اثر واریته و زمان نگهداری روی ویژگی‌های شیمیایی رب گوجه‌فرنگی حاصل از چهار واریته

محمدرضا عدل‌تیان، سید علی مرتجویی، منوچهر حامدی، مصطفی مظاهی‌تهرانی

چکیده
یکی از مهم‌ترین محسولات زراعی، گوجه‌فرنگی است. به طوری که شناخت دقیق و همه جانبه عوامل مؤثر بر تولید گوجه فرنگی و فراورده‌های آن ضروری است. چرا که تکنولوژی و تغذیه برای این محصولات و فراورده‌های آن در ایران و جهان روز به روز افزایش می‌یابد. در این برسی با توجه به تولید ۷۳ میلیون تن گوجه فرنگی در ایران و این که بخش عمده‌ای از این محصولات تبدیل به رب گوجه فرنگی و محسولات مشابه می‌شود، نتایج در جدال روابط و زمان نگهداری بر روی ویژگی‌های شیمیایی رب حاصل از چهار واریته متخب طرح ملی، کال‌چی از ۳ از ارلی اوربانا وای، ارلی اوربانا 111، پتونولی سی اچ در طی یک سال تغذیه در شرایط اتفاق (دمای متوسط ۲۵ درجه سانتی گراد) بررسی گردید. برخی خصوصیات فیزیکی شیمیایی شامل: ترکیب، موادی که واریته‌های ارلی اوربانا 111 و پتونولی سی اچ دارای بیشترین میزان ماده جامد کل و بالاترین میزان اسیدیت به دست آمده است. این نتایج به دست آمده که واریته‌های ارلی اوربانا 111 در دارای کمترین نوسانات و بیشترین ثبات بودند.

واژه‌های کلیدی: زمان نگهداری، واریته گوجه فرنگی، ویژگی‌های شیمیایی رب گوجه فرنگی

مقدمه
در حال حاضر بیش از ۱۴۰ واحد در سطح جهت تولید رب گوجه فرنگی و فراورده‌های وابسته فعالیت می‌کند که در مجموع طرفین تولید سالانه این فراورده حدود ۳۸۳۸ میلیون تن است. این نتایج برسی بر آن طرفین تولید دیگر فراورده‌ها منابع اصلی و

1. مربی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی رامی‌ی، اهواز
2. به ترتیب استاد و استادیار صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد
3. دانشیار صنایع غذایی، دانشکده کشاورزی، دانشگاه تهران، کرج

۲۱۱
مواد و روش‌ها

موقعت جغرافیایی در جهت دستیابی به خواص و ویژگی‌های مطلوب مطالب کاربرد مورد ظرف هستند که در این میان، واریتی ناشی از آن می‌کند. بنابراین باید مناسب با هدف تولید در برنامه‌ریزی کشت طرح باید مناسب انتخاب شود. بنابراین منظور جهت شاخص بیشتر از تیم حصول مدل مناسب با کاربرد منطقی (فرآوری) از ویژگی‌های فیزیک‌شیمیایی و حسی واریتی‌ها، آگاهی کافی داشته.

برخی از تغییرات شیمیایی که در طی فرآوری و نگهداری مواد غذایی ایجاد می‌شود، ناشی از انواع مختلف ترکیبات مواد غذایی و شرایط محیطی است. این تغییرات ماهیت مواد غذایی و کاهش زمان یا نان‌گذاری شود.

مهمین تغییرات شیمیایی بر اساس فعالیت آزمایشی و تغییرات تغییرات اکسیداسیون قریب‌های ها و محدودیت شدن نیترات کننده است که باعث تغییرات در ظاهر ماد غذایی می‌شود.

در این پژوهش، ویژگی‌های فیزیک‌شیمیایی رب حاصل از جهت واریتی کشت طرح کاربرد منطقی (فرآوری) از ویژگی‌های رب جوجه‌فرگی در مقياس احبا انجمد. آزمایشگاهی است.
جدول 1. ویژگی‌های شیمیایی رب گوجه‌فرنگی نهشته از چهار واریته گوجه‌فرنگی طرح ملی رب (1)

<table>
<thead>
<tr>
<th>اسیده‌ی قابل فندر (نمک گیاهی)</th>
<th>تیتر (بر حسب mg/100gr)</th>
<th>pH</th>
<th>VAT</th>
<th>نتیجه‌ی بافتگی (اریا)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارلو اوریانا وای</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارلو اوریانا 111</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پتوارلی سی ایج</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. مقادیر معنی‌داننده واریانس وارد به صفات شیمیایی رب گوجه‌فرنگی

<table>
<thead>
<tr>
<th>اسیده‌ی MS</th>
<th>PH MS</th>
<th>مواد جامد کل</th>
<th>MS وبریکس</th>
<th>dF</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.018**</td>
<td>0.018</td>
<td>0.018</td>
<td>0.018**</td>
<td>0.018</td>
<td>0.018</td>
</tr>
<tr>
<td>0.8**</td>
<td>0.8**</td>
<td>0.8**</td>
<td>0.8**</td>
<td>0.8**</td>
<td>0.8**</td>
</tr>
<tr>
<td>0.1**</td>
<td>0.1**</td>
<td>0.1**</td>
<td>0.1**</td>
<td>0.1**</td>
<td>0.1**</td>
</tr>
</tbody>
</table>

جوش‌شهد سرد مخلوط نمونه و سپس به یک بالن زره یک میلی‌لیتری انتقال داده شد. پس از به حجم رساندن 100 میلی‌لیتر از محلول با استفاده از 1 نا‌حیدر (NaOH) نسبت به محلول با استفاده از 10 الکتریکی تیترگردید (10 و 12) تیترگردید.

به عنوان معرفی تا رسیدن به pH = 8/1 تیترگردید (10 و 12)

به عنوان pH نمونه‌ها ۷ در کالی‌بر کردن دستگاه pH متر با فاکتورهای ۴ و ۷ در دمای ۲۵ درجه سانتی‌گراد تعیین گردید (8 و 12).

Shimadzu- moisture balance EB- 330 Moc

سیستم مهار مواد جامد کل و رطوبت
جدول 3. میانگین درصد ویژگی‌های شیمیایی رب غوجه‌فرنگی حاصل از چهار واریته

<table>
<thead>
<tr>
<th>صفات</th>
<th>PH</th>
<th>مواد جامد نامحلول (%)</th>
<th>مواد جامد کل (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/510^a</td>
<td>3/373^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/500^a</td>
<td>3/717^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/511^a</td>
<td>3/373^a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/513^a</td>
<td>3/373^a</td>
</tr>
</tbody>
</table>

*حرفت غیر مشابه تفاوت معنی دار را نشان می‌دهد.

نتایج و بحث

ویژگی‌های شیمیایی

نتایج به‌دست آمده از ارزیابی ویژگی‌های شیمیایی میانگین سه نتار و هفته ماه نگهداری از 4 واریته غوجه‌فرنگی در جدول 3 خلاصه شده است. برای انتخاب بهترین واریته در هر گروه خصوصیات شیمیایی به طور مجزا تجزیه و تحلیل شده‌اند.

مواد جامد کل

یکی از ویژگی‌های مهم در ارزیابی رب حاصل از واریته‌های غوجه‌فرنگی مواد جامد کل است، در یک باریک کنترل و معنی‌های مواد جامد کل بیشتر باشد نشان دهنده ق zamówienia بیشتر خواهد بود. بنابراین می‌توان از آن به عنوان یک شاخص کمی در ارزیابی رب حاصل از واریته‌های مختلف در طی زمان نگهداری استفاده کرد. بررسی آماری نشان داد که اثر تیمار واریته در هر دو سطح 0/25 و 0/5 معنی‌دار نبوده‌است. همچنین اثر متقابل دو تیمار واریته و زمان نگهداری نیز معنی‌دار نبوده و لی اثر تیمار زمان نگهداری بر روی صفت مواد جامد کل در هر دو سطح 0/25 و 0/5 معنی‌دار نبوده‌است. در نتیجه نوع واریته تأثیر مناسب روی درصد مواد جامد کل ندارد. لی در طی زمان نگهداری این اختلاف معنی‌دار بوده.

Andreas hettich D72 tuttingen

از دستگاه سانتریفوژ‌مدل و به‌کار بردن تمرین مقدار مواد جامد نامحلول استفاده گردید. بیند تریب که 50 گرم نمونه (رب غوجه‌فرنگی) درون لوله‌های سانتریفوژ توزیع و سانتریفوژ گردید. سپس نمونه‌ها روي کاغذ صافی با آب مقطع داغ ساختاده و بعد از صاف شدن نمونه‌ها به اندازه‌گیری و سرد گردید و به مدت 3 ساعت در دمای 90 درجه سانتی‌گراد خشک گردید و سپس مجدداً همین مراحل تکرار شد. در نهایت نمونه‌ها عکس شده به دسیکاتور منتقل شد و سرد شده و به وزن ثابت برسد.

طرح آماری

به منظور بررسی آمار سی‌سی و مقایسه سطح تیمارها بر ویژگی‌های اندازه‌گیری شده‌فوق از طرح کامل‌التصادمی حداکثر در سه تکرار و جهت مقایسه میانگین‌ها نیز از آزمون جند دامنه‌ای دانکر با ضریب اطمینان 95 درصد استفاده شد. برای انتخاب بهترین واریته در زمان‌های مختلف براساس مجموع ویژگی‌های شیمیایی، آزمون رتبه‌بندی استفاده شد.

214
شکل 1. تغییرات میزان مواد جامد کل رب گوجه فرنگی حاصل از جهره واریتی طی زمان‌های نگهداری

است. اما دهل روند کاهشی و بعد افزایش این صفت طی هفت ماه نگهداری رب گوجه فرنگی می‌تواند به خاطر تغییر در میزان مواد جامد محلول و نامحلول و تبدیل این دو جزئی به یکدیگر باشد. این از دلالی کاهش میزان مواد جامد کل احتمالاً پدیده‌ای است که در طی (Synersis) می‌باشد که در این آن فازی محصول از فاز جامد جدا می‌شود. عامل دیگری که احتمالاً در کاهش میزان ماده خشک موثر نیست، مصرف پروتئین‌ها و مواد قندی توسط کیک‌ها می‌باشد. همچنین در اثر رشد و فعالیت لیکوپاسیل‌ها، مقدار مواد جامد کلی کاهش می‌یابد که به عنوان مصرف و تجزیه مواد قندی (فروکتوز گلکزیر) می‌باشد (14). بنابراین بر اساس این صفت نمی‌توان واگران را به عنوان بهترین انتخاب کرد. در ضمن عامل دیگر دلیل این خصوصیات که در این فراورده‌ها در رند گوجه‌های فارسی بر روی فراورده‌های گوجه فرنگی است که باعث کاهش ویتامین C و کل فنولهای محلول می‌شود (9).
شکل 2. تغییرات مواد جامد محلول راب و گوشه فرنگی حاصل از واریت های مختلف طی زمان‌های نگهداری

درصد اسیدیت

نتایج آنالیز آماری نشان می‌دهد که تیمار واریت اثر معنی‌داری بهره‌وری این صفت دارد (\(\alpha \)). بنابراین راب حاصل از واریت پیوسته سی اچ دارای بیشترین اسیدیت است، دلیل این امر بر می‌گردد به خود گوشه فرنگی این واریت که آنالیز شبیه‌سازی گوشه فرنگی نشان می‌دهد که این واریت بالاترین میزان اسیدیت را داشته. اما تیمار زمان نگهداری نیز اثر معنی‌داری را نشان نمی‌دهد. اما دلیل تغییرات اسیدیت در نامحلول است (جدول 3) در مورد اثر زمان نگهداری روی مواد جامد نامحلول نیز در سطح 0/01 = \(\alpha \) معنی‌دار است و یک روند افزایش را در طی هفته ماه نگهداری نشان می‌دهد که این نتیجه به مساله کاهش بریکس با مواد جامد محلول هم خوانی دارد. چون همان طور که ذکر شد و در منابع هم آمده است، (4) تبدیل مواد جامد محلول به نامحلول صورت گرفته است که باعث افزایش مواد جامد نامحلول در طی نگهداری می‌شود. این امر می‌تواند به دلیل انحلال ترکیبات مانند سولول، همی سولول و کنیک بخشک که موجب افزایش مواد جامد نامحلول شود که این اثر نیز توسط دانشمندان در مورد 6 ماه نگهداری پوره گوشه فرنگی مشاهده شده که افزایش داشته است و لی اثر متقابل این دو تیمار بهنری و زمان نگهداری روی روی تغییر معنی‌دار نشده است. از طرف دیگر بررسی از گونه‌های قارچی قادر به ترشح آنزیم‌هایی مانند کنیک می‌باشد استرات و پلی‌گالکتوئورات هستند که با تجزیه کننک منجر به تخریب بافت و کاهش قوم محفظی می‌گردد (9). شکل 3 روند تغییرات مواد جامد نامحلول طی هفته‌های نگهداری را نشان می‌دهد.

PH

براساس نتایج آنالیز آماری اثر واریت و زمان نگهداری معنی‌دار است. که در میان چهار واریت، پتواریلی سی اچ دارای حداقل
عکس: نمودار رنگی نشان‌دهنده تغییرات مواد جامد با تغییر زمان نگهداری روبه‌رو گردد. به طوری که میزان یکپارچگی در این واریتی از سایر واریتی‌ها کمتر است و تغییرات اسیدیتی یک دیل از بر می‌گردد به تغییرات و شکستن یکپارچگی باری و همکاران کردن که با افزایش زمان نگهداری، اسیدیت افزایش و کاهش می‌یابد. این روند کاهش اسیدیتی در برخی واریتی‌ها pH در طی زمان نگهداری می‌تواند ناشی از واکنش‌های ترکیبی

شکل ۴. تغییرات pH در زمان نگهداری

شکل ۳. تغییرات مواد جامد با تغییر زمان نگهداری روبه‌رو گردد. به طوری که میزان یکپارچگی در این واریتی از سایر واریتی‌ها کمتر است و تغییرات اسیدیتی یک دیل از بر می‌گردد به تغییرات و شکستن یکپارچگی باری و همکاران کردن که با افزایش زمان نگهداری، اسیدیت افزایش و کاهش می‌یابد. این روند کاهش اسیدیتی در برخی واریتی‌ها pH در طی زمان نگهداری می‌تواند ناشی از واکنش‌های ترکیبی...
شکل 5. تغییرات اسیدیترب در گوجه‌فرنگی حاصل از واریته‌های مختلف طی زمان‌های نگهداری

جدول 4. امتیاز دهی وزن‌گیاه شیمیایی رب گوجه‌فرنگی حاصل از چهار واریته

<table>
<thead>
<tr>
<th>صفات</th>
<th>امتیاز</th>
<th>PH</th>
<th>مواد جامد کل</th>
<th>مواد جامد محول</th>
<th>اسیدیت</th>
<th>مواد جامد ناحول</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارلی اورباتناوی 111</td>
<td>25</td>
<td>4</td>
<td>50</td>
<td>25</td>
<td>70</td>
<td>12/5</td>
<td>90</td>
</tr>
<tr>
<td>ارلی اورباتناوی 125</td>
<td>25</td>
<td>4</td>
<td>50</td>
<td>25</td>
<td>70</td>
<td>12/5</td>
<td>90</td>
</tr>
<tr>
<td>پنوازی اسیدیت</td>
<td>25</td>
<td>4</td>
<td>50</td>
<td>25</td>
<td>70</td>
<td>12/5</td>
<td>90</td>
</tr>
<tr>
<td>کال جی ان 3</td>
<td>25</td>
<td>4</td>
<td>50</td>
<td>25</td>
<td>70</td>
<td>12/5</td>
<td>90</td>
</tr>
</tbody>
</table>

شکل 5 روند تغییرات اسیدیترب طی زمان نگهداری را نشان می‌دهد.

نتیجه‌گیری

بر اساس بررسی‌های آماری مقایسه‌ی اتیوات تأثیر واریته، و زمان نگهداری، روابط مشابهی با شیمیایی رب گوجه‌فرنگی به قرار زیر خلاصه کرد. در ارزویی ویژگی‌های شیمیایی رب گوجه‌فرنگی به دست آمده از چهار واریته گوجه‌فرنگی در طی هفت ماه اسید سبزیجک یا اسید کاهش نیاز به دمای نگهداری بستگی دارد. از طرفی مخمرهای و کینه‌ها نیز اسیدهای آمیزه با عناوین می‌تواند به این ایمنی را به عنوان منع از کردن و استفاده‌ای امکان‌پذیر نشود. پیشرفت از اکثر محاسبه‌ی اسیدیترب افزایش pH می‌شود (6). برخی از اکتشافاتین جنس پاسیلوس نیز مانند پاسیلوس سوتیلیس و پاسیلوس کوگولانس از سیتروت به عنوان منع کردن استفاده کرده و سبب کاهش اسیدیترب می‌شوند.
نگهداری مشخص شد که در برخی صفات مورد بررسی، اثر
زمان نگهداری روی این خصوصیات اثر معنی‌داری می‌گذارد.
بنابراین انتخاب وارینی‌هایی که یزدی مطلوب خود را طی زمان
نگهداری فاز گردید و یا تغییر معنی‌داری دارند، از لحاظ کنترل
کیفیت حاکمیت است. با توجه به جدول ۴ یزدی‌های
شیمیایی رب گوجه فرنگی حاصل از چهار وارینه، مشخص شد
که مجموعه انتخاب‌های خصوصیات شیمیایی برای وارینه پنارولی
سی ای بیشترین امتیاز داشت.

از نظر کمترین تغییرات و یزدی‌های شیمیایی روی زمان
نگهداری وارینه‌های ارلی اوربانا ۱۱۱ و پیو ارلنی سی ایر
کدام در صورتی‌که میزان خصوصیات شیمیایی دارد و در نظر
حداکثر پایداری بودند و از این جهت بهترین وارینه انتخابی
جهت نگهداری رب گوجه فرنگی می‌باشد.

پیشین و سلیقه از گروه صفات غذایی دانشکده کشاورزی دانشگاه
فردوسی مشهد برای در اختیار قرار دادن امکانات جهت اجرای
پایان‌آمیز و نیز نظرات پایان‌یافته صلاحیت شهید و
امکان ممکن برای گوجه‌فرنگی را فراهم اوردن، تشریح و
قدرتانه می‌شود.

مراجع مورد استفاده

1. منطقی گ، م. مظاهرات نهانی. گزارش طرح ملی بهبودی سازی ساختار زنجبیل تولید رب و فرآورده‌های حاصل از گوجه‌فرنگی.