۱ ۰</td>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
</tbody>
</table>

آنها نشان داد که، باندهای تصویر سال ۲۰۰۱ از کمترین چولگی برخوردار بوده و توسعه فراوانی آنها نزدیک به حالت منتظران می‌باشد.

تجزیه و تحلیل از دست آمده از بارزرسی طبی بر روی باندهای تصویر سال ETM+ (جدول ۵) نشان داد میانگین ارزش‌های عددي کلیه باندها بعد از بارزرسی به روش عقاب در کلیه باندها افزایش دارد ولی میانگین ارزش‌های عددي باندها بعد از بارزرسی به روش تولید هیستوگرام در باندهای افزایش و در باندهای ۵ و ۷ کاهش را نشان می‌دهند. همچنین

جدول ۶. ماتریس فیلترهای عاملی عاشق در چهار جهت

<table>
<thead>
<tr>
<th>فیلتر شمال شرق – جنوب غرب</th>
<th>فیلتر شمال غرب – جنوب شرق</th>
<th>فیلتر افقی</th>
<th>فیلتر عمودی</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ۲ ۱ ۰ -</td>
<td>۲ - ۱ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰</td>
<td>۰ - ۴ ۰ ۰</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۰ - ۱ ۰</td>
<td>- ۱ ۰ -</td>
<td>۰ - ۱ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
<tr>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰</td>
<td>۱ - ۲ ۰ ۱</td>
<td>۲ - ۱ ۰</td>
</tr>
</tbody>
</table>

آنها نشان داد که، باندهای تصویر سال ۲۰۰۱ از کمترین چولگی برخوردار بوده و توسعه فراوانی آنها نزدیک به حالت منتظران می‌باشد.

تجزیه و تحلیل از دست آمده از بارزرسی طبی بر روی باندهای تصویر سال ETM+ (جدول ۵) نشان داد میانگین ارزش‌های عددي کلیه باندها بعد از بارزرسی به روش عقاب در کلیه باندها افزایش دارد ولی میانگین ارزش‌های عددي باندها بعد از بارزرسی به روش تولید هیستوگرام در باندهای افزایش و در باندهای ۵ و ۷ کاهش را نشان می‌دهند. همچنین
شکل ۲. تصویر به‌های استخراج شده از خندق‌ها در جو و جهت افقی (راست) و عمودی (چپ) بر روی باند ۷

فیلترهای فوق و شکل ۲ تصویر به‌های استخراج شده از خندق‌ها را در جو و جهت افقی و عمودی بر روی باند ۷ نشان می‌دهند. علاوه بر این پس از انجام آنالیز PCA دیده شد که همیشهی این خندق‌ها از بین می‌رود و بیشترین اطلاعات در خروجی یکی از تغییرات (PCA1) و دو تغییرات اصلی اطلاعات باقی مانده در خروجی آخر دیده می‌شود. مقایسه اشکال ۴ و ۵ این تفاوت‌ها را بیشتر نشان می‌دهد. مقایسه بین خطاوی به وجود آمده در هر دو روش‌ها نسبت به اندام‌گیری صحرایی (جدول ۲) نشان داد که برخی از خندق‌های نموده روز تصویر قابل شناسایی نیستند و در برخی موارد طول‌های اندام‌گیری شده در مقایسه با طول‌های واقعی اندام‌گیری شده در زمین اختلافاتی ناشان می‌دهد.

بحث و نتایج گیری

هر چند داده‌های ماهواره‌ای لندست از نوع ETM+ به لحاظ توان تفکیک مکانی (۵۰ متر) در رده متوسط ریز بینی قرار دارند، ولی قابلیت آنها در ذخیره‌سازی امواج انرژی ۲۴۸
شکل ۳. تصویر PCA1 با پارامترهای به روش هیستوگرام

شکل ۴. نمودار توزیع فرآینان ارزش‌های عددی در PCA1

شکل ۵. نمودار توزیع فرآینان ارزش‌های عددی در PCA7
بر اساس جدول ۲ تعداد ۶ نمونه از مجموع ۶۵ نمونه مورد بررسی در این پژوهش قابل شناسایی روي تصاویر نیودن و در نتیجه اندازه‌گیری روي آنها صورت گرفته است. این تعداد نمونه حدود ۲۴ درصد از کل نمونه‌ها می‌باشد. زینگ و همکارانش (۱۲) به برخی از این عوامل محدود کننده در طیف‌بندی خندق‌ها مانند وجود اجزاء پشتیو و پیش‌نته‌های سطحی در پشت خندق‌ها اشاره نموده‌اند. در این پژوهش همچنین مشخص شد، عوامل محدود کننده دیگری نیز مانند قرار گرفتن نمونه‌ها در اراضی کشاورزی، وجود سایه، فشردگی متنی به پیشانی خندق در خندق‌های با مقاومت شکل و طول خندق در دیگر عوامل محدود کننده در پردازش رقومی خندق‌ها به شمار می‌آیند. تأثیر سایه به خصوص هنگام استفاده از شیوه‌های پارسایزی مکانی و فیلتری برای استخراج لبه‌های خندق بر خلاف آنچه زندی (۳) در مورد خطواره‌ها اشاره نموده‌اند دارای محدودیت‌هایی می‌باشد (شکل). قسمت‌های متنی به پیشانی خندق‌ها نیز به دلیل وجود ترکیبات متنوع و ناهمگن مانند اجزاء پشتیو و پیش‌نته‌های سطحی به خودخواندن فرسایش‌پذیری به ویژه زمانی که سر خندق به شکل توده‌ای بوده‌اند. کمتر قابل تشخیص هستند.

شکل ۷: ریزش در پیشانی خندق

شکل ۶: وجود سایه در خندق

به طور کلی در خندق‌های که ریزش دیواره‌ها به شکل توده‌ای و فرسایش تونلی همراه به ریزش سقف در شکل گیری آنها نقش دارد. از وضوح کمتری برخوردارند (شکل ۶). بدون شک، قابلیت تشخیص ویژگی‌های مورفومتریک خندق‌ها از روی تصاویر سنجیده ETM با به کارگیری روشهای ذکر شده افزایش می‌یابد. استفاده از این داده‌ها توسط محققین دیگر نیز مانند بنی و همکارانش (۱۰) توصیف شده است. نتایج این پژوهش نیز ضمن تأکید بر آن اضافه می‌گردد که این بیان به تصویر پیک حاصل از روش PCA دارای بررسی اطلاعات برای تشخیص خندق‌های است. این نتیجه‌گیری با بررسی شاخص‌های آماری مانند میانگین خطاهای در هر روش و انجام آزمون F در سطح ۰/۰ و ۰/۰۱ قابل بیان است (جدول ۳). مقدار F محاسبه شده برای سه روش به کار گرفته شده برای با ۹/۹ و مقدار F جدول در سطح ۰/۰ و ۰/۵ به ترتیب تقریباً برای با ۰/۵ و ۰/۲ است که در هر دو مورد مقدار F محاسبه شده به شکل باریک برگردان از مقدار جدول است. علاوه بر این بر اساس آزمون ۱ آماره، میانگین خطاهای در هر روش به صورت دو به دو تعیین هر کدام با انداده‌گیری مستقیم مورد مقایسه قرار گرفت (جدول ۴). نتایج
متن مورد استفاده

1. ایرانی درمان، ف. ۱۳۸۳. بررسی تغییرات و روند رشد فرسایش خنثی با استفاده از روش‌های پردازش اطلاعات رقمی در منطقه دشت‌و‌رود، پژوهش‌های حفاظت‌خاک و آبخیزداری، شماره‌ی ۷۸/۱۳۸۳، تهران.

2. رضایی، ع. ۱۳۸۰. مقدمات آمار و احتمالات (با توجه به نظر کامل). انتشارات نشر مشهد، مشهد.

3. زنگی، ف. ۱۳۸۵. بررسی خطرهای خاک منطقه‌ای. منطقه‌ای از منطقه‌ای، از منطقه‌ای. شماره‌ی ۷۸/۱۳۸۳، تهران.

4. صوفی، م. ۱۳۸۲. ایجاد و گسترش فرسایش آبی‌کیسی: اهمیت و نیازهای تحقیقاتی. سومین گرد همایی علمی مرجان استانی طرح محوری، بررسی و طبقه‌بندی مورفولوژیکی خنثی‌های ایران، پژوهش‌های حفاظت‌خاک و آبخیزداری، وزارت جهاد دانشگاه‌های تهران.

5. طباطبایی، م. ر. ۱۳۸۳. بررسی روند تغییرات پیمان رایج در منطقه‌ای جنوب عراق با استفاده از پردازش تصاویر ماهواره‌ای و سیستم اطلاعات جغرافیایی. پایان نامه کارشناسی ارشد مدیریت مناطق پیمانی، دانشگاه تهران.

6. وزارت جهاد کشاورزی. ۱۳۸۲. گزارش بازدید از منطقه‌های دشت‌و‌رود جنوب عراق، مرکز تحقیقات حفاظت‌خاک و آبخیزداری، تهران.

