آثار تغییر اقلیم بر چرخان رودخانه زایندهرود اصفهان

علیرضا مساح بوانی و سعید مرتضی

چکیده

تحقیق حاضر اثرات تغییر اقلیم روی دما، بارندگی و روانان در حوضه آبریز رودخانه زایندهرود اصفهان را تحت دو گردهمایی اقلیمی و برای دو دوره ساله 2025-2049 و 2070-2099 میلادی، تجزیه و تحلیل می‌نماید. اطلاعات مورد نیاز از مدل گردهمایی HadCM3 (GCM) شامل مقادیر بارندگی و درجه حرارت (متوسط، حداقل و حداکثر) ماهانه در دوره‌های آینه تحت دو گردهمایی A2 و B2 از سیستم تغییرات گلخانه‌ای سیستم (SRES) تهیه شده است. در سیستم A2 به دلیل تأکید بر رشد صنعتی و توجه کمتر به محیط زیست، بیشتر از دوره‌های دیگر کاسته می‌باشد. در حالی که در سیستم B2 که بیشتر به محیط زیست داریم، فرض شده است، نتایج در مجموع نشان از کاهش بارندگی و افزایش درجه حرارت در هر دو دوره و به خصوص در دوره دوم را داشته، به طوری که در طی این دوره میزان کاهش بارندگی 10 و 16 درصد و افزایش درجه حرارت به میزان 0/4 و 3/2 درجه سانتی‌گراد تریب در سیستم B2 است. این نتایج از وضعیت چرخه‌های تغییرات گردهمایی A2 در این حوضه دارد.

واژه‌های کلیدی: تغییرات اقلیمی، مدل گردهمایی، سیستم اقلیمی، شبکه عصبی مصنوعی، حوضه زایندهرود

مقدمه

گزارش‌های (Intergovernmental Panel on Climate Change) حاکی از آن است که به دلیل افزایش انتشار گازهای حویلایی در دهه‌های گذشته در جو زمین، خروج امواج حرارتی (طول موج بلند) از زمین با مواد بیشتری رو به رو شده که افزایش دمای باعث ایجاد تغییرات در بارندگی و درجه حرارت در دنیا خواهد شد. این افزایش دمایی به دلیل دانشجوی اکتیو است و اتفاق نخی‌زدن، دانشگاه کشاورزی، دانشگاه تربیت مدرس

1. به ترتیب دانشجوی دکتری و استاد دانشگاه آمیز، دانشگاه کشاورزی، دانشگاه تربیت مدرس
مدنيان رودخانه به میزان ۵ درصد (۱۵۰ m³/s) افزایش و ۱۰۰۰ m³/s) افزایش که خواهد داشت. در هنگام مورد سیستم تابستانی آب ۰/۱ درجه سانتی‌گراد افزایش نشان داد که می‌تواند تخم‌گذاری این ماهی‌ها اثر منفی داشته است (۱۵). به دلیل اهمیت تغییر اقلیم و نرخ آب می‌تواند باعث آب داشته باشد. در سال‌های اخیر این مهم برای حوضه‌های آبیز مختلف در سطح کره زمین مد نظر قرار گرفته است. انگل و هاف (۱۹۹۷) در پژوهش‌های نتیجه‌گیری بارشهای شدید (شگرد mm) در غرب آمریکا را مورد بررسی قرار دادند. بررسی شناسی بیشتری برای مواجهه با افزایش شدید دبی رودخانه‌های درنتیجه تغییرات در سطح سیال ایستایی (Non stationary) داشته‌اند که نشان از وقوع نوعی عدم ایستایی در سری‌های زمانی بدون و بررسی تغییرات آبیاری روی داده‌ها گذشتگی بازدانگی از این منطقه می‌تواند با اشکال همراه باشد (۴). کلئز و رولین (۱۹۹۸) تأثیر این تغییر بر جریان رودخانه‌های شکل مدل تغییرات سطح مدل GCM (General circulation model) بررسی قرار دادند. تمام مدلهای برای جو و مخلوط اقلیمی فراوانی سیلاب را در ماه‌های زمستان در این رودخانه نشان دادند (۹). پاکت و استرزیک (۱۹۹۸) با مدل کردن حوضه رودخانه نیل تأثیر سال‌ریزی اقلیمی با استفاده از ۵ مدل GCM، مورد بررسی قرار دادند. این حوضه در دوره‌های آتی نسبت به تغییر اقلیم حساس بوده و به‌خصوص مقدار متوسط ذوب در آن افزایش خواههای ۱۵٪ (۱۷). نتایج پژوهش کامپیوتر (۲۰۰۱) در بالادست رودخانه به کامپیوتر نشان داد که آن سال ۲۱۰۰ این منطقه می‌تواند شاهد افزایش اقلیمی با میزان ۴ تا ۱۳ درصد، افزایش دما به میزان ۱ تا ۳ درجه سانتی‌گراد و تغییرات متوسط سالانه چرخه به میزان ۴ تا ۱۳ درصد باشد (۱۳). بررسی آثار تغییرات اقلیمی در حوضه آبیز رودخانه فراчер در کانادا و تأثیر آن بر روی تحول‌گذاری منابع آب در تسویس مرسی‌ور و همکاران روز ۲۰۰۶ (۲۰۰۲) انجام شد. تنها داد که در دوره ۲۰۰۲-۲۰۰۴ متوسط
اینترنت تغییر اقلیم بر جویان رودخانه‌ای زاینده‌رود استان‌های مدل‌های تولید داده برای دوره‌های آتی با توجه به تغییرات بارندگی و دما، دو مدل هواشناسی سازمانی که در بررسی تغییرات بارندگی و دما و نسبت به تغییرات بارندگی و دما در زمین‌های ایران از آنها بازارهای کنونی را تولید می‌نمایند. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) مقایسه انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طرف دیگر محاسبه نسبت به تغییرات بارندگی و دما و نسبت به تغییرات بارندگی و دما، دو مدل هواشناسی سازمانی که در بررسی تغییرات بارندگی و دما در زمین‌های ایران از آنها بازارهای کنونی را تولید می‌نمایند. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) مقایسه انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طرف دیگر محاسبه نسبت به تغییرات بارندگی و دما و نسبت به تغییرات بارندگی و دما، دو مدل هواشناسی سازمانی که در بررسی تغییرات بارندگی و دما در زمین‌های ایران از آنها بازارهای کنونی را تولید می‌نمایند. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) تقسیم می‌شوند که بررسی مورد نابود و توجه به مدل‌های GCM (Global Climate Models) است. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) مقایسه انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طرف دیگر محاسبه نسبت به تغییرات بارندگی و دما و نسبت به تغییرات بارندگی و دما، دو مدل هواشناسی سازمانی که در بررسی تغییرات بارندگی و دما در زمین‌های ایران از آنها بازارهای کنونی را تولید می‌نمایند. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) مقایسه انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طرف دیگر محاسبه نسبت به تغییرات بارندگی و دما و نسبت به تغییرات بارندگی و دما، دو مدل هواشناسی سازمانی که در بررسی تغییرات بارندگی و دما در زمین‌های ایران از آنها بازارهای کنونی را تولید می‌نمایند. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) مقایسه انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طرف دیگر محاسبه نسبت به تغییرات بارندگی و دما و نسبت به تغییرات بارندگی و دما، دو مدل هواشناسی سازمانی که در بررسی تغییرات بارندگی و دما در زمین‌های ایران از آنها بازارهای کنونی را تولید می‌نمایند. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) مقایسه انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طرف دیگر محاسبه نسبت به تغییرات بارندگی و دما و نسبت به تغییرات بارندگی و دما، دو مدل هواشناسی سازمانی که در بررسی تغییرات بارندگی و دما در زمین‌های ایران از آنها بازارهای کنونی را تولید می‌نمایند. این مدل‌ها به دو دسته مدل‌های GCM (Global Climate Models) مقایسه انتشار گازهای گلخانه‌ای در دوره‌های آتی بوده و از طر...
تصحیحات شامل دو مرحله کوچک مقیاس کردن و تغییر میدان داده‌ها می‌باشد. در مرحله کوچک مقیاس کردن (Change field) کوچک مقیاس کردن GCM داده‌های نلایش این استتأت با وضوح مکانی اطلاعات بالا (Kriging) روز مانند این تحقیق که داده‌ها با روش زمین آماری (GCM) توسط مرکز ال‌تی‌سی (ITC) در میانه از مقیاس ۰/۵ (عرض جغرافیایی) و ۲/۷۵ (طول جغرافیایی) با ۰/۵۰۰ ارتقا یافته.

در هر نتیجه داده‌های از خروجی این مدلها که برابر دوره‌های گذشته اجرا شده و داده‌های اندوزگیری شده در دوره آماری مشابه استفاده می‌شود. در این صورت، تعادل‌های صوتی می‌گردد که صورت‌های آماده (اندام) میانگین داده‌های اندوزگیری شده یکسان گردید. سپس این تعادل‌های برای داده‌های آتی و GCM اعمال می‌گردد. در این پروژه از روش کوچک مقیاس کردن GCM Kassel (۲) از دانشگاه Alcamo/Doll استفاده شده است.

\(T'_{GCM,fut} = (T_{obs} - T_{GCM,his}) + T_{GCM,fut} \) \(P'_{GCM,fut} = (P_{obs} / P_{GCM,his}) \times P_{GCM,fut} \)

در ورودی، تاکید بر نتیجه داده‌ها و \(T'_{GCM,his} \) به‌طور کلی به ویژه معنی‌دار باید باشد و با توجه به اینکه داده‌های کوچک مقیاس کردن (Resolution) با توجه به وضوح مکانی (این داده‌های GCM) استفاده از آنها در مقیاس منطقه‌ای امکان‌پذیر نیست. و از طرف دیگر مقدار خروجی‌های آنها برای دوره‌های گذشته با داده‌های مشاهدهای داشته‌اند و وجود اختلاف ندارد. از این رو از آن استهفاده از آنها تصحیح‌های اعمال کرده این است.
جدول 1: خلاصه‌ای از مشخصات سناپره به سال 11990 (11)

| جمعیت جهان (میلیارد) | علل | گازهای گلخانه‌ای | دارایی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.252</td>
<td>1/1</td>
<td>354</td>
<td>5/1</td>
</tr>
<tr>
<td>6.01</td>
<td>2/1</td>
<td>834</td>
<td>2/1</td>
</tr>
<tr>
<td>6.32</td>
<td>3/1</td>
<td>238</td>
<td>3/1</td>
</tr>
</tbody>
</table>

شاخص شرایط اقتصادی جهانی

(10^3$/سپ) (GDP)

71

نتایج و بحث

در این مقاله بر اساس مدل ANN که به طور مخفی از داده‌های نوره در جهان صنعتی و سنتی استفاده شده باشند، مدل شکل گرفته و از داده‌های اسپتایمی و دیگر ارائه شده است. به منظور آزمون و صحت پایی شکل، از داده‌های مدل این استفاده شده است. علاوه بر تحقیق بارندگی و دیگر عناوین مورد بررسی است. برای این تحقیق نوازنده و دیگر شرایط مورد نظر را شیبیزایی نامیده ممکن است که از این تکنیک شیبیزایی ورودی‌های مؤثر بر فراوانی مورد بررسی است. برای این تحقیق بارندگی و دیگر عناوین مورد بررسی شد. به علایم بار خودکار جهانی حوضه و نشانه‌های تاشی حوزه‌هایی در شیبیزایی رواناه در این بیان حوضه‌ها (1) ماتریسی به عنوان ورودی دیگر مورد ارزیابی قرار گرفت. ویچ به دلیل نبود آمار کافی از آن بر اساس روش هارگریوز و سامانی برآورد گردید (10)

\[R_s = k_s(T_{max} - T_{min})^{1/2} R_a \]

در این رابطه نیرو تکیه خورشید بسی به سطح زمین و بالای جو (انرژی) و مصرف حرارت حداکثر و حداقل (°C) تابیت می‌باشد. ضریب تجربی بوده \(k_s \) که را برای شرایط مختلف پایین آب و هوایی تفکیک می‌کند که محاسبه زمانی بین (16) تا (3) داشته و به توجه به شرایط حوضه 1990 از نظر هر فاصله است (3). هم‌چنین شرح محاسبه \(R_s \) در منبع 8 انتهای است.
کوکچ میکس کردن و تصحیح داده‌های مدل گردهش

عموی HadCM3

اشتاره شد که نمای بر روی شباهت طرح بارندگی و دما (متوسط، حداقل و حداکثر) ماهانه مربوط به مدل گردهش HadCM3 برای دوره‌های B2 و A2 مورد استفاده قرار گرفته است. به منظور بالا بردن دقیقی نظر مکانی این داده‌ها با استفاده از روش کریجینگ (Kriging) به ابعاد 0.5° × 0.5° کوکچ میکس شدن به شرح آن در مرجع 11 آمده است. همچنین جهت تغییر میان داده‌های GCM در اساس اطلاعات استفاده دامنه فریدن برای دما و چهلم مقدار بارندگی داده‌های این مدل برای سال‌های 1940-1961 نیز تهیه و با استفاده از روابط 1 و 2 تصحیح شدند.

تجزیه و تحلیل بارندگی بر اساس داده‌های تغییر اقلیمی

با توجه به آنچه آماده بارندگی برای دوره‌های زمین‌آتی تولید گردیده و با دو راه آمایی دراز مدت موجود مقایسه شدند. برای استفاده چهلم گرد میزان متوسط سالانه 30 ساله بارندگی در دوره 2001-2010 تحت سانواریو A2، 12 میلی‌متر افزایش و در سانواریو B2، 21 میلی‌متر کاهش نسبت به دوره 2000-2009 درشت است. این تغییرات برای دوره 2020-2050 14 میلی‌متر کاهش در سانواریو A2 و 12 میلی‌متر افزایش در سانواریو B2 قابل تشخیص است (جدول 2). این داده‌های بارندگی بر اساس داده‌های بارندگی در ماه‌های پاییز و کاهش آن در سایر ماه‌ها می‌باشد. علاوه بر میانگین‌ها، فراوانی سال‌های خشک و توالی آنها نیز بررسی گردید.

\[
Q(t) = f(R(t), R_{\min}(t), R_{\text{max}}(t), R_{s}(t))
\]

(مدل 3)

\[
Q(t) = f(R(t), R(t-1), R_{\text{min}}(t-1), R_{\text{max}}(t), R_{s}(t))
\]

(مدل 5)

که در آن Q مدل محاسبه و روده به سده متغیر T_{\text{max}}(t) و R_{\text{min}}(t) بارندگی ماهانه استفاده چهلم گرد، متغیر دما حداقل و حداکثر ماهانه استفاده دامنه فریدن.

عرض جغرافیایی منطقه سد و یک نشان دهنده زمان کنونی می‌باشد.

برای طراحی شبکه، مدل‌های ورودی فوق در کنار معمایی های مختلف، توابع انتقال متفاوت و شبکه‌های به‌منظور بررسی عملکرد مدل‌های مورد آزمون از سه پارامتر ضریب همبستگی (رباطه 4)، میانگین (رباطه 5) و (Mean Absolute Error) MAE در نظر گرفته مدل در یک شبکه Elman شبکه (8) به‌طریق عملکرد را دارد. وزن‌های شبکه Elman در نظر گرفته مدل در یک شبکه گام زمانی قبل به عنوان یکی از ورودی‌های فعّال می‌باشد که توانایی نمایش و حوضه را در شبیه‌سازی دخالت می‌دهد.

\[
R^T = \frac{\sum_{m=1}^{K} X_m Y_m}{\sqrt{\sum_{m=1}^{K} X_m^2 \sum_{m=1}^{K} Y_m^2}}
\]

(4)

\[
\text{RMSE} = \sqrt{\frac{\sum_{m=1}^{K} (X_m - Y_m)^2}{K}}
\]

(5)

\[
\text{MAE} = \frac{\sum_{m=1}^{K} |X_m - Y_m|}{K}
\]

(6)

در روابط فوق X_m مقدار مشاهده‌ای، Y_m مقدار برآورد شده و M مقدار مشاهده‌ای می‌باشد.
جدول ۲ عملکرد مدل‌های ورودی برای شبیه‌سازی بارش، روان‌گر در ورودی به سد چادگان

<table>
<thead>
<tr>
<th>مدل</th>
<th>معمایی</th>
<th>آموزش</th>
<th>صحت‌پذیر</th>
<th>R²</th>
<th>RMSE</th>
<th>MAE</th>
<th>R²</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۶۴</td>
<td>۰/۷۵</td>
<td>۰/۲۴</td>
<td>۰/۷۱</td>
<td>۰/۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۰/۱۸</td>
<td>۰/۴۲</td>
<td>۰/۱۲</td>
<td>۰/۷۱</td>
<td>۰/۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۰/۵۶</td>
<td>۰/۱۴</td>
<td>۰/۱۲</td>
<td>۰/۷۱</td>
<td>۰/۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۰/۸۱</td>
<td>۰/۱۴</td>
<td>۰/۱۲</td>
<td>۰/۷۱</td>
<td>۰/۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۰/۸۱</td>
<td>۰/۱۴</td>
<td>۰/۱۲</td>
<td>۰/۷۱</td>
<td>۰/۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳ پارامترهای آماری سالانه دما و بارندگی استان‌های دامنه رودخانه دهلی و شهر چهل‌گرد در ورودی به سد چادگان تحت سانه‌های A2 و B2

<table>
<thead>
<tr>
<th>بارندگی (mm)</th>
<th>دمای (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۱۹۷۱-۲۰۰۰</td>
<td>میانگین</td>
<td>۱۹۷۱-۲۰۰۰</td>
<td>میانگین</td>
<td>۱۹۷۱-۲۰۰۰</td>
<td>میانگین</td>
<td>۱۹۷۱-۲۰۰۰</td>
<td>میانگین</td>
<td>۱۹۷۱-۲۰۰۰</td>
<td>میانگین</td>
<td>۱۹۷۱-۲۰۰۰</td>
</tr>
<tr>
<td>اندازه‌گیری شده</td>
<td>۱۹۷۱-۲۰۰۰</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>۲۰۱۰-۲۰۳۹</td>
</tr>
<tr>
<td>میانگین</td>
<td>۲۰۱۰-۲۰۳۹</td>
<td>میانگین</td>
<td>۲۰۱۰-۲۰۳۹</td>
<td>میانگین</td>
<td>۲۰۱۰-۲۰۳۹</td>
<td>میانگین</td>
<td>۲۰۱۰-۲۰۳۹</td>
<td>میانگین</td>
<td>۲۰۱۰-۲۰۳۹</td>
<td>میانگین</td>
<td>۲۰۱۰-۲۰۳۹</td>
</tr>
<tr>
<td>اندازه‌گیری شده</td>
<td>۲۰۱۰-۲۰۳۹</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>۲۰۱۰-۲۰۳۹</td>
</tr>
</tbody>
</table>

شکل ۲ توزیع ماهانه بارندگی دراز مدت، طی دوره مشاهده شده، و دوره‌های تغییرات اقیمینی سانه‌های A2

شما می‌توانید این داده‌ها را برای سال‌های مختلف نمایش دهید.
شکل ۳. توزیع ماهه‌های بارندگی دراز مدت، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی ستارویه B2

dراز مدت دمای متوسط ماهه‌های نشان از افزایش دما در باشگاه A2 شرایط بحرانی بیشتری می‌باشد.

برآورد چرایی و رویکردی به مخزن سد چادگان بر اساس داده‌های تغییر اقلیمی

به منظور برآورد چرایی و رویکردی به سد چادگان در دوره‌های ۱۹۷۱-۲۰۰۹ یا تحت سنارویوی A2 و تحت سنارویوی B2، این داده‌ها مورد نیاز مدل ۵ از داده‌های تغییرات اقلیمی به‌طور چاپگاهی به مدل شبکه عصبی مصنوعی طراحی شده معرفی شد و مقدار و رویکرد به سد چادگان شیب‌سازی گردیده، بنابراین نشان داد که متوسط دمای ماهه دراز مدت در دوره ۶۹-۷۳ به میزان ۲/۱ مترمکعب در ناحیه A2 و ۱/۹ مترمکعب در ناحیه B2 کاهش نشان می‌دهد، این مقدار در دوره ۲۰۰۹-۲۰۱۹ به ترتیب برابر ۲/۷ و ۱/۹ مترمکعب در ناحیه A2 و B2 می‌باشد (جدول ۳). همان‌طور که انتظار می‌رفت میزان کاهش چرایی رودخانه در دوره ۲۰۰۹-۲۰۱۹ بیش از دوره ۲۰۰۹-۲۰۱۰ و سناریوی A2 وضعیت بیشتری را نسبت به سناریوی B2 داراست. همچنین نتایج نشان داد که میزان ضریب تغییرات دیب تغیر در دوره‌های آتی افزایش خواهد گرفت.

در حوزه‌های بیشتری می‌شود (جدول ۳). همچنین توزیع

۲۲
اژارت تغییر اقلیم بر جریان رودخانه زاینده‌رود اصفهان

شکل ۴. توزیع ماهانه دمای دراز مدت، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی ستارویی

شکل ۵. توزیع ماهانه دمای دراز مدت، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی ستارویی

شکل ۶. میانگین متوسط ماهانه دراز مدت دیه ورودی به مخزن، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی ستارویی

25
نتیجه‌گیری

در این مقاله آثار تغییرات کلیه روی منابع آب حوضه زاینده‌руд اصفهان در دوره‌های 2039–2049 بررسی و تحلیل شده؛ این سلسله‌های مختلف به وسیله هدCM3 تحت دو سناریو تغییر اقلیمی و مدل‌های سایر مورد نظر به وسیله SRES مارک‌بند و این اثرات بر دو سلسله‌ها دو ساناریو به نام‌های B2 و A2 تنظیم و بررسی گردیده است.

نتایج نشان می‌دهند که تغییرات در حوضه زاینده‌руд الگویی بر روی دردهای آبیاری و آبیاری کشاورزی به وسیله خشکسالی و بارندگی دارد. بنابراین تغییرات آبیاری، قابلیت آبیاری کشاورزی و روند اقتصادی برای شناسایی مطالعاتی به نظر می‌رسد. این نتایج وضعیت فعلی و پیش‌بینی‌های آبیاری کشاورزی در حوضه زاینده‌руд را نشان می‌دهند. در این مقاله تغییرات آبیاری بر روی دو ساناریو به نام‌های A2 و B2 تحت دو ساناریو به نام‌های 2039–2049 و 2040–2049 بررسی گردیده است.
و کافی آب کشاورزی و کاهش امکان غذایی خواهد بود. پایتختی که مراجع (11 و 12) نیز بدان رسیده بوده و در مقدمه‌ی آنها اشاره شده.

سیاست‌گرایی

نویستگان لازم می‌دانند از همکاری و مساعدت سازمان‌های

منابع مورد استفاده

1. سلطانی، س. 1381. ارزیابی شبکه‌های عصبی مصنوعی در پیشبینی کیفی کوتها مدت و میزان مدت جریان رودخانه‌ها. پایان نامه کارشناسی ارشد سازمان‌های آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران.