اثرات تغییر اقلیم بر جریان رودخانه زاینده‌رود اصفهان

عیضرا مساح بوانی و سعید مریدی

چکیده
تحقیق حاضر ناشی از تغییر اقلیم روی دما، بارندگی و رواناب در حوضه آبریز رودخانه زاینده‌رود اصفهان را تحت دو سطه‌ای اقلیمی و برای دو دوره ساله 2039-2059 و 2079-2099 میلادی در نظر گرفته و تحلیل آن‌ها صورت می‌گیرد. اطلاعات بلندپایه را از مدل گردش عمومی شال مدل‌های بارندگی و حاوی مواد سوزاننده در دوره‌های آتی تحت دو سطه‌های A2 و HadCM3 (GCM) و SRES از سطه‌های تولیدگر غلخانه‌ای (مزونه و حاوی مواد سوزاننده) استفاده کرده‌اند. نتایج نشان می‌دهد که زمان زیست افزایش بیشتری در گلخانه‌های نسبت به سطه‌های A2 کاهش کم توانایی بر درجه حرارت در هر دو دوره و به خصوص در دوره دوم را داشته، به طوری که در طی این دوره‌ها میزان کاهش بارندگی 10 و 12 درصد و افزایش درجه حرارت به میزان 20 و 0/1 درجه سانتی‌گراد در سطه‌های A2 و B2 نشان از افزایش در حرارت در این حوضه دارد.

واژه‌های کلیدی: تغییرات اقلیم، مدل گردش عمومی، سطه‌ای اقلیمی، شکل‌بندی میکروسی، حوضه زاینده‌رود

مقدمه
گزارش‌های (Intergovernmental Panel on Climate Change) حاکی از آن است که بیش از انتظار افزایش گازهای حاکی از نتایج IPCC که در دهه‌های گذشته در جو زمین، خروج امواج حرارتی (طول موج بلند) از زمین به موجب نیاز به رشد که افزایش دمای هوا به دنبال داشته است. این افزایش دمای هوا به دنبال داشته است. این افزایش

1. این جز راهنما دانشجوی دکتری و استادیار سازه‌های آبی، دانشکده کشاورزی، دانشگاه تهران مدرسه
بررسی شناسی نیشتری برای مراحل بازی‌های بازنشستگی شدید بک روژه (Non stationary) داشته‌اند که شامل یک نوع علم ایستایی (stationary) در سری‌های زمانی، به‌طور کلی، نیشتری توزیع‌های آماری رایج داده‌های گذشته‌بندی‌گذاری‌گذار در این منطقه، می‌تواند با اشکال مهربان باشد (24). کناره‌بندی‌های (1998) تأثیر آن بر جریان رودخانه اصلی در حوضه بازیک کته خروجی به شش مدل گردش عمومی (General circulation model, GCM) بررسی قرار داده‌اند. تمام مدل‌ها به چز دو مدل، افزایش فراوانی سیالاب را در ماه‌های زمستان در این رودخانه نشان داده‌اند (9). یانز و استریژک (1998) با یک مدل کردن حوضه رویدادهای نیل تأثیر سیستمی اقیانوسی با استفاده از 5 مدل گردش عمومی، نشان دادند که این هشدار به تغییر اقلیم حساس بوده و به‌خصوص مقادیر متوسط دیس در آن افزایش خواهاد یافته است (7). نتایج پژوهش کامکا (2001) در بالاترین و رودخانه بر روی کار می‌آورد، پیشنهاد می‌کند که دو یا سه یکی از مدل‌های مختلف استفاده گری در نسبت تغییرات اقیانوسی و بایان‌بندی‌های اقیانوسی و جریان‌ها را ارائه دهد. این پژوهش نیز به‌صورت تغییرات متوسط سالانه گرجینه به میزان 167 درجه سئول در طول سال می‌باشد. این پژوهش نیز به‌صورت تغییرات متوسط سالانه بررسی قرار دارد که چرا بسربندی نیشتری نیشتری را در حوضه کردن حوضه رویدادهای نیل با تأثیر آن بر روی تغییرات محیطی آزاد که توسط مبریسون و همکاران (2002) انجام شد، نشان داد که در دوره 2070-2099 متوسط
مدل‌های تولید داده برای دوره‌های آتی با توجه به تغییر اقلیم به‌طور سه بعدی شبیه‌سازی می‌کنند. این مدل‌ها با دارایی گرندنگی و دما، دو متغیر هواشناسی هستند که در پایگاه تغییر اقلیم نقش تعیین‌کننده‌ای را ایفا می‌کنند. به منظور شبیه‌سازی آنها برای دوره‌های آتی تحت آثار این پدیده‌ها، از مدل‌های اقلیمی مختلفی استفاده می‌شود. این مدل‌ها به دو دسته مدل‌های آماری و مدل‌های گردش عمومی جو (GCM) تقسیم می‌شوند (12). استفاده از مدل‌های GCM به‌طور مورد نیاز و توجه به صورت (9) و در این پژوهش از آن بهره گرفته شده است.

مدل‌های گردش عمومی جو (GCM) مدل‌های مدلهای عدیدی بوده که فرایندهای مایع انسان، پیش‌بینی‌های آبیاری، ایالات مدلهای (Cryosphere) و سطح زمین را به

شکل 1. موقعیت منطقه مطالعاتی و رودخانه‌های زاینده‌رود
تصخیصات شامل دو مرحله کوچک میزان کردن و تغییر میدان داده‌های می‌باشد (Change field). در کوچک میزان کردن (GCM, his)×P GCM, fut در به‌عنوان میزان انتشار (Kriging) روند مانند این تحقیق به داده‌ها به روش زمین انتشار (IPCC) با نام نام‌گذاری. در این سانترال‌های آنتی‌کاسه‌ها گلخانه‌ای با انتساب (Drivers) توجه به پیش‌بینی‌های مربوط به میزان انتشار و میزان انتشار کازه‌ها و میزان انتشار و میزان انتشار از نوع بیشترین بودن داده‌های آنتی‌کاسه‌ها 3 تا 4 سالانه شاخص از مجموعه این سانترال‌ها در سال 12000 شاهد های بسیار کمی از این داده‌های آنتی‌کاسه‌ها استفاده در این تحقیق از مدل‌های انتشار SRES در سانترال‌های A2 و B2 از مجموعه سانترال‌های انتشار GCM اجرای تکمیل آنتی‌کاسه‌ها و داده‌های آنتی‌کاسه‌ها در میزان ۰/۲۵ (عرض جغرافیایی) × (طول جغرافیایی) است (11). در سانترال‌های A2 و B2 جهت بیان میزان انتشار جمعیت منطقه‌ای با تأکید بر ارزش خانواده و رسوال آن، رشد زیاد جمعیت و توسنتال کمتر در سرعت پیشرفت انتشار می‌باشد. ولی سانترال‌های B2 جهانی است که تأکید آن بر راه‌حل منطقه‌ای برای تقویت انتشار، اجتماعی و میزان انتشار می‌باشد. این یک دنباله ناهمگون با سرعت تغییرات تکنولوژی کمتر ولی نوع بیشتر می‌باشد. تأکید قوی در این سانترال‌های بر ابزار عمل جامعه و نواوره‌های آن برای یافتن راه‌حل منطقه‌ای می‌باشد (12).

(Downscaling) کوچک میزان کردن (Resolution) با توجه به وضوح مکانی GCM (پایین مدل‌های گیاهی) استفاده از آنها در میزان منطقه‌ای امکان پذیر نیست و از طرف دیگر میزان‌های جغرافیایی آنها برای داده‌های گذشته به داده‌های مشاهده‌ای نشان از وجود اختلاف دارد. از این رو لازم است هنگام استفاده از آنها تصحیحاتی اعمال کرده‌ایم.

(Emmision scenario) است که آنها را سانترال‌های انتشار (IPCC) در سال 1998 سري جدید سانترال‌های انتشار را (Special Report on Emission Scenarios) SRES با نام نام‌گذاری داد. در این سانترال‌های انتشار کازه‌ها گلخانه‌ای با انتساب (Drivers) توجه به پیش‌بینی‌های مربوط به میزان انتشار و میزان انتشار کازه‌ها و میزان انتشار و میزان انتشار از نوع بیشترین بودن داده‌های آنتی‌کاسه‌ها 3 تا 4 سالانه شاخص از مجموعه این سانترال‌ها در سال 12000 شاهد های بسیار کمی از این داده‌های آنتی‌کاسه‌ها استفاده در این تحقیق از مدل‌های انتشار SRES در سانترال‌های A2 و B2 از مجموعه سانترال‌های انتشار GCM اجرای تکمیل آنتی‌کاسه‌ها و داده‌های آنتی‌کاسه‌ها در میزان ۰/۲۵ (عرض جغرافیایی) × (طول جغرافیایی) است (11).
نتایج و بحث

عمده منابع آبی رودخانه زاینده‌رود اصفهان از حوضه‌های بالادست نامی می‌باشند. از این رو، مصرف‌های اقیمی ایستگاه‌های این ناحیه برای تحلیل‌های مورد نیاز این تحقیق و بخصوص فراکسیون بارش – روانگر بررسی شدند.

شیب‌سازی بارش – روانگر بر اساس داده‌های ثبت شده همان‌گونه که آمده بود در بروز تغییرات تمامی از مرحله‌ای استفاده شد. به منظور اطمینان و صحت پایه شیبکه، ابتدا تمامی ابزارها و دستگاه‌های بالادست سد چادگان مورد آزمون قرار گرفتند که این بین داده‌های هواشناسی ابتنظاهره‌ی دامنه فریدن و چهل کرده در ثبت نتایج را در عملکرد بهتر شیبکه و همراه داشتند. در مورد مورد استفاده از این ابزارها سال‌های 1396 لغو 1380 بوده و امکان بررسی به سرعت برای همین دوره نهای تبدیل به جنبش طبیعی رودخانه و آب انقباضی از تونل‌های ۱ و ۲ کوهرنگ را شامل می‌شود. از این آماده، سال‌های 1346 تا 1377 آزمون و دوره 1377 تا 1380 برای دو بار صحت پایی نظر گرفته شد. سپس شیب‌سازی های مختلف عصبی با محاسبه ورودی زیر مورد ارزیابی قرار گرفت.

\[R_s = k_s (T_{max} - T_{min}) \]

در این رابطه، \(R_s \) به ترتیب تابش خورشید رسیده به سطح زمین و بالای جو (انرژی) و \(T_{min} \) درجه حرارت حداکثر و حداقل (C) تابش می‌باشد. \(k_s \) ضریب تغییر بوده که را برای شیب‌سازی مختلط آب و هوا به تغییر مکن که محدودیت بین ۰/۱۶ تا ۲/۰ داشته و با آن مبنای شیب‌سازی خورشید \(R_s \) در نظر گرفته شده است. (3) همچنین شرح محاسبه \(R_s \) در منبع ۸ آمده است.
آزمایش شد که با پر روش شناسی طرح بارندگی و دما (متوسط، حداقل و حداکثر) ماهانه، مربوط به مدل گردش عمومی یک مورد استفاده قرار گرفته است. به دودی نشان داده است که در مورد مواد اصلی ایستاگی و شرایط گرمایشی (Kriging)، به عادت 0.5 همدنی گرمی شدند که شرایت آن در مجموع 11 سال است. همچنین جهت نگهداری میدان داده‌های GCM دارای فرآیندهای دما و چهل گرد بارندگی داده‌های این مدل برای سال‌های 1990-1992 نیز تنها با استفاده از روابط 1 و 2 تصمیم گرفت.

تجزیه و تحلیل بارندگی بر اساس داده‌های تغییر اقلیمی نشان داد که رابطه به آنچه آمده مقدار بارندگی برای دوره‌های زمانی آتی تولید گردیده و به دو دامه دراز مدت موجود می‌باشد. برای استفاده در 240 میلی‌متر از سال‌های 2002 تا 1999، تعداد سال‌های 2002-1971 است. این تغییرات در برنامه‌های 2000-2001 و A2 به دوره‌های 240 میلی‌متر آبی در سال‌های 2000-2001 با پیش‌بینی است (جدول 3). شکل‌های 2 و 3 نشان داده‌های افزایش بارندگی در ماه‌های پاییز و کاهش آن در سال‌های ماه‌های یک که میانگین‌ها، فراوانی سال‌های خشک و توالی آنها نیز بررسی شد و Q(t) = f (R(t), T_{min}(t), T_{max}(t), R_s(t)) \quad (مدل 2) \tag{4}
Q(t) = f (R(t), R(t-1), T_{min}(t), ...) \quad (مدل 5) \tag{5}
که در آن Q تابی مشاهده و رودی به سرد متوسط T_{max} و Thermodi مشاهده چهل گردکه و دما متوسط حداقل و حداکثر ماهانه ایستاگی دانه فریدن، در عرض جغرافیایی منطقه سد و 1000 متر زمن کانوئی می‌باشد.

برای طراحی شبکه، مدل‌های ورودی فاکتور در کنار معماییه مختلف، توابع انتقال متفاوت و شبکه‌های پیونکاس مورد ارزیابی قرار گرفتند. به منظور بررسی عملکرد مدل‌های مورد استورم از سه یادمانی ضریب همبستگی (رابطه 4) و (Mean Absolute Error) MAE (رابطه 5) استفاده گردید. جدول 2 بهترین نتایج حاصل از ورودی‌های فاکتور را نشان می‌دهد که در آن مدل 5 ورودی‌ها یا معماییه (LogSig) 8 بهترین عملکرد را دارد. ویژگی شبکه Elman در نظر گرفتن خروجی مدل در یک گام زمانی قابل به عنوان یکی از ورودی‌های فاکتور می‌باشد که به نوعی ذخیره‌دهنده در حوضه را در شبیه‌سازی دخالت می‌دهد.

\[R^I = \sum_{m=1}^{K} X_m Y_m \quad \] \tag{4}
\[\text{RMSE} = \sqrt{\frac{\sum_{m=1}^{K} \sum_{m=1}^{K} (X_m - Y_m')^2}{K}} \quad \tag{5}
\[\text{MAE} = \frac{1}{K} \sum_{m=1}^{K} |X_m - Y_m| \quad \tag{6}
\]
جدول 2. عملکرد مدل‌های ورودی برای شبیه‌سازی بازش - رواندا در ورودی به سد چادگان

<table>
<thead>
<tr>
<th>مدل</th>
<th>آموزش</th>
<th>صحبت‌یابی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>RMSE</td>
</tr>
<tr>
<td>1</td>
<td>0/6</td>
<td>0/52</td>
</tr>
<tr>
<td>2</td>
<td>0/58</td>
<td>0/42</td>
</tr>
<tr>
<td>3</td>
<td>0/61</td>
<td>0/36</td>
</tr>
<tr>
<td>4</td>
<td>0/48</td>
<td>0/37</td>
</tr>
<tr>
<td>5</td>
<td>0/6</td>
<td>0/5</td>
</tr>
</tbody>
</table>

جدول 3. پارامترهای آماری سالانه دما و بارندگی ایستگاه‌های دامنه فریدن و چهل‌گرد و دی و ورودی به سد چادگان تحت ساربایهای A2 و B2

<table>
<thead>
<tr>
<th>پارامتر آماری</th>
<th>بارندگی (mm)</th>
<th>درجه حرارت ($^\circ$C)</th>
<th>بارندگی (mm)</th>
<th>درجه حرارت ($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوره</td>
<td>1971-2000</td>
<td>2010-2039</td>
<td>2070-2099</td>
<td></td>
</tr>
<tr>
<td>بارندگی (mm)</td>
<td>1458</td>
<td>1458</td>
<td>1458</td>
<td></td>
</tr>
<tr>
<td>درجه حرارت ($^\circ$C)</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td></td>
</tr>
<tr>
<td>میانگین (اندازه‌گیری شده)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>انحراف میانگین</td>
<td>45/1</td>
<td>45/1</td>
<td>45/1</td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>A2</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پارامتر</td>
<td>بارندگی</td>
<td>بارندگی</td>
<td>بارندگی</td>
<td></td>
</tr>
<tr>
<td>ساربا</td>
<td>2010-2039</td>
<td>2070-2099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>میانگین</td>
<td>انحراف میانگین</td>
<td>ضریب تغییرات</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>1470</td>
<td>1470</td>
<td>1470</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>37/8</td>
<td>37/8</td>
<td>37/8</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>54/9</td>
<td>54/9</td>
<td>54/9</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>8/2</td>
<td>8/2</td>
<td>8/2</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>14/5</td>
<td>14/5</td>
<td>14/5</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>37/8</td>
<td>37/8</td>
<td>37/8</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>33/8</td>
<td>33/8</td>
<td>33/8</td>
<td></td>
</tr>
<tr>
<td>دوره</td>
<td>7/58</td>
<td>7/58</td>
<td>7/58</td>
<td></td>
</tr>
</tbody>
</table>

پارامتر های مورد نظر در سه دوره 1971-2000، 2010-2039 و 2070-2099 محاسبه شده است.

جدول 4. توزیع ماه‌های بارندگی دراز مدت. طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی ساربایهای A2

173
آرای تغییر اقلیم بر جریان رودخانه یازادی در اصفهان

آب‌های میلادی

شکل ۴. توزیع ماهانه دما دو راه مدتی، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سازمانی ۲

آب‌های میلادی

شکل ۵. توزیع ماهانه دمای دراز مدتی، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سازمانی ۲

شکل ۶. میانگین متوسط ماهانه دراز مدتی ورودی به مخزن، طی دوره مشاهده شده و دوره‌های تغییرات اقلیمی سازمانی ۲

۲۵

نتیجه‌گیری
در این مقاله اثر تغییرات تهویه منابع آب حوضه زاینده‌رود اصفهان در دوره‌های 2039-2050 با استفاده از مدل گردش جریان HadCM3 تحت سناریوی تغییرات اقلیمی SRES مورد تجزیه و تحلیل قرار گرفت.

نتایج در مجموعه نشان از کاهش میزان انفراشای و انفراشای دما درد به طوری که اندازه‌گیری می‌روید، میزان افزایش در دوره 2039-2050 با مقادیر 7/0 درصد بیشتر در سناریوی A2 و 2 درصد کاهش تحت سناریوی B2 در دوره 2029-2049 با مقادیر 16 و 10 درصد کاهش به ترتیب تحت سناریوی A2 و B2 می‌باشد.

نتایج در مجموعه نشان از کاهش میزان انفراشای و انفراشای دما درد به طوری که اندازه‌گیری می‌روید، میزان افزایش در دوره 2039-2050 با مقادیر 7/0 درصد بیشتر در سناریوی A2 و 2 درصد کاهش تحت سناریوی B2 در دوره 2029-2049 با مقادیر 16 و 10 درصد کاهش به ترتیب تحت سناریوی A2 و B2 می‌باشد.

نتایج در مجموعه نشان از کاهش میزان انفراشای و انفراشای دما درد به طوری که اندازه‌گیری می‌روید، میزان افزایش در دوره 2039-2050 با مقادیر 7/0 درصد بیشتر در سناریوی A2 و 2 درصد کاهش تحت سناریوی B2 در دوره 2029-2049 با مقادیر 16 و 10 درصد کاهش به ترتیب تحت سناریوی A2 و B2 می‌باشد.

نتایج در مجموعه نشان از کاهش میزان انفراشای و انفراشای دما درد به طوری که اندازه‌گیری می‌روید، میزان افزایش در دوره 2039-2050 با مقادیر 7/0 درصد بیشتر در سناریوی A2 و 2 درصد کاهش تحت سناریوی B2 در دوره 2029-2049 با مقادیر 16 و 10 درصد کاهش به ترتیب تحت سناریوی A2 و B2 می‌باشد.
متایب مورد استفاده

