اثر تنش خشکی بر تجمع پرولین و تغییرات عناصر در یونجه‌های یزدی،
(\textit{Medicago sativa} L.)

نیکشهری و رنجر

مهدی آخوندی، عباس صفرزاد و مهرداد لاهوتی

چکیده
خشکی از جمله تنش‌های محیطی مهم است که بر رشد و نمو گیاهان اثر می‌گذارد. برای شناسایی مکانیزم‌های مقاوت به تنش خشکی در یونجه‌آزمایی در محیط هیدروپوریک با ۴ طبقه مخلوط پاتنری‌های اسسزی حاصل از PEG شمار صفر، ۴، ۸ و ۱۲ به انجام شد. از زنوتیپ‌های یونجه‌پزی، نیکشهری و رنجر، که بر اساس شاخص‌های مورفولوژی به ترتیب به عنوان مقایسه، یکم مقاوم و حساس دسته‌بندی شدند. در این مطالعه استفاده شدند. پس از چهار هفته از گیاهان کشت شدند در محیط هیدروپوریک نمونه‌برداری و بررسی پرولین و عناصر کلیسم، پتاسیم و سدیم آن‌ها اندازه‌گیری شد. نتایج نشان داد که با افزایش تنش خشکی بر میزان تجمع پرولین در اندام‌های مختلف افزوده می‌شود، ولی میزان آن در زنوتیپ‌های اسسزی مختلف یونجه مشابه بود. نتایج امری موجب افزایش میزان تجمع پرولین در برخی نتیجه‌های سایر اندام‌های گیاه و افراش معنی‌دار غلظت عناصر پتاسیم، سدیم و کلسیم در اندام‌های گیاه مشابه در حالت کنونی نتیجه پتاسیم به سبب اندام‌های هواپیمایی و رشته‌ای افراش خشکی کاهش یافته. بر اساس نتایج مورفولوژی و پویشی‌مایعی از ابتدا آزمایش یونجه‌پزی به عنوان زنوتیپ مقایسه به نشان اسسزی در مقایسه با سایر زنوتیپ‌ها مشخص شد.

واژه‌های کلیدی: خشکی، پرولین، عناصر غذایی Medicago sativa L. یونجه، PEG

مقدمه
خشکی یکی از تنش‌های محیطی است که روی اکثر مراحل رشد گیاه ساختاری اندام و تغییرات آن‌ها آثار محور و زیان‌آوری وارد می‌سازد (۲۰، ۲۲، ۲۴، ۳۶ و ۳۷). پاسخ گیاهان به تنش‌های محیطی در سطوح مورفولوژی، آنتانومی، سلولی و مولکولی متغیر است (۳۲ و ۳۳). توانایی گیاهان

۱. به ترتیب کارشناس ارشد و عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی خراسان، مشهد
۲. استادیار فیزیولوژی گیاهی، دانشکده علوم دانشگاه فردوسی مشهد، مشهد، ایران
مربط به کالالهای پایدار (ضدیت / پپاسیم می‌باشد (antiport)) در میان عناصر غذایی، پپاسیم یکی از مهم‌ترین کانلون‌های مورد نیاز گیاه می‌باشد که در مورد تجمع آن در هگماگ تنش اسمری تا زیادی گزارش شده است (16 و 26) این کانلون در تهیه فشار اسمری و کنترل روشهای نقش ایفا می‌کند (33) با این حال نتایج مختلفی از نقش پنونهای معدنی در تهیه اسمری گزارش شده است (8 و 9 و 25 و 32) بیوئا و همکاران با مطالعه اثر تنش خشکی بر جریانات پپاسیم و آنیوین‌های تهیه گرفتن که در Phaseolus vulgaris تا گسترش کم‌ایست نمایندگان سبب حفظ فشار تورولزاسیون و کسترو و زیاده‌سوزی می‌شود. بیوئا و همکاران (18) با بررسی اثر تنش خشکی بر رو دم رنگ پنله گزارش نمودند که شوری سبب افزایش مزان سدیم و کلر در گیاه می‌شود ویژگیان تبادل ریشه کاهش یافته و همچنین سبب کاهش غلتگی نیزپرمی و کلستر بلگ شده ولی بر غلتگی آن‌ها در رشته اثر دارد (18).

با توجه به کشت و سیستم پپاسیم بررسی خصوصیات آن به وپه شناخت مکانیزم‌های مقاومت به خشکی از هم‌بین وپه برخورد است. هدف از این پژوهش شناسایی زنوتیپ‌های مقاوم به خشکی و مطالعه تغییرات اسید آمینه پپاسیم و سه عنصر پپاسیم، نیز کلینیک در شرایط تنش و نقش آن‌ها در مقاومت به خشکی می‌باشد.

مواد و روش‌ها

در این آزمایش سه زنوتیپ بونه یزدی (مقدام)، نیکشهری (نیمه مقدام) و رنجر (حسام) که بر اساس شاخص‌های مورفولوژی نشانی شده بودند (7) در محیط هیدرولوپتیک دارای سطح خشکی (0.8-8-12-14) کشت شدند. این آزمایش به صورت فاکتوریال در قالب طرح کامل تصادفی در اتاق کشت انجام شد. به مدت نه ماه گیاه‌های مورد تزریق بذر هر یک از زنوتیپ‌ها به طور جداگانه در داخل لیوان‌های مدفن در سلول‌های خود کاهش می‌دهد و فشار تورولزاسیون سلول‌های نارنگی می‌کند. پپاسیمی کل آب گیاه در هگماگ در خشکی ملایم نیز توزین نش نشانه خشک شود (15). در این روش گیاه از طریق جذب بی‌رو از معدنی است خارجی مانند افزایش میزان تپاسیس در ادامه‌های هوره و یا از طریق سنتز زیاد مواد حلال شونده سازگار که به عنوان اسملوتین عمل می‌کند. صورت می‌گردد (15 و 26) نوع ماده حلال شونده در گونه‌ها و زنوتیپ‌های مختلف، مقاومت است. این مواد حلال شونده شاپ آمینوپیلیس متوعد (برولین، فنده‌ی مثل ساکارز و فروکانز)، پلی اوله‌ها (میاپتولو، پینتیولو)، آمین‌های چهارتاپر (گلیبسین بناتین) و پنونهای (پپاسیم) و اسپیده‌های آلی (ماگنته، سنتست) (33) تغییر در جریان بیوئی سریع‌تر اضافه می‌شود. (حد چند دقیقه)، در حالت که سنتر بیوشیمیایی اسملوتین‌ها در طی چند ساعت و یا چند روز پس از تنش صورت می‌گیرد (24).

تجمع پرولین در تمام اندازه‌های گیاه در طی تنش وجود دارد، با این وجود میزان تجمع آن در دیگر گیاه سریع‌تر و بیش از سایر اندازه‌ها می‌باشد. پرولین اسید آمینه‌ای خیره‌شده در سیستولاسیم می‌باشد و احتمالاً در حفاظت از ساخته‌سازی مکرومولکولهای هیدروکسی پرولین نیز در سنتز دیواره سلول نقش دارد (24) صرف‌زدایی و همکاران (24 و 32) با بررسی سلول اسمریتی در زنوتیپ‌های پرولین به گزارش سایمون‌دها تجمع اسمریتی به‌ویژه پرولین به گزارش نمودند که زنوتیپ‌های مقاوم عکس عمل سریع‌تر و بیشتر از نظر تجمع پرولین نسبت به گونه‌های حساس نشان دادند. تجمع پرولین در هگماگ تنش خشکی در گیاهان مختلف دیگر همچون Triticum durum (Cicer arietinum) نخود (26) (Arachis hypogaea) (Zea mays) نیز گزارش شده است. جدید و کم‌مربوط بی‌رو نه تنها در هگماگ رشد طبیعی بله، بلکه برای رشد در شرایط بی‌رو و خشکی مهم‌ترین نقش را برعسل که جزء اصلی برای کم‌مربوطی (Compartmentation)
برگ و زنوتیپ نرگ در دارای کمترین مقدار بود. همچنین میزان پرولین در پنالتی‌های مختلف آب نشان داد که پنالتی ۸–۹ دارای بیشترین مقدار بود که این آمار با قبیه سطح اختلاف معنی‌داری داشت. میزان افزایش پرولین برگ در سطح ۸–۹ بار نسبت به شده (جدول ۱) مقایسه میانگین داده میزان پرولین ریشه تحت تأثیر نش آب و زنوتیپ نشان داد که بیشترین مقدار پرولین ریشه در پنالتی ۱۲–۱۹ بار مربوط به زنوتیپ زردی بود (جدول ۲).

ازارگش شده است (۲۳) میزان اسید آمیج از نظر خصایق و از نظر اهمیت می‌شود که افراد اسید آمیج پرولین از سایر اسیدهای آمید شد. جرایسی و هم‌کاران (۲۴) با بررسی شیره آبک که به دست آمده در هنگام نش خشک‌شده گزارش کردند که در هنگام کاهش پنالتی یک از ۱–۲ به ۱ مگاپاسکال، افزایش نهایی شد و در غلظت پرولین شیره آبک مشاهده می‌شود. آنها نتیجه گرفتند که پرولین می‌تواند در برگ‌ها افزایش یافته و از آنجا به بافت‌های نموداری پرای حفظ و ایجاد تنظیم اسمی از در بافت‌های در حالت رشد مستقل گردید. همچنین آنها نشان دادند که میزان پرولین ریشه، اندام هوازی و نسبت پرولین به ریشه نیز تحت تأثیر نش آب معنا دار می‌باشد.

برای تجربه پرولین در گیاه‌ها در هنگام نش خشک‌شکی لایل ABA مختلفی ارائه شده است. برخی آن را با عمل انظه‌بری و بر فراوردی‌های نوری در متابولیسم پرولین (۲۵ و ۲۶) و برخی آن را به وجود ترکیبات به‌عنوان حامل از فتوستور می‌دانند که به‌طور معنی‌داری سنگین پرولین می‌شود (۲۷ و ۲۸). بنابراین زنوتیپ از دو طرف افزایش بیان آزمایش‌های سنگین کندش پرولین و کاهش ورودی آنزیم‌ها تجزیه پرولین باعث یافته‌است.

روی بیدر (دانه‌های پلاستیکی) کشت داده شدند (۲۳). پک‌هفته پس از کشت، نمونه‌های حاصل به سطح مایع با بعدها ۱۲۴–۱۳۸ سانتی‌متر بالاتری از شیلی کشت، برای استقرار گیاه‌ها به روز سطح از صفحه یونیتیکه که دارای ۲۰ سولار بود و برای اعمال تنش از یکی گلی‌کوب ۱۳۷۰۱ در مقادیر مختلف با استفاده از روش میلک و کنفون (۱۹) استفاده شد. دما می‌تواند تأثیر داشته باشد در این مرحله ۲۵–۳۰ سانتی‌متر تغییر داشته باشد.

در این دو نوع، پرولاژ و PEG تولید آکسیژن برای نفس ریشه از لوله محتوی به بی‌هوایه استفاده گردید. فتوسنتز تهیه شده شامل ۱۶ ساعت روزنشینی و ۸ ساعت از ۴ هفته، میزان پرولین اندام گیاه (پیشنهاد برگ) مشاهده شد از روش سانترزای و هم‌کاران (۲۳) اکتیوگریدر شد. برای اندام‌هایی میزان عنصر، ابتدا از هریک از اندام‌ها، خاکستر خشک تهیه شد. به‌این معنی مقداری از بافت‌های پشت به‌دست‌آمد ۴۸ ساعت در داخل آن در حالت خشک میزان کربن داده شد. سپس به ۱/۵ گرم از بافت خشک، ۱۰ میلی‌لیتر اسید نتریک غلاف اضافه گردید. بعد از حدود ۲ ساعت، با استفاده از اجاق به‌یک میزان خراش (نا دمای تباهی) داده شد و در اینجا با استفاده از دستگاه فلم فتوستور میزان عنصر تناسبی، کلسیم و سدیم تعمیر گردید (۱) برای تجزیه و تحلیل داده‌ها از ترم افزار آماده SAS و مقایسه میانگین‌ها نیز با استفاده از آزمون دانکن و برای رسم منحنی از نرم افزاری استفاده Excel شد.

نتایج و بحث
نتایج به دست آمده از تجزیه و تحلیل داده‌ها نشان داد که تغییرات میزان پرولین در نرگ تحت تأثیر زنوتیپ، پنالتی آب و اثر متقابل آن با کود و از نظر آماری معنی‌دار بود. مقایسه میانگین میزان پرولین در نرگ، در زنوتیپ‌های مختلف، داده که در پنالتی‌های ۱۲–۱۹ بار مربوط به زنوتیپ زردی بود.
جدول 1: مقایسه میانگین مشابه پرولین-دیزنی پیوندهای در مرحله گیاهچه‌ای (هیدرومیکن) (میکرومول بر گرم وزن نرم بافت)

<table>
<thead>
<tr>
<th>نسبت پرولین-دیزنی به زمینی</th>
<th>پرولین-دیزنی به ریشه</th>
<th>پرولین برگ</th>
<th>زمینی</th>
<th>پرولین برگ</th>
<th>زمینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.32<sup>b</sup></td>
<td>0.042<sup>a</sup></td>
<td>0.075<sup>b</sup></td>
<td>0.051<sup>b</sup></td>
<td>0.075<sup>b</sup></td>
<td>0.075<sup>b</sup></td>
</tr>
<tr>
<td>9.01<sup>b</sup></td>
<td>0.062<sup>a</sup></td>
<td>0.042<sup>a</sup></td>
<td>0.058<sup>b</sup></td>
<td>0.042<sup>a</sup></td>
<td>0.042<sup>a</sup></td>
</tr>
<tr>
<td>6.06<sup>b</sup></td>
<td>0.068<sup>a</sup></td>
<td>0.058<sup>b</sup></td>
<td>0.058<sup>b</sup></td>
<td>0.058<sup>b</sup></td>
<td>0.058<sup>b</sup></td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌هایی که در هر یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکن) (1%) (α).^a

جدول 2: مقایسه میانگین مشابه پرولین-دیزنی پیوندهای در برابر خشکی (میکرومول بر گرم وزن نرم بافت)

<table>
<thead>
<tr>
<th>نسبت پرولین-دیزنی به زمینی</th>
<th>پرولین-دیزنی به ریشه</th>
<th>پرولین برگ</th>
<th>پرولین برگ</th>
<th>پاناسیل (پار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/25<sup>b</sup></td>
<td>0.056<sup>a</sup></td>
<td>0.019<sup>b</sup></td>
<td>0.019<sup>b</sup></td>
<td>12<sup>b</sup></td>
</tr>
<tr>
<td>18/11<sup>a</sup></td>
<td>0.056<sup>a</sup></td>
<td>0.019<sup>b</sup></td>
<td>0.019<sup>b</sup></td>
<td>12<sup>b</sup></td>
</tr>
<tr>
<td>9/25<sup>a</sup></td>
<td>0.056<sup>a</sup></td>
<td>0.019<sup>b</sup></td>
<td>0.019<sup>b</sup></td>
<td>12<sup>b</sup></td>
</tr>
<tr>
<td>1/7<sup>a</sup></td>
<td>0.056<sup>a</sup></td>
<td>0.019<sup>b</sup></td>
<td>0.019<sup>b</sup></td>
<td>12<sup>b</sup></td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌هایی که در هر یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکن) (1%) (α).^a

*در هر ستون میانگین‌هایی که در هر یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکن) (1%) (α).
تغییرات نسبت پتاسیم اتانوم هواپیم به ریشه تحت تأثیر نشانه چنبسته و اثر متقابل این در معنی‌دار بود. در نمونه ۲، نسبت پتاسیم اتانوم هواپیم به ریشه در فرآیند وزن‌نپیس با فناوری نش خشکی کمترین مقادیر را داشت که از نظر آماری دارای اختلاف معنی‌داری بودند. همان طور که در شکل ۱، نشان داده شده با کاهش پتانسیل آب از میزان پتاسیم ریشه کاسته می‌شود، که این امر با معنی‌دار و انتقال پنی‌ای پتاسیم به برگ و افراشته‌بن‌الاسمری سلول‌ها ان برای حفظ فشار توروزسانس مربوط دانست.

نتایج نشان داد، پتاسیم ریشه در ۱۲-۱۳ نسبت به شاهد، ۸۸٪ کاهش نشان داد (شکل ۱). آنوس (۳) در افراشته‌کننده (۱) از کاهش میزان پتاسیم ریشه در از سطح بیشتری نشان داد. نتایج همچنین نشان داد که با افراشته نش خشکی بر میزان پتاسیم اندازه‌پذیری می‌شود، که از نظر آماری دارای تأثیر معنی‌داری بود. نتایج نشان می‌دهد که با کاهش وزن‌نپیس در گیاه‌های می‌شود (۳۲ و ۳۳).

شکل ۱. اثر نش آزمایی بر میزان پتاسیم ریشه در وزن‌نپیس‌های پونجه

افراشته میزان پرولین در گیاه می‌شود (۱۲ و ۱۵). میزان پتاسیم ریشه در وزن‌نپیس‌های نیکشتیه و پزدمی دارای اثر تکرار مدیر و در وزن‌نپیس رنجر کمترین مقاد را داشت که از نظر آماری دارای اختلاف معنی‌داری بودند. همان طور که در شکل ۱، نشان داده شده با کاهش پتانسیل آب از میزان پتاسیم ریشه کاسته می‌شود، که این امر با معنی‌دار و انتقال پنی‌ای پتاسیم به برگ و افراشته‌بن‌الاسمری سلول‌ها ان برای حفظ فشار توروزسانس مربوط دانست.

نتایج نشان داد، پتاسیم ریشه در ۱۲-۱۳ نسبت به شاهد، ۸۸٪ کاهش نشان داد (شکل ۱). آنوس (۳) در افراشته‌کننده (۱) از کاهش میزان پتاسیم ریشه در از سطح بیشتری نشان داد. نتایج همچنین نشان داد که با افراشته نش خشکی بر میزان پتاسیم اندازه‌پذیری می‌شود، که از نظر آماری دارای تأثیر معنی‌داری بود. نتایج نشان می‌دهد که با کاهش وزن‌نپیس در گیاه‌های می‌شود (۳۲ و ۳۳).

شکل ۱. اثر نش آزمایی بر میزان پتاسیم ریشه در وزن‌نپیس‌های پونجه

افراشته میزان پرولین در گیاه می‌شود (۱۲ و ۱۵). میزان پتاسیم ریشه در وزن‌نپیس‌های نیکشتیه و پزدمی دارای اثر تکرار مدیر و در وزن‌نپیس رنجر کمترین مقاد را داشت که از نظر آماری دارای اختلاف معنی‌داری بودند. همان طور که در شکل ۱، نشان داده شده با کاهش پتانسیل آب از میزان پتاسیم ریشه کاسته می‌شود، که این امر با معنی‌دار و انتقال پنی‌ای پتاسیم به برگ و افراشته‌بن‌الاسمری سلول‌ها ان برای حفظ فشار توروزسانس مربوط دانست.

نتایج نشان داد، پتاسیم ریشه در ۱۲-۱۳ نسبت به شاهد، ۸۸٪ کاهش نشان داد (شکل ۱). آنوس (۳) در افراشته‌کننده (۱) از کاهش میزان پتاسیم ریشه در از سطح بیشتری نشان داد. نتایج همچنین نشان داد که با افراشته نش خشکی بر میزان پتاسیم اندازه‌پذیری می‌شود، که از نظر آماری دارای تأثیر معنی‌داری بود. نتایج نشان می‌دهد که با کاهش وزن‌نپیس در گیاه‌های می‌شود (۳۲ و ۳۳).

شکل ۱. اثر نش آزمایی بر میزان پتاسیم ریشه در وزن‌نپیس‌های پونجه

افراشته میزان پرولین در گیاه می‌شود (۱۲ و ۱۵). میزان پتاسیم ریشه در وزن‌نپیس‌های نیکشتیه و پزدمی دارای اثر تکرار مدیر و در وزن‌نپیس رنجر کمترین مقاد را داشت که از نظر آماری دارای اختلاف معنی‌داری بودند. همان طور که در شکل ۱، نشان داده شده با کاهش پتانسیل آب از میزان پتاسیم ریشه کاسته می‌شود، که این امر با معنی‌دار و انتقال پنی‌ای پتاسیم به برگ و افراشته‌بن‌الاسمری سلول‌ها ان برای حفظ فشار توروزسانس مربوط دانست.

نتایج نشان داد، پتاسیم ریشه در ۱۲-۱۳ نسبت به شاهد، ۸۸٪ کاهش نشان داد (شکل ۱). آنوس (۳) در افراشته‌کننده (۱) از کاهش میزان پتاسیم ریشه در از سطح بیشتری نشان داد. نتایج همچنین نشان داد که با افراشته نش خشکی بر میزان پتاسیم اندازه‌پذیری می‌شود، که از نظر آماری دارای تأثیر معنی‌داری بود. نتایج نشان می‌دهد که با کاهش وزن‌نپیس در گیاه‌های می‌شود (۳۲ و ۳۳).
شکل ۲ اثر نش اسسی بر نسبت پاسیم بخش هواپیما به ریشه در زنوتیپهای بونجه

نگه‌دارنده سدیم اندام هواپیما به ریشه در بین زنوتیپهای زنوتیپهای بزرگ و نیکشیار با یکدیگر اختلاف معنی‌داری دارند. نیکشیار و بیشترین بیماران این نسبت را دارا می‌باشند. این نتایج نشان می‌دهد که عوامل زنوتیپ، بزرگی محیط و فاصله بین سدیم هواپیما و بیماران این نسبت کاسته می‌شود. همانطور که در پاسخ، نسبت کاهش این نسبت تحت پاسخ‌بندی ۵۰٪ مختلف خشکسال به یکدیگر متفاوت می‌باشد.

یافته‌های (۹) معتقد است که در هنگام نشان، میزان سدیم افزایش می‌یابد و برای جلوگیری از سیستم آن، گیاه سعی در خروج و یا به واکنش فرآیند آن می‌نماید. نستور و همکاران (۱۲) با بررسی اثر نش اسسی افزایش درصد جذب پاسیم می‌شود که این امر را به دلیل نظیر این فاصله اسپری‌ها می‌دانند. در صورتی که میزان میزان سدیم افزایش می‌شود که نشان می‌دهد چنان‌که سدیم به گیاه پاسخ‌بندی می‌نماید.
اثر تنش شکل‌کنی بر تجمع پروتئین و تغییرات عناصر بیولوژیایی یوزدهی...

شکل ۲. اثر تنش اسپشی بر نسبت پناسیم به سدرم ریسه زنوتیپ‌های پونجه

شکل ۳. اثر تنش اسپشی بر میزان سد و ریسه در زنوتیپ‌های پونجه
تجمع درصد سدیم در برگ‌های گیاه معنی‌دار نیوheit و افزایش نشان داد.

تنش خشکی ملایم سبب افزایش در میزان کلسیم اندام هوایی شد، ولی تنش خشکی شدید سبب کاهش مقدار کلسیم اندام هوایی می‌شود. کلسیم نقش بسیار مهمی در تنظیم و رفاه سلیم و انتخاب سدیم و پاتاسیم دارد.

گیاهان از کلسیم برای رهایی از تنش شوری استفاده می‌کنند. در هنگام شوری میزان کلسیم سلولی افزایش می‌یابد که این افزایش آثار معمولی از رشد توسط نمک را کاهش می‌دهد.

در این حالت کلسیم به عنوان یک پیام رسان تاثیرگذار سبب می‌شود که پروپتی‌های معروط به انتقال سدیم سبب انتقال سریع کلسیم و ورود آن به وکتور می‌شود. از این رو، ورود سدیم به وکتور می‌تواند تأثیر علائم کاهشی در نتیجه حفظ فلزات دار به وکتور باشد که حفظ فلزات دار (18). تجزیه و تحلیل داده‌های معنی‌دار نشان داد که تغییرات این پارامتر تحت تأثیر پتانسیل آب اثر متقابل پتانسیل آب و پتانسیل معنی‌دار می‌باشد. در این سطح حسکی، پتانسیل 2-بار پیشین در کلسیم رشته را نشان می‌دهد که این لحاظ با تکنیکی سطح انتخاب معنی‌دار دارد.

نسبت کلسیم به‌خود هوایی به ریشه تحت تأثیر نوده، پتانسیل آب و اثر متقابل این دو اختلاف معنی‌داری نشان داد. مقایسه میانگین نسبت کلسیم اندام هوایی به ریشه در زنوتیپ‌های نشان داد که بین زنوتیپ پریده و نیکشهی اصلی اختلاف معنی‌داری وجود ندارد، ولی زنوتیپ رنگی باین دو با اختلاف معنی‌داری نشان می‌دهد و کمترین نسبت را داراست. مقایسه میانگین نسبت کلسیم به‌خود هوایی به ریشه در سطح مختلف حسکی نشان داد که هر کاهش پتانسیل آب از میزان این نسبت کاهش می‌شود، به این ترتیب که کاهش آن در سطح 4-8 و 12-بار نسبت به شاهد می‌باشد.
سیاستگرایی

مباحث مورد استفاده

1. آیوو، م. ۱۳۸۰. بررسی فیزیولوژی اثرات تنش شکنی ناشی از پلی اتیلن گلیکول (۲۰۰۰ با مرحله جوانه زنی و گیاهچه‌ای ارتفاع (Lens culinaris M.) عدس (Lens culinaris L.). پایان نامه کارشناسی ارشد فیزیولوژی گیاهی، دانشکده علوم، دانشگاه فردوسی مشهد ۱۲۴ صفحه.

2. آخوندی، م. ۱۳۸۲. بررسی عکس عمل بیولوژی بیولوژی (Medicago sativa L.). پایان نامه کارشناسی ارشد فیزیولوژی گیاهی، دانشکده علوم، دانشگاه فردوسی مشهد ۲۰۱ صفحه.

3. حمیدی، ح. و. صفرزاده. ۱۳۸۳. بررسی ویژگی‌های مورفولوژی و بوستیمبایی کالووس‌های بیولوژی (Medicago sativa L.) و بازبینی آنها در برای تنش اسیدی. پژوهش و سیستم‌شناسی ۵۸–۸۶ صفحه.

4. طرفی، ا. و. ۱۳۷۶. انرژی شاخص‌های مقاومت به تنش شکنی در چند گونه بیولوژی یکسان. پایان نامه کارشناسی ارشد زراعت. دانشکده کشاورزی دانشگاه فردوسی مشهد ۱۳۰ صفحه.

6. کوهک، ع. ۱۳۷۶. تحلیل عملیات دیمکاری (ترجمه). انتشارات جهاد دانشگاهی مشهد ۱۳۰ صفحه.

