اثر تنش خشکی بر تجمع پرونده و تغییرات عنصر در یونجه‌های یزدی،

*Medicago sativa* L.

نیکشیری و رنجر (1)

مهدی آخوندی، عباس صفرزاده و مهرداد لاهوتی

چکیده

خشکی از جمله اثرات محیطی مهم است که بر رشد و نحوه گیاهان اثر می‌گذارد. برای شناسایی مکانیزم‌های مقاومت به تنش خشکی در پونه‌های آزمایشی در محیط هیدروپونیک با 4 طبقه مختلف پتانسیل‌های اسپزی هاصل از PEG کاهش صفر، 10 و 12- با انجام شد. در این مطالعه، اندازه‌گیری‌های افزایشی و نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده و عنصر کلسیم، نتایج آنها انتقال و گسترش تنش خشکی بر میزان تجمع پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های نازک در پهنای پونه، نهایت نمایندگی نمونه‌های آزمایشی و نازک پرونده در اندام‌های مختلف افزوده شد. نتایج پیشنهاد می‌شود که با افزایش تنش خشکی به شدت بالا، افزایش پهنای پونه و نیز اندازه‌گیری‌های N

واژه‌های کلیدی: خشکی، پرونده، عنصر کلسیم، *Medicago sativa* L., پونه، PEG.
مربوط به کانال‌های پادیرو (antiport) (سیدمی/پناسمی می‌باشد.

9 در میان انواک‌زایی حمایت، پناسمی یکی از مهم‌ترین کانال‌های مورد نیاز گیاه‌ها می‌باشد که در مورد تجفیع آن در همگانی تنش اسیری تابعیت زایده گزارش شده است. (16 و 26) این کانال‌ری در تظیم فشار اسیری و کنترل ردیدنی تنش ایفا می‌کند. (23)

با این حال نتایج مختلفی از تنش بونه‌های معدنی در تظیم اسیری گزارش شده است. (8 و 15 و 26) بویه‌ها و همکاران

(8) با مطالعه اثر تنش خشکی بر جریانات پناسمی و آنیون‌های تیتیج گرفته شده است (Phaseolus vulgaris) تارهی کشتی‌ها با اکثر کم آب و رود بونه‌های پناسمی سبب خسارت تورسانس و گستر و ردش سولول‌های نسبت به ردش شوری و رنگ بی‌رنگی پوشش گیاهی:

(18) یا بررسی شرک تنش شوری بر درهم پوشش گیاهی:

در طی چند دقیقه، در حالی که بیشتر پوششی بیاینده‌ها در طی چند ساعت و یا چند روز پس از تنش صورت گیرد. (24)

تجمع پرولین در تمام اندام‌های گیاه در طی تنش و جو اندام یا جو در پرولین بزرگ‌تری از بزرگ‌تری از مسیر اندام‌ها می‌باشد. پرولین اسید انتهای ذخیره شده در سیتوپلاسمی بی‌پناسمی و احتمالاً در حفاظت از ساختمان ماکرومولکول‌ها و هیدروکسی پرولین نیز در سیستم دواره سولول تقطع بی‌تر (24) صرب‌دن و همکاران (23 و 26) یا بررسی تنش شرکت از گزینه‌های پرولین نیز توسط نسیب گیاه‌های اندام‌ها نشان دادند. تجمع پرولین نسبت به گونه‌های حساسی نشان دادند. تجمع پرولین در هنگام تنفس خشکی در گیاهان مختلف دیگر همچون Triticum durum (Cicer arietinum) نخود (18) (5 و 7) گندم (Zea mays) یا Cicer arietinum نیز گزارش شده است.

جدب و کمبودی پونه‌ها نتیجه در هنگام رشد طبیعی، بلکه برای رشد در شرایط شوری و خشکی مهم می‌باشد. زیرا این

در تنفس بدن از پوست گیاه‌های مورد نظر،

بلند هر یک از تنش‌های در طور چندگان در داخل لیوان‌های

مدل‌ها در سلول‌های خود کاشش می‌دهند و در خشکی تر بروز

سلول خود را منظم می‌کنند. بیان‌دهنگی می‌گذاری در هنگام دوره

خشکی علائم نیز بروز تنظیم عنصر خشکی و می‌شود (15). در

این روش گیاه از طریق جذب پونه‌های معدنی از محیط

خارچی مانند افتراقیات میزان تجمیع بنیان در ادامه‌ها و

یا از طریق سنتر زیاده مواد حل شونده سازگار که به عنوان

امسولولیت عمل می‌کند. صورت می‌گیرد (15 و 26). نوع ماده

حل شونده در گونه‌های خشکی مخلوط، مقاومت است.

این مواد حلال شونده شامل آمونیاک‌های متنوع (برولین، فیتو

مال ساکاز و فروکان) بلی (وله‌ها/مالاتول و پیتونول)

آمین‌های چلاریک (جلاینسین بنیان)، پونه‌ها (پناسمی) و

اسبابیه‌ای آل (مالات) و سیستم‌های (31). تغییر در جریان

پوست بی‌خیال موادی در طی چند دقیقه در حالت که

نشست یک تیپ ممکنی است در طی چند ساعت و یا چند روز

پس از تنش صورت گیرد. (24)

مواد و روش‌ها

در این آزمایش سه زنگنبوب پونه‌ای پردی (مقاوم)، نیک‌کهری

(نیچه می‌گذاری) و نر حساسی که براساس شاخص‌های

مورفولوژی‌شونده بودند (24) در محیط هیدروپاتیک

درای سطح خشکی (0 و 4 و 8 و 12 و 16) کشت شدند.

این آزمایش با صورت فاکتوریال در قالب طرح کاملاً تصادفی

در اتاق کشت انجام شد. به همراه می‌گذاری گیاه‌های مورد نظر،

بلند هر یک از زنگنبوب‌ها به طور چندگان در داخل لیوان‌های
برگ زننده شکل خشکی بر تجهیز پرولین و تغییرات عناصر بیونجی‌های یوزی...
جدول 1. مقایسه میانگین میزان پرولین-Z-توتیپ‌های بونجه در مرحله گیاهچه‌ای (هدروپوئیک) (میکرومول بر گرم وزن تر بافت)

<table>
<thead>
<tr>
<th>ضریب زننده</th>
<th>درصد نسبت پرولین ادامه‌های زننده</th>
<th>پرولین ادامه‌های بونجه</th>
<th>پرولین برگ</th>
<th>پرولین پیش‌بازه‌های بونجه</th>
<th>پرولین پیش‌بازه‌های برگ‌های بونجه</th>
<th>ضریب زننده</th>
<th>پناسیل (پارا)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55</td>
<td>0.05</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>11/18</td>
<td>0.05</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>11/20</td>
<td>0.05</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
</tbody>
</table>

*در هر ستون میانگین‌هایی که دارای یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکین) (\(\alpha=0.05\)).

جدول 2. مقایسه میانگین میزان پرولین-Z-توتیپ‌های بونجه در باربر خشکی (میکرومول بر گرم وزن تر بافت)

<table>
<thead>
<tr>
<th>ضریب زننده</th>
<th>درصد نسبت پرولین ادامه‌های زننده</th>
<th>پرولین ادامه‌های بونجه</th>
<th>پرولین برگ</th>
<th>پرولین پیش‌بازه‌های بونجه</th>
<th>پرولین پیش‌بازه‌های برگ‌های بونجه</th>
<th>ضریب زننده</th>
<th>پناسیل (پارا)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55</td>
<td>0.05</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>11/18</td>
<td>0.05</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>11/20</td>
<td>0.05</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0/0/0/0/0/0/0/0/0/0/0</td>
<td>0.5</td>
<td>4</td>
</tr>
</tbody>
</table>

*در هر ستون میانگین‌هایی که دارای یک حرف مشترک می‌باشند، با یکدیگر تفاوت معنی‌داری ندارند (آزمون دانکین) (\(\alpha=0.05\)).
تغییرات نسبت پتانسیل اندام هواپیم به ریشه تحت تأثیر نرده، تیمار خشکسال و انر تفاوت مشابهی در میان دارند. دو نمودار ۲ نسبت پتانسیل اندام هواپیم به ریشه در هر سه زنوتیپ با افزایش نش خشکسالی افزایش یافت و این اختلاف از نظر آماری معنی دارد.

توجه نشان داد، پتانسیل ریشه در 12-بار نسبت به شاهد، 283٪ کاهش نشان داد (شکل ۱). آب‌سوزی (۱) ظریف کشاورزی (۲) و افزایش هواپیم به ریشه در عدس، بولنجه و پنیه در اثر نش خشکسالی گزارش داده‌اند. نتایج همچنین نشان داد که با افزایش نش خشکسالی بین پتانسیل اندام هواپیم مشابهی افزوده می‌شود که چانچه در این شرایط از استفاده ABA افزاش افرازش آنها قابل توجه نیست. امیلی و همکاران (۱۲) با مطالعه اثر نش و شوری به بولنجه نشان دادند که نش شوری با کاهش میزان عناصر ضروری در گیاه، سبب کاهش افزایش اندام هواپیم و افزایش دلیل این افرازش را نشان می‌دهد. کاهش در تنظیم فشار اسیدی و کاهش رژه‌تهای عضوی می‌شود.
رشد برگ می‌گردد.

میزان سدیم اندام هوایی زنوتیپ‌ها با یکدیگر از نظر آماری
دارای اختلاف بودند. در بین سطوح خشکی، سطح -4-بار از
سایر سطوح میزان پیشتر سدیم بود. مقایسه‌های میانگین
نشان داد که بیشترین میزان سدیم در اندام‌های هوایی مربوط به
زنوتیپ رنجر در پتانسیل 4-بار بود. مقایسه‌های میانگین درصد
سیدیم ریشه در زنوتیپ‌های بین‌نی نشان داد که زنوتیپ بزدر
با 2/72 درصد بیشترین درصد و با زنوتیپ نیک‌نیک‌های دارای
اختلاف معنی‌داری نبود و زنوتیپ رنجر با 64/7 درصد کمترین
مقدار سدیم ریشه هزاری را داشت. بود. این نتایج به شکل 3- با کاهش
پتانسیل آب، بر میزان این بیان در ریشه افزوده می‌شود. سدیم
می‌تواند در برخی از فرآیندهای سلولی جانشین پتاسیم شود. در
شکل 4 مشاهده می‌شود که با کاهش پتانسیم ریشه بیشتر
سیدیم آن افزوده می‌شود که نشان دهنده جانشینی سدیم به جای
پتاسیم می‌باشد.

شکل 2- اثر نتیجه اصلی بر نسبت پاتامی بخش هوایی به ریشه در زنوتیپ‌های بین‌نی

تغییرات سدیم اندام هوایی به ریشه در بین زنوتیپ‌ها نشان
داد که زنوتیپ‌های بزرگ و نیک‌نیک‌های با یکدیگر اختلاف
می‌نماید. نتایج نشان داد که افزایش نسبت پاتامی به سدیم
دانشگاه همه‌پاره که در شکل 2 مشاهده می‌شود، در
زنوتیپ‌های مختلف میزان کاهش این نسبت تحت پاتاسیم‌های
مختلف خشکی با یکدیگر متفاوت می‌باشد.
اثر تنش خشکی بر تجمع پروتئین و تغییرات عناصر بیونجه‌های یزدی، زئوپیپ‌های بیونجه

شکل ۳. اثر تنش اسپزی بر میزان سدیم ریشه در زئوپیپ‌های بیونجه

شکل ۴. اثر تنش اسپزی بر نسبت پتاسیم به سدیم ریشه زئوپیپ‌های بیونجه
تجمع درصد سدیم در برگ‌های گیاه معنی‌دار نیوده و اندازه‌گیری نشان نداد.

تشش خشکی می‌تواند از میزان کلسیم اندازه‌گیری سبب شود. البته خشکی شدن سبب کاهش مقدار کلسیم اندازه‌گیری می‌شود. کلسیم نقش بسیار مهمی در تنظیم و روده‌های سدیم و اندازه‌گیری بیماران درد دارند.

در هنگام شب و میزان کلسیم سلولی افزایش می‌یابد که این افزایش آثار متعارفی از رشد و تمرکز نمک کرده‌اند. در این حالت کلسیم به عنوان یک پیمان رسان توانایی شهری سدیم راه برمی‌خورد به انتقال سدیم به انتقال سدیم شد. این درصدی از راه‌های می‌تواند شرط و روشان آن را با کاهش سدیم سازد.

درست و صحیح غشاء که این نسبت سبب تغییر دادن نسبت سبب به سدیم و تعبیر انتخاب دیوری جذب پتانسیل شد. انتقال سریع پتانسیل از رشته به انتقال هوازی می‌تواند علت حفظ فلخته به روزگار بهتر باد.

ت huyện هیدرولکی و کلر صورت می‌گیرد و نقص پرولین در این امر معنی‌دار نیست.

با توجه به نتایج به دست آمده به طور کلی می‌توان چنین نتیجه گرفت که گیاهان در هنگام نشان خشکی با تغییرات به برخی از خصوصیات فیزیولوژیک خود ایجاد می‌کنند. به نشانه‌های مختلف بازیگری می‌دهند. یکی از این بازیگران تولید پرولین می‌باشد که نتایج به دست آمده نشان می‌دهد که تجربه آن در تولید شرایط خشکی مؤثر می‌باشد (13، 15، 22 و 27). همچنین تجربه اندازه‌گیری پتانسیل و کلسیم سبب افزایش مقاومت به خشکی در گیاه می‌گردد (8، 10، 12، 16 و 18). این تجربه در تشخیص مایلیه خشکی مؤثر است.

نتایج فوق با توجه به میزان تکمیل پرولین و همچنین تغییرات اندازه و نتایج خصوصیات فیزیولوژیکی بین بر این که پرولین یکی از عنوان مقاوم‌ترین زنوتیپ و زنوتیپ یکی از عنوان حساس‌ترین زنوتیپ به نشانه‌های مؤثر را تأیید می‌نماید.

© دانشگاه علوم و فنون کشاورزی و منابع طبیعی سال دهم شماره اول بهار 1385


References:


