اصلاح معادلات تجربی نشته آب از کانال در منطقه رودشت اصفهان

حمیدرضا سالمی و علیرضا سپاسخوئه

چکیده

به منظور توجهی فی رویشش آبهای خاکی، باید میزان نشت مورد بررسی قرار گیرد. این مهم تاکنون در بعضی از شیکه‌های آبیاری مختلف کشور با استفاده از روابط تجربی که در دیگر کشورهای دنیا استخراج گردیده‌اند و گرفته‌است. در صورت نبودن مطالعات در حالت حاضر، در خاک‌های مختلف کشور با استفاده از این معادلات و روابط آنها به محاسبه نشته آب از کانال می‌نمایند. این معادلات برای مناطق مشخصی به دست آمده‌اند که واشنگ و صحت برای کاربرد این معادلات تجربی برای تخمین نشته آب از کانال‌های خاکی مناطق مختلف به عنوان اهداف این پژوهش بايد مشخص گردد. یکی از این تحقیق مقادیر نشته آب در تعدادی از کانال‌های خاکی منطقه رودشت اصفهان از اندوزه‌گیری شد و سپس مقادیر نشته آب با آنگه که از طریق معادلات تجربی تخمین زده می‌شود مقایسه گردید. به منظور اندوزه‌گیری تلفات آب، تعدادی کانال خاکی در مناطق چم‌بی، شیرین آباد، زیار، شاشور، قلعه عبدالله، مادرکان، سیرجان، قمیشان و سپیچی (با بافت خاک سیاهی، سبز و سبزینی) انتخاب گردید. در هر یک از مناطق فوق، سه نوع پوشش گیاهی کم، متوسط و زیاد در نظر گرفته شد. اندوزه‌گیری تلفات آب به روش جریان و رودی - خروجی صورت یافته و برای اندوزه‌گیری سرعت جریان آب از مکرو - مولیه استفاده شد. برای تخمین مقادیر نشته آب از کانال‌ها معادلات تجربی اینگه‌هام (Ingham، دیویس و ویلسون، (Mols Worth و Yennudiumia، پنچاب هند (Moritz)، موریس وینس (Affenkenden)، موریس وینس (Davis و Wilson) و می‌توان به کارگاهشند. معادلات رگرسیون خطا بین مقادیر نشته آب اندوزه‌گیری شده و نشته آب محاسبه شده از معادلات تجربی اولیه و سپس در اصلاح به دست آمده، مشاوه نشته‌گیری که این روشهای مقدار نشته آب را کمتر از واقعیت تخمین می‌زنند. بعد از اصلاح معادلات ملاحظه گردید که معادلات اینگه‌هام و موئیس بالارین ضرب تضخیل را داشتند (96٪) و شبکه نزدیک بوده و از این است که مقدار عرض از بیشتر تجزیه بیشتر است. نشته که در منطقه مورد مطالعه قابل استفاده است. روشهای با ضرب تضخیل (83٪) و شبکه نزدیک بوده و به این می‌باشد. یکی از اصلی‌ترین مسائل اصلی گردید. معادله تجربی نشته نیز مهم گردد.

واژه‌های کلیدی: معادلات نشته آب، کانال‌های خاکی، شیکه کانال‌های آبیاری، اصفهان

1. د. اینگه‌هام (1971)، پژوهش مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان
2. ا. د. اینگه‌هام (1971)، پژوهش مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان
مقدمه
یکی از مهم‌ترین عوامل محدود کننده توسعه کشاورزی در ایران به پایه‌برای منطقه مرکزی کشور از جمله استان اصفهان، آب است. ولی مانفعتنباها همه اهمیتی که آب از نظر کشاورزی در ایران دارد از این نعت دادند استفاده بهینه آب و براساس بررسی‌های انجام شده به طور متوسط باران معیوب آب در ایران حدود 2/67 و بازده توزیع آب در مزرعه حدود 4/86 برآورد شده است که بازده کل حدود 32/33% تیجه می‌گردد. (5).

معلوماً قسمت اعظم بحث‌ها به صورت پدیده شده به وقوع می‌پیوندد (7) که در اجرا طرح‌های کاری که آب در کشاورزی ابتدایی مبتنی نشته تیجه گردد مقدار نشته آب از طرق اندازه‌گیری مستقیم و با استفاده از معادلات تجویز تخمین زده می‌شود (10). از آنجا که زمین صحت کاربرد معادلات تدریجی باید تخمین مقدار نشته آب از کنال‌ها ضروری است، در این تحقیق مقادیر نشته آب در تعدادی از اندازه‌گیری رودخانه اصفهان که دارای شکوفایی سنگین می‌باشد، اندازه‌گیری شد سپس مقدار نشته آب با آنچه که از طرق معادلات ترتیبی تخمین زده شد مقایسه گردید.

یکی از تحقیقات انجام شده در چند صحبت روش‌های اندازه‌گیری نشته، پژوهش‌کنگره‌کول (1369) است که اقدام به اندازه‌گیری فیت‌بی به صورت رود در رودود جریان و حوضچه‌ای در نمونه‌های از کانال‌های خاکی منطقه‌های شاور و اهواز در خوزستان نمود. با استفاده از این ابتدای و شرایط کالا ضریب فرمول هانیتیع استخراج گردید که معلوم که میزان اندازه‌گیری شده به صورت غیر به هم نزنیده است. برای منطقه هواهی میزان نشته به دست آمده در حدود 2/67 در منطقه شاور 4/86 از نظر نشته کانال‌های در داشته‌اند.

بیانیه (2007) نشته از کانال‌های آب‌فی به وسیله یک مدل ریاضی بررسی مقدار محدودی راه‌حل بهینه در میانگین نشته و به دست آمده را به صورت پیک‌بندی و به روش ساده و مدل‌رسایی بررسی شده و به دست آمده را به صورت بهینه در میانگین نشته کانال‌های فشار (Steady saturated)
اصلاح معادلات تجربی نشته آب از کانال در منطقه روستاهای اصفهان

تخمین نشته آب برای کانال‌های خاکی دشت شمال اصفهان

معادلات تجربی برآورد نشته آب

معادلات و روش‌های تجربی متعددی به منظور تخمین میزان نشته آب از کانال‌ها در نقاط مختلف دنیا ارائه شده (9). که در این قسمت از مقاله 7 مورد آن‌ها اشاره می‌شود:

- معادله اینگهام

\[q = \sqrt[3]{\frac{C}{10S}} (1 - \frac{9}{100}) \]

در این معادله q میزان نشته در طول کانال (m³/س) جریان آب در کانال P (m), محیط خشک شده L (m) و C ضریب است. همین از طریق C به نوع خاک بین کانال‌ها مشخص می‌شود.

- معادله مولس ورث - گیو دوبیا (Molesworth-Yennudimia)

\[q = \left(\frac{0.5}{h} \right)^{0.5} \]

در این معادله q میزان نشته آب را در طولی کانال R (m³/m²/روز) شرایط هیدرولیکی و C عرض شیب نشته که برای خاک‌های رم سک 0.05/0 و برای خاک‌های شنی 0.3/0 می‌باشد.

- معادله میسرا (Misra)

براساس این روش با در نظر گرفتن جنس بستر کانال، مقدار میزان نشته آب برای بستر نمایشی شنی 0.05/0 و برای خاک شنی 0.2-0.5/0 و برای آب میزان 2-0.5/0 می‌باشد.

- معادله آفیگندن (Affengendon)

\[q = \frac{S}{100} \]

\[S = Aq^{-m} \]

در این معادله S میزان نشته آب از کانال به طول بک کیلومتر ل، طول کانال Q (Km) به جریان Q و نشته آب از کانال ضریب A ضریبی هستند که به ضریب آبگذاری آب در خاک بستگی دارد و به ترتیب بین 3/0-0.3/0 و 3/0-0.7/0 در نوسان است.

مواد و روش‌ها

مشخصات عمومی منطقه

منطقه روستاهای جغرافیایی 17 درجه تا 37 درجه و 30 دقیقه شرقی تا 33 درجه و 35 دقیقه بیش از شمال قرار دارد. روستاهای با وسعت تقیبی 46 هزار هکتاریکی از دشت‌های قهاران اصفهان به شمار می‌آیند (6). این منطقه که در شرق شهر اصفهان و در شرق نزدیک حوضه زاینده رود واقع شده است، دارای آب و هوای گرم و خشک (بوزه در بهار و تابستان) و اقلیم نیمه بیابانی شديد می‌باشد. براساس گزارش هواشناسی و آمار 10 ساله منطقه، میانگین بارندگی در محدوده مورد مطالعه 88 میلی‌متر در سال گزارش شده است. مقدار بارندگی و تعرق (ETO) در ابسته ورژن 153 میلی‌متر در سال گزارش شده است (2).

محل اجرای طرح

تعداد نه کانال در مناطق جمجمه، صرف آباد، ساحل قلعه عبادآباد، سپریان، مادکان، نمی‌یکانی و سبزوار در شرق شهرستان اصفهان در طرح شبکه آبیاری جدید روستاهای انتخاب رفته است (شکل 1).

هر کدام از این مناطق براساس نشته تفصیلی خاک استان و اندازه‌گیری‌های سطحی شیشه‌های بهبود می‌باشند، متوسط و سمیک بوده و همچنین هر کدام از روستاهای خاکی دارای شیشه‌های یکسان پوشش گیاهی کم (50-105)، متوسط (105-35) و زیاد (35-60) می‌باشد.
جدول 1. مشخصات خاک، پوشش گیاهی و اندازه کانال‌ها به تغییر محیط

<table>
<thead>
<tr>
<th>نام محل کانال</th>
<th>درجه کانال</th>
<th>درجه بافت خاک</th>
<th>درجه بافت خاک</th>
<th>بافت خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>قلعه عبدالله</td>
<td>4</td>
<td>Clay</td>
<td>35/4</td>
<td>Sand</td>
<td>13/7</td>
<td>Clay</td>
<td>50/8</td>
<td>Clay</td>
<td>47</td>
<td>51</td>
<td>Clay</td>
<td>13/7</td>
</tr>
<tr>
<td>فهیم‌نوی</td>
<td>4</td>
<td>Silt</td>
<td>33</td>
<td>Clay</td>
<td>36</td>
<td>Clay</td>
<td>50</td>
<td>Clay</td>
<td>37</td>
<td>37</td>
<td>Silt</td>
<td>18</td>
</tr>
<tr>
<td>شاطور</td>
<td>3</td>
<td>Silty Clay</td>
<td>49</td>
<td>Clay</td>
<td>18</td>
<td>Silt</td>
<td>49</td>
<td>Silt</td>
<td>42</td>
<td>42</td>
<td>Clay</td>
<td>40</td>
</tr>
<tr>
<td>جمیره</td>
<td>4</td>
<td>Loam</td>
<td>50</td>
<td>Silty</td>
<td>32</td>
<td>Loam</td>
<td>20</td>
<td>Silt</td>
<td>42</td>
<td>42</td>
<td>Loam</td>
<td>40</td>
</tr>
<tr>
<td>مادرکان</td>
<td>4</td>
<td>Silt loam</td>
<td>20</td>
<td>Silt</td>
<td>20</td>
<td>Silt loam</td>
<td>20</td>
<td>Silt loam</td>
<td>20</td>
<td>Silt loam</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>زیر</td>
<td>3</td>
<td>Loam</td>
<td>35</td>
<td>Silt</td>
<td>40</td>
<td>Silt loam</td>
<td>25</td>
<td>Silt loam</td>
<td>25</td>
<td>Silt loam</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>شریف آباد</td>
<td>4</td>
<td>Sandy loam</td>
<td>16</td>
<td>Sandy</td>
<td>70</td>
<td>Sandy loam</td>
<td>15</td>
<td>Sandy loam</td>
<td>15</td>
<td>Sandy loam</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>سیرجان</td>
<td>4</td>
<td>Sandy loam</td>
<td>30</td>
<td>Sandy</td>
<td>55</td>
<td>Sandy loam</td>
<td>20</td>
<td>Sandy loam</td>
<td>20</td>
<td>Sandy loam</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>سیبی</td>
<td>3</td>
<td>Sandy loam</td>
<td>30</td>
<td>Sandy</td>
<td>60</td>
<td>Sandy loam</td>
<td>20</td>
<td>Sandy loam</td>
<td>20</td>
<td>Sandy loam</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

روش زیاد، سنگین، کم، متوسط، بیک، سیبی و زیاد.
روش‌ها

در این تحقیق از روش اندازه‌گیری جریان و رودخانه‌های خروجی به‌منظور محاسبه میزان نشت آب استفاده شده است. در این روش مقدار آب ورودی و خروجی و طول باره‌ها (جدول ۲ و ۳) اندازه‌گیری می‌شود. به منظور اندازه‌گیری سرعت جریان از Aott-Cooling میکرو مولی‌های ۲۰ از نوع مغناطیسی استفاده شد. اندازه‌گیری ها در سه مقطع عرضی و در دو تکرار برای اطمینان کمتر از ۵۰ سانتی‌متر در سطح آب و در مورد عمق های بیشتر از ۵۰ سانتی‌متر در ۲۰٪ و ۸۰٪ از سطح آب انجام شد. عملیات اندازه‌گیری سرعت در کانال‌های به دست پوشش گیاهی بالا با مشکلات نیمه‌آبی با نیافته‌ای مقاطعی از کانال انتخاب گردیده که اکثر این مقاطعی با حداکثر خطای شخصی و دستگاه (کمتر از ۵%) وجود داشته باشد. در این پژوهش به سطح ورودی و خروجی از حاصل ضرب سرعت جریان در مقطع جریان ورودی و خروجی به دست آمده است. مقادیر تلفات با استفاده از رابطه ذیل محاسبه شده است:

\[q_a = \frac{Q_1 - Q_3}{P \times L} \]

که \(Q_a \) به \(Q_1 \) و \(Q_3 \) و \(P \) \(L \) \(Q_1 \) \(Q_3 \) می‌باشد. محاسبه قطعیت بندی در قسمت‌های ورودی و خروجی از کانال، تلفات آب تلقی می‌شود.

- معادله دیویس و ویلسون (Davis-Wilson)

\[q = \frac{P \times L \times H^{0.7}}{G} \]

- معادله موریتس (Moritz)

\[q = \frac{1.046 C(Q/V)^{0.5}}{V} \]

- معادله پنجاب هند (Indian)

\[q = (C(a)(d)) \]

- معادله اشکال کلان (Marilin Foul Vert).
جدول ۲. مشخصات میدرولیکی کانال‌های خاکی در خرداد ماه

<table>
<thead>
<tr>
<th>Q₁ (م³/ثانیه)</th>
<th>D (متر)</th>
<th>R (متر)</th>
<th>P (متر)</th>
<th>W (متر)</th>
<th>V (م³/ثانیه)</th>
<th>A (متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۱</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۴۹</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۶۰</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۷۱</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۹۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۱/۳۶</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۲/۶۳</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۴/۹۲</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
</tbody>
</table>

جدول ۳. مشخصات میدرولیکی کانال‌های خاکی در تیر ماه

<table>
<thead>
<tr>
<th>Q₁ (م³/ثانیه)</th>
<th>D (متر)</th>
<th>R (متر)</th>
<th>P (متر)</th>
<th>W (متر)</th>
<th>V (م³/ثانیه)</th>
<th>A (متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۸</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۴۹</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۶۰</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۷۱</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۹۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۱/۳۶</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۲/۶۳</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۴/۹۲</td>
<td>۰/۲۴</td>
<td>۰/۸۵</td>
<td>۰/۱۷</td>
<td>۰/۴۲</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
</tbody>
</table>
جدول ۴. مشخصات میدانی کانال‌های خاکی در مرداد ماه

<table>
<thead>
<tr>
<th>نام محل کانال</th>
<th>فاصله بین دو مقاطع (م)</th>
<th>Q۲ (m³/s)</th>
<th>D (m)</th>
<th>R (m)</th>
<th>P (m)</th>
<th>W (m/s)</th>
<th>V (m)</th>
<th>A (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>قلعه عبدالله</td>
<td>۷۵۰</td>
<td>۰/۳۱</td>
<td>۱/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۱/۵۴</td>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
</tr>
<tr>
<td>قمیشان</td>
<td>۴۱۰</td>
<td>۰/۲۵</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>شاطور</td>
<td>۸۵۰</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>جمیره</td>
<td>۱۰۰۰</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
</tr>
<tr>
<td>مادرکان</td>
<td>۱۱۶۰</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
</tr>
<tr>
<td>زیار</td>
<td>۷۰۰۰</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>شریف آباد</td>
<td>۴۶۵۰</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>سیرجان</td>
<td>۷۵۰۰</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>سچی</td>
<td>۳۶۵۰</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
</tr>
</tbody>
</table>
اصلاح ضرایب معادلات تجاری
با استفاده از معادلات تجاری که شرح آن داده شد مقداری نشت آب برای روش‌های ایشکمی (Ingham, 1970, Misra) و مواد ناخالص (Davis and Wilson, 1974) استفاده می‌کند که به نظر محسوب تبعیض و تعرق از آن‌ها تبعیض از تنش کلاس اهدایها و روش‌های در محدوده زمانی انداده‌گیری یا با اعمال ضربه نشت مقدار Kp از 0.27 تا 0.74 استفاده شده است. مقدار متوسط ماهانه تبخیر موقتاً در این اسلال محاسبه گردیده است. مقدار میانگین کلی از صورت بر می‌آید. در معادلات تجاری فقط الکتر نیک و مواد ناخالص در هیدرولوگی میانگین کالریا در تمرکز شده است لیا در این پژوهش پویش گیاهی بطور معمول در معادلات تجاری اصلاح شده وارد شده است. با استفاده از مقدار انداده‌گیری شده نشت آب، ضرایب جدیدی برای معادلات تجاری به دست آمده است بدون صورت که مقدار نشت انداده‌گیری شده (qcm) در معادلات تجاری جایگزین شده و ضرایب معادلات تجاری برای این ارقام مجدداً محاسبه گردیده است. جدول 6 ضرایب اصلاح شده معادلات تجاری نشت آب را در شرایط مختلف پویش گیاهی و باز کردن پوشه خاک آرائه می‌دهد.

با توجه به ضرایب اصلاح شده، مقدار نشت آب برای کالریا منطقه روش‌های اصلاح از معادلات تجاری محاسبه شده و در جدول 7 درج گردیده است. معادلات رگرسیون خطی بین مقداری (qcm) (نشت آب انداده‌گیری شده) و q0 (نشت آب به دست آمده از معادلات تجاری اولیه و پس از اصلاح) و ضرایب تغییر مربوط به جدول 8 را مشاهده می‌کنید. مقداری که مقدار نشت کمتر از مقدار انداده‌گیری تخمین می‌زند ولی روش اینکه قابل اصلاح با از اصل خودهای ضریب تغییر (AV7) و شیب خط برای 0/155 را داشته است. بسط از اصلاح معادلات نیز ملاحظه شد که مقدار نشت اینکه مواد ناخالص و مواد ناخالص بالاترین ضریب تغییر خاصی داشته است (96/7) و شیب خط نزدیک به واحد نسبت اینکه مقدار عرض از مبدأ نیز ناجی است. همچنین روش بعدی که قابل استفاده است روش میزان با ضریب تغییر (18/3) و شیب خط نزدیک به واحد می‌باشد.

نتایج
محاسبه میزان نشت آب در کالریا خاکی میزان نشت انداده‌گیری شده (جدول 5) بین 0/61-1/277 متر مکعب بر متر مربع در روز (میانگین 0/54 ترا متر مکعب بر متر مربع در روز) و مقدار نشت از تنش کلاس الاف در این استگاه روش‌های 0/275 0/1450 محاسبه بر مربی روش در روز (میانگی) با توجه به نشانی به میانگین تبخیر و تعرق سه‌ماهه (126/374 × 0/277) که 1/5 درصد از کل تلفات را تشکیل می‌دهد، تلفات در این مطالعه فقط شامل نشت آب می‌باشد.

36
جدول ۵ مقایسه بين نتایج این مطالعه با معادلات و روشهای تجربی (متوسط دوره فصل زراعی)

<table>
<thead>
<tr>
<th>نام کانال</th>
<th>پهلو</th>
<th>پهلو</th>
<th>عرض و پهن</th>
<th>میزان ورود</th>
<th>میزان تخلیه</th>
<th>میزان دوره</th>
<th>میزان تخلیه</th>
<th>میزان خروج</th>
<th>سرعت تخلیه</th>
<th>تعداد کف</th>
<th>طول کانال</th>
<th>قطر دیوار</th>
<th>شریف اباب</th>
<th>لری</th>
<th>مادر کان</th>
<th>فریدن</th>
<th>محمد</th>
<th>میزان ثبات</th>
<th>میزان ثبات</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qala-e Abdolmalek</td>
<td>0.031</td>
<td>0.017</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Qomshah</td>
<td>0.021</td>
<td>0.004</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Shatar</td>
<td>0.022</td>
<td>0.004</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Jomhe</td>
<td>0.059</td>
<td>0.011</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Madaran</td>
<td>0.029</td>
<td>0.008</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Zar</td>
<td>0.031</td>
<td>0.008</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Sharif</td>
<td>0.066</td>
<td>0.015</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Siby</td>
<td>0.043</td>
<td>0.015</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Siby</td>
<td>0.085</td>
<td>0.021</td>
<td>0.025</td>
<td>0.043</td>
<td>0.012</td>
<td>0.062</td>
<td>0.044</td>
<td>0.037</td>
<td>0.072</td>
<td>81</td>
<td>CL.</td>
<td>8</td>
<td>L.S.</td>
<td>15</td>
<td>Si.L.</td>
<td>45</td>
<td>5</td>
<td>58</td>
<td>59</td>
</tr>
</tbody>
</table>
جدول 4. ضرایب اصلاح شده معادلات تجربی در شرایط مختلف پوشش گیاهی و بافت خاک

<table>
<thead>
<tr>
<th>پوشش گیاهی</th>
<th>ضرایب اصلاح نشده</th>
<th>بافت خاک</th>
<th>معادله</th>
<th>متوسط</th>
<th>کم</th>
<th>زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنگین</td>
<td>1/5</td>
<td>48/8</td>
<td>52/8</td>
<td>54/5</td>
<td>55/3</td>
<td>57/4</td>
</tr>
<tr>
<td>ایتکهام</td>
<td>3/5</td>
<td>27/5</td>
<td>24/5</td>
<td>25/4</td>
<td>26/2</td>
<td>27/3</td>
</tr>
<tr>
<td>سبک</td>
<td>5/5</td>
<td>45/9</td>
<td>40/9</td>
<td>42/8</td>
<td>43/2</td>
<td>45/4</td>
</tr>
<tr>
<td>سنگین</td>
<td>6/5</td>
<td>0/21</td>
<td>0/20</td>
<td>0/19</td>
<td>0/18</td>
<td>0/17</td>
</tr>
<tr>
<td>آفغاندن</td>
<td>1/2</td>
<td>9/3</td>
<td>10/6</td>
<td>10/2</td>
<td>10/1</td>
<td>10/1</td>
</tr>
<tr>
<td>سبک</td>
<td>3/4</td>
<td>9/3</td>
<td>9/2</td>
<td>9/1</td>
<td>9/1</td>
<td>9/1</td>
</tr>
<tr>
<td>سنگین</td>
<td>7/1</td>
<td>0/21</td>
<td>0/20</td>
<td>0/19</td>
<td>0/18</td>
<td>0/17</td>
</tr>
<tr>
<td>موریس</td>
<td>7/7</td>
<td>0/24</td>
<td>0/23</td>
<td>0/22</td>
<td>0/21</td>
<td>0/20</td>
</tr>
<tr>
<td>سبک</td>
<td>8/9</td>
<td>0/24</td>
<td>0/23</td>
<td>0/22</td>
<td>0/21</td>
<td>0/20</td>
</tr>
<tr>
<td>سنگین</td>
<td>0/36</td>
<td>0/09</td>
<td>0/08</td>
<td>0/07</td>
<td>0/06</td>
<td>0/05</td>
</tr>
<tr>
<td>مولس ورث-پنی دومی</td>
<td>0/33</td>
<td>0/06</td>
<td>0/05</td>
<td>0/04</td>
<td>0/03</td>
<td>0/02</td>
</tr>
<tr>
<td>سبک</td>
<td>0/73</td>
<td>0/05</td>
<td>0/04</td>
<td>0/03</td>
<td>0/02</td>
<td>0/01</td>
</tr>
<tr>
<td>سنگین</td>
<td>0/42</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>پنجاب هند</td>
<td>1/25</td>
<td>0/39</td>
<td>0/39</td>
<td>0/39</td>
<td>0/39</td>
<td>0/39</td>
</tr>
<tr>
<td>سبک</td>
<td>1/8</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
<td>0/51</td>
</tr>
<tr>
<td>سنگین</td>
<td>2/17</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
</tr>
<tr>
<td>دیویس و ویلسون</td>
<td>2/30</td>
<td>0/03</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
</tr>
<tr>
<td>سبک</td>
<td>2/5</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
<td>0/04</td>
</tr>
</tbody>
</table>
جدول ۷ مقایسه بین نتایج نشت آب اندازه‌گیری شده و به دست آمده از موانعات تجربی اصلاح شده

<table>
<thead>
<tr>
<th>نام کالال</th>
<th>بافت خاک</th>
<th>نشت آب اندازه‌گیری شده</th>
<th>موانعات</th>
<th>موانعات</th>
<th>موانعات</th>
<th>موانعات</th>
<th>موانعات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m³/m²/day</td>
<td>m³/m²/day</td>
<td>m³/m²/day</td>
<td>m³/m²/day</td>
<td>m³/m²/day</td>
<td>m³/m²/day</td>
</tr>
<tr>
<td>فلسطین</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>قمیشان</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>شاطور</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>جعفریه</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>مادرکان</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>زیر</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>شرفین آباد</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>سبزوار</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
<tr>
<td>سیستان</td>
<td></td>
<td>1/37</td>
<td>0/40</td>
<td>0/41</td>
<td>0/37</td>
<td>0/41</td>
<td>0/37</td>
</tr>
</tbody>
</table>
جدول ۸ معادلات و ضرایب تغییر مقدار نشتنظیر و نشتنشته‌گیری شده

<table>
<thead>
<tr>
<th>ضریب تغییر (R²)</th>
<th>معادله نابع رگرسیون خطی</th>
<th>نام معادله با روش تجربی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q₁ = -0.3/188+5/35qₑ</td>
<td>اینکهم</td>
</tr>
<tr>
<td></td>
<td>q₂ = -0.3/211+12qₘ</td>
<td>موریس موز</td>
</tr>
<tr>
<td></td>
<td>q₃ = -1/55+94/9qₐ</td>
<td>افریدن</td>
</tr>
<tr>
<td></td>
<td>q₄ = -1/28+72/9qₙ</td>
<td>مولس ورث - پنی دومی</td>
</tr>
<tr>
<td></td>
<td>q₅ = -6/88+7/9qₙ</td>
<td>دیویس - ویلسون</td>
</tr>
</tbody>
</table>

بعد از اصلاح معادلات

	qᵢₐ = -0.9/6+99/9qₐ	اینکهم
	qᵢₘ = -0.9/6+11qₘ	موریس موز
	qᵢₐ = -0.64+9/9qₐ	افریدن
	qᵢₙ = -6/10+45/9qₙ	مولس ورث - پنی دومی
	qᵢₙ = -6/10+65/9qₙ	دیویس - ویلسون

به‌جهت منظورهایی که از روابط تجزییات مربوط به جنس‌خاک در

همچنین سیستم تغییرات ضرایب مربوط به جنس‌خاک در

معادلات تجربی، انواع بافت‌خاک تا بر تیم‌گرید نشته‌گیری

با توجه به نبافت کلی محل طرح (نسبت و متوسط) مقدار

نشته‌گیری جنس داکا برود و مقدار محاسباتی به لحاظ

در نظر نگرفتند دقیق مربوط به جنس و بافت‌خاک در

فرمول‌ها باشند به دست‌آمده است. اینه مشکل تغییر

هندگی خود را نشان می‌دهد که ضرایب اصلاح نگریده‌اند

و در صورت اصلاح ضرایب معادلات، مشاهده می‌شود

مقدار نشته‌گیری جنس و محاسباتی از طریق

فرمول‌های اینکهم و موریس در اصل سریال بالایی

می‌باشد.

در مطالعاتی که عکس علوف (۳) در کانال‌های خاکی زیرزمین

سند زاینده‌درود انجام داده است، روش تجربی‌های میسرا

برای تخمین نشتنشده می‌باشد. به دست‌آمده که این عامل مهم در

بدین ترتیب ضرایب معادلات تجربی برای شرایط منطقه

مورد مطالعه اصلاح شده و مناسب‌ترین معادله تجربی نشتنشته‌گیری

تغییر گردید.

بحث

با نگاهی به جدول ۵ مشاهده می‌شود از اینکه نشته‌گیری

شدته بیشتر از مقدار نشتنشته‌گیری شده از طریق فرمول‌های

تجربی (۹) به دست‌آمده است (قبل از اصلاح ضرایب) با نشته‌گیری

توضیحات زیر ضروری باید مورد مطالعه

افزایش حفاظت و درد و ترکیبها در بدن انها سنتی شیبه

روش‌ها (ماده‌ها) منجر به افزایش مقدار نشتنشته‌گیری

شده و احتمال آن با نشتنشته‌گیری می‌گردد که بینش پنهان

مشکل غیرقابل اجتناب می‌باشد.

پرونده گیاهی موجود در اتار پکی دیگر از دلایل بی‌رفتار

مقدار نشتنشته‌گیری شده می‌باشد که این عامل مهم در
نمونه مورد استفاده

2. سازمان هواشناسی کل کشور. 1378. گزارش سالیانه کلیماتولوژی. استحکام کشاورزی کیوتروآباد، انتشارات سازمان کشاورزی استان اصفهان. صفحه ۳۹.

3. عراق علی، س. 1373. مدیریت توزیع آب و گردانه زایده، رود براساس پرآورد راندمان انتقال آب در کانال‌های زیر سم. پایان نامه کارشناسی ارشد آب و زیرکشاورزی، دانشگاه صنعتی اصفهان. صفحه ۲۰۲.

4. کوشکویی، ح. ع. 1366. یک بررسی مختصر میزان و علل تلفات آب در تعدادی از کانال‌های خاکی خوزستان. علوم کشاورزی ۱۸ (۳ و ۴): ۰۵-۱۲.

5. معاونت بهره‌برداری و مدیریت منابع آب. 1369. گزارش سالیانه وضعیت منابع آب. شماره ۵، ص. ۲۰. وزارت نیرو، تهران.

6. مهندسین مشاور زایده. 1370. گزارش آبیاري طرح شبکه آبیاري دشت روشتن. انتشارات مهندسین مشاور زایده، جلد چهارم، ص. ۸۷-۱۲۰، وزارت نیرو، تهران.

