تأثير سرعت و جهت جریان در خروجی کانال تقرب مستطیلی شکل با انتهای مسدود بر ضریب تخلیه آبگیر قائم

سید محمد علی زمردیان و محمددرضا باقری سبزواری

چکیده
آبگیرهای قائم معمولاً نسبت به دیگر گونه‌ها سازه‌های اقتصادی بوده و به چهت آن که در نزدیکی سطح آب کار گذاشته می‌شوند، از ورود رسوبات درشت‌الزمان به داخل سیستم جلوگیری می‌نماید. از مشکلات اصلی که آبگیرهای قائم با آن مواجهان ایجاد گرداب‌های قوی در دهانه آن‌هاست. این گردابها موجب کاهش بیشتری به سیستم آبگیری می‌شوند. شناخت مناسب و طراحی از عوامل مؤثر بر گرداب، می‌تواند آنها را در طراحی صحیح و اصولی چنین سازه‌هایی کمک می‌نماید. در این مقاله به کمک مدعل آزمایشگاهی تأثیر سرعت می‌رساند.

جهت جریان در خروجی کانال تقرب بر ضریب تخلیه Cg آبگیر قائم مورد بررسی قرار گرفته و با آنالیز ابعاد داده شده که استفاده بدون هرکدام یکی از سیستم‌های استحکامدار و استقرار بر تکامل گرداب در دهانه آبگیر قائم مؤثرتر است. ارتباط بین عده فردی، عده سیستم‌های استحکامدار و عدد استقرار ارائه گردیده است که با استفاده از آنها می‌توان عدد استقرار را به دست آورد و توسط آن ضریب تخلیه آبگیر قائم را محاسبه نمود.

واژه‌های کلیدی: تخلیه آبگیر قائم، کانال تقرب، عدد استقرار، ضریب تخلیه، گرداب

مقدمه
آبگیر قائم یکی از سازه‌های است که به منظور آبگیر یک مسقفی از روختن‌های و با مجازان مورد استفاده قرار می‌گیرد. در مقایسه با سایر نمونه‌های آبگیرهای قائم سازه‌های اقتصادی بوده که در صورت زمانی صبح و اصولی، به‌همراه داده‌ها با آنها مشکلات کمتری نیز همراه است. علاوه بر این به جهت آن که

1. استاد در آبیاری، دانشکده کشاورزی، دانشگاه شیراز
2. دانشجوی سابق کارشناسی ارشد مهندسی عمران، دانشکده مهندسی عمران، دانشگاه شهید باهنر کرمان
لرزش و کشش سطحی شکل می‌گردد (3). مانند چرخ‌شیار جایی و رودی، و رودی هوا، ایجاد ارتقای در آگیرگر، خطوط لوله، پمپها، سرو الصدا، کاپیتانسی، و هربوردیاری داماسه در اثر ساختار و در نتیجه آن خط‌ریز آسیب به اجزای پمپها و توربین‌ها کاهش عمر می‌کند. ساختارهای که ممکن است افزایش هزینه را نیز به دلیل داشتن باشند. از عوامل تشكل گرداپی‌های تراش‌شیار نامتقارن سازه آگیرگر، هندسه آن، کنفی نبودن استقراض نجات جریان، تشکیل تاک‌هان در جهت جریان و سرعت‌های بالایی از 60 متر بر ثانیه در میدان جریان‌نژدیک شویده به آگیرگر را این 9. ب2 و 3.

با توجه به نامعلوم بودن تشكل گرداپی، طریقی که در پی آن کاهش باشد دردست. بنابراین به دلیل ساهم بسیار مافوق اندوره‌ها و معنی‌های زیاد این بدنه، هزینه آن‌ها، مدیری برای طراحی ارائه نشده است. که باید دلیل کم‌ساز و تقصیق در مطالعات تحصیل و توریکی این بدنه از است و این ضعف، ناشی از نظم پیچیده دیدن موزیک می‌باشد. در بررسی جریان‌گردابی، در ناحیه بالقوه ماهی‌های است. در ناحیه اول، جریان‌گردابی سرعت قابل ملاحظه‌ای وارد می‌گردد خروجی آگیرگر در سرعت نزدیک به نمایه میدان ساکن و بدون تاک‌هان در سیالی و سیالی درام از می‌شود که باعث ایجاد نشته‌های بریشی در مرز این دو ناحیه می‌شود که این نشته‌ها باعث اعمال نیروی کریزی از میکرو سطح ذرات و هم‌سان در ناحیه مدیریک دو قطعه سرعت و انتقال دارد و سیالی در قسمت نشته‌های آگیرگری در دهانه آگیرگر به‌یاد می‌آید. در این شرایط بازماند. در ناحیه این یکی از فشار در دهانه آگیرگری چند می‌کند. در این شرایط بازماند. در ناحیه این یکی از فشار در دهانه آگیرگری چند می‌کند.
تأثیر سرعت و جهت جریان در غواصی کانال تقریب مستطیلی شکل با…

\[
\frac{\text{v}}{\text{Vd}} = \frac{\Gamma_{d}}{Q} \frac{\text{dG}}{\text{Vd}}
\]

در رابطه 3 مقدار برای عدد چربخش، مقدار نی، \(N_t\)، مقدار معکوس عدد پریدوت، \(R_t\)، مقدار معکوس میزان عدد فرود، \(H\)، مقدار معکوس میزان عدد فرود، \(\text{F}_t\)، عدد استراحت و مقدار معکوس \(\frac{\sigma}{\rho V_d}\) عدد استراحت و مقدار معکوس \(\frac{H}{d}\) عدد ور و \(\text{W}\).

\[
\text{H} = f_{1}\left(\Gamma_{d}, R_t, F_t, \frac{\text{dG}}{\text{Vd}}, \frac{\sigma}{\rho V_d}\right)
\]

با توجه به شرایط پیشنهادی ذکر و کلیکان (1972) و جنین و همکاران (1976) از ار اعداد ریوند و برای گردباد در این بررسی صرف کسب بهتر است (2) و برای این پارامترهای مؤثر بر گردباد در این تحقیق عدد استراحت، عدد فروش و عدد سیرکولاسیون می‌باشند و معادله نهایی برای استاد:

\[
\text{C}_d = \frac{4Q}{\pi d^2 \sqrt{\text{gh}}}
\]

\[
\text{d} = f_{2}\left(\Gamma_{d}, R_t, F_t, \frac{\text{dG}}{\text{Vd}}, \frac{\sigma}{\rho V_d}\right)
\]

با توجه به مطالعه بیان شده، عوامل مؤثر بر نشکل گردباد در دهانه آبگیر قابل بررسی است. به همدس سازه آبگیر، پارامترهای جریان و پیوندهای سیالی می‌باشند. گالنوس و پرلیوز در سال 1948 نیز با استفاده از قانون بقای موقعیت در یک کانال تقریب بک ایجاد یک نظریه کاهش جریان (Circulation). (شکل (1)، نریوی کاهش به (Circulation) صورت زیر مطرح می‌شود (7).

\[
N_t \approx \frac{\tan \alpha}{\sqrt{\frac{\text{L}}{2}\tan \alpha}}
\]

با توجه به نتایب از مرنین (8، 9) این باور بهتری گردباد نزدیکی را، به‌طور طول و عرض کانال گردباد می‌باشد. به‌طور کلی تقریبی تأثیر دو عامل پارامترهای \(\alpha\) و هندسه سازه آبگیر قابل بررسی می‌باشد.

\[
\text{H} = f_{3}\left(\Gamma_{d}, \text{v}, \text{dG}, \text{Q}, \frac{\sigma}{\rho V_d}\right)
\]

با جایگزینی \(V = \text{V}_p\) سرعت متوسط جریان در آبگیر قائم:

\[
\text{H} = f_{4}\left(\Gamma_{d}, \text{v}, \text{dG}, \frac{\sigma}{\rho V_d}\right)
\]
در دهانه آبگیر قائم جهش‌پذیر نمود در انتخاب قطر لوله‌های آبگیر و فاصله آنها از دیواره‌ها از معادلات توزیع سرعت مماسی مختلف ارائه شده توسط محققین استفاده شده است. رانکین، ادگارد و هیت - می‌هر کدام برای توزیع سرعت مماسی گردب ایجادی در دهانه آبگیر قائم، معادلاتی ارائه نموده‌اند (85 و 13). شکل ۲ توزیع سیرکولاسیون نشان می‌دهد. در این تحقیق نیز جهت مطالعه مورد نظر و با ایجاد گرفتن از کانال تقریب انتها مسحد فوق مدل آزمایش‌گاهی به شرح زیر ساخته شد.

ساخت مدل به منظور آن که بتوان از تأثیر دیواره‌ها بر گردب ایجادی
تأثیر سرعت و جهت جریان در خروجی کانال تقریب مستطیلی شکل با ...

سرعت مماسی این معادلات و مقایسه آنها را با نتایج تجربی نشان می‌دهد.

همان‌گونه که در شکل 2 دیده می‌شود، در بالای توزیع سرعت مماسی تقريباً یک نواخت می‌گردد. برای شعاعی است که ماکزیمم سرعت مماسی در آن انجام می‌شود و این مقدار در آب‌ریزهای قائم برای شعاع دهه‌ای آب‌ریز می‌باشد.

با توجه به مطالب فوق حداقل دمای مدل مقدار 10 در برای مدل مقدار 75 میلی‌متر انتخاب شود. کمترین فاصله محور آب‌ریز از دیواره‌ها به منظور عدم تأثیر دیواره‌ها بر گرداب انجام‌پذیر می‌باشد.

این مقدار در مدل آب‌ریزگاهی آب‌ریز قائم موجود در آب‌ریزگاه‌های حوضه‌ای داشتنی شهید باهنر برای 200 میلی‌متر بوده است. بنابراین این مدل با انجام اصلاحات به منظور تحقق مناسب دیده شد. این مدل ...
است. جدول 1 ترتیب آزمایش‌ها را نشان می‌دهد که در مجموع 108 آزمایش با تکرار آزمایش‌ها 216 آزمایش انجام شده است.

در انجام آزمایش‌ها مراحل یکسانی به شرح زیر انجام گرفته است. ابتدا شبکه‌های ورودی آپ به کانال تقریب مدل باز و مقادیر به ورودی تنظیم می‌گردد. پس از حدود 15 دقیقه و حصول آبی رنگ از یک نواخته به جریان زاویه پرهای جهت دهنا جریان α و ارتفاع دهنا آبی از فک حوضه نظیم شده است. چون تغییرات ارتفاع منجر به تغییر سرعت‌های معمول جریان (سرعت جریان تقریب) خواهد کرد که بر اساس این تحقیقات فوق و طی زمان حدود 20 دقیقه جهت پایدار شدن گردباد انجام شد، نرمال سطح آب در مدل از پروژه رقابتی می‌گردد. جهت آماده‌سازی آبی رنگ از نتایج آزمایش‌ها و اثبات قابل تکرار بودن آزمایش، هر آزمایش حداقل دو بار تکرار گردیده است.

در جدول 2، قطر لوله‌های آبی و خاک با پایین‌می‌دهد و عدد راهبرد و عدد ورای تعادل قطر لوله و دی ایستفاده شده در آزمایش‌ها داده شده و در جدول 3 می‌توان نتایج صندلی آزمایش نشان داده شده است.

در خشک تحمل ابعاد نشان داده شده که نسبت H/d در پایین‌می‌دهد از 0.5٪ متغیر گردبند می‌باشد. این پارامتر می‌تواند دهنه غلط بداند. در حال حاضر کمیسیون آبی نمایش H از پایین‌می‌دهد 0.30 تا 0.35 پایین‌می‌دهد که در نتیجه هکسی‌های گردبند دارای می‌باشند.

خیابان برای لوله‌های اتصال آب و 75 میلی‌متر و به طول 50 سانتی‌متر اتصال به جهت تنظیم ارتفاع دهنا آبی از تک مرحله 50 سانتی‌متر از آنها روزه شده است. در این صورت ارتفاع دهنا لوله آبی از تک مرحله 40 سانتی‌متر کافی تنظیم می‌باشد.

بنابراین، جهت ارتفاع ارتفاع لوله آبی مدل به‌صورت برای تابعی از تغییرات سرعت معمول جریان تقریب، 216 آزمایش انجام شده است.
شکل 4. پلان مدل آزمایشگاهی

- بخش های اب 2-3 سریز مثنی 3-کانال پایین دست مدل 4-پمپ 5-کانال نزدیک مدل 6-حوضه آبگیر مدل 7-لوله آبگیر

- صفحه مشبک آرام کننده جریان 9-پرهای اصلی 10-پرهای عمودی 11-پایه‌های مدل 12-پیژمونتر 13-پیچ تنظیم زاویه پره‌ها

شکل 5. بررسی مقطع 8 مدل

1- منبع ذخیره آب 2-3 سریز مثنی 3-کانال پایین دست مدل 4-پمپ 5-کانال نزدیک مدل 6-حوضه آبگیر مدل 7-لوله آبگیر 8-تبدیل 9-صفحه مشبک آرام کننده جریان 10-پرهای اصلی 11-پرهای عمودی 12-پایه‌های مدل 8-پرداخت
شکل 6. بررسی مقطع مدل آزمایشگاهی B-B

شکل 7. مدل آزمایشگاهی با سیستم انتقال آب در حال آزماشی
شکل 8. مدل در حال آزمایش و گرداب تشکیل

جدول 1. متغیرهای آزمایش در بررسی حاضر

<table>
<thead>
<tr>
<th>α°</th>
<th>mm</th>
<th>l/s</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>28</td>
<td>1.0/5.3</td>
<td>1.0/5.2</td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>2.0/5.3</td>
<td>2.0/5.2</td>
</tr>
<tr>
<td>36</td>
<td>75</td>
<td>3.0/5.4</td>
<td>3.0/5.2</td>
</tr>
</tbody>
</table>

جدول 2. قطر و حجم بالا و پایین دیب، عدد ریوندلز و عدد ویر در آزمایش‌ها

<table>
<thead>
<tr>
<th>عدد ویر W</th>
<th>عدد ریوندلز R × 10⁴</th>
<th>قطر دهانه ابکر d (mm)</th>
<th>دبی Q (lt/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>499-1589</td>
<td>2/7-2/12</td>
<td>38</td>
<td>1-2</td>
</tr>
<tr>
<td>705-1587</td>
<td>3/97-5/96</td>
<td>50</td>
<td>2-3</td>
</tr>
<tr>
<td>1298-1670</td>
<td>5/97-6/92</td>
<td>75</td>
<td>3-5</td>
</tr>
<tr>
<td>نتایج و بحث</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>در هر دیب و برای هر لوله آبگیر، نمودار تغییرات نسبت H/d در برای تغییر وزن جریان نسبت α در محدوده آزمایش‌ها نهایت و صعودی است. افزایش وزن جریان خروجی از کانال تهران جریان مولفه ماسی جریان تقریبی به افزایش نسبت جریانی که تقریبی است و نسبت نسبت استغراف آبگیر می‌گردد. افزایش نسبت استغراف نشان دهنده کاهش یاده آبگیر است. تغییر ارتفاع دهانه آبگیر از کف منجر به کاهش نسبت استغراف (افراش جداگانه) آبگیر می‌شود.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جدول 3. خلاصه نتایج آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرکنش</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

افراش ارتفاع دهانه آبگیر از کف منجر به افزایش سطح مقطع جریان در کانال تقریبی می‌گردد. از آنجا که این افزایش ارتفاع در دی نتیجه انجام شده است، لذا افزایش سطح مقطع جریان باعث کاهش سرعت جریان در کانال تقریب می‌گردد.

این کاهش سرعت بر مولفه ماسی آن نیز تأثیر گذار بوده و در نتیجه کاهش سرعت ماسی جریان تقریب را در یک تغییر داشت. نمودار شکل های 14 تغییرات نسبت استغراف را در برای تغییر سرعت ماسی جریان نشان می‌دهد. تغییر سرعت ماسی در این نمودارها ناشی از تغییر وزن جریان تقریب و تغییر ارتفاع دهانه آبگیر از کف مدل است. همان‌گونه که از این نمودارها استنباط می‌شود، تغییر وزن جریان تقریب و تغییر ارتفاع دهانه آبگیر به دلیل تأثیر مستقیم بر مولفه ماسی سرعت باعث تغییر نسبت استغراف آبگیر می‌شود.
تأثیر سرعت و جهت جریان در خروجی کانال تقرب مستطیلی شکل‌با...

شکل 9 نمودار نمودار تغییرات نسبت استغراق (H/d) در برای تغییر زاویه جریان تقرب α در لوله آنگیز به قطر d=38 mm و 1.5 lit/sec و 1/5 lit/sec

شکل 10 نمودار نمودار تغییرات نسبت استغراق (H/d) در برای تغییر زاویه جریان تقرب α در لوله آنگیز به قطر d=50 mm و 2 lit/sec و 1/5 lit/sec
شکل 11. نمودار تغییرات نسبت استفراق (H/d) در برای تغییر زاویه جریان θ در لوله آیلبرگ به قطر \(d=\phi \text{ mm}\) و \(Q=1\) لیتر/ثانیه، \(Q=1.5\) لیتر/ثانیه و \(Q=2\) لیتر/ثانیه.

شکل 12. تغییرات نسبت استفراق (H/d) در برای سرعت مماسی جریان نسبت \(V_0\) برای آیلبرگ با قطر \(d=\phi \text{ mm}\) است.
تغییرات نسبت استغراق در پرای آب‌گیر با نفر V₀ برای باره (H/d) در پرای سرعت مخصوص جریان تقریب Q=1.5, Q=2.5 و Q=3 لیتر در ث که برای 15 مساحت خاصی از آب‌گیرهایی طراحی شده‌اند.

شکل 14

Q=5 لیتر در ث

Q=4 لیتر در ث

Q=3 لیتر در ث

همان طور که با تحلیل ابعادی انجام گرفته و اعمال شرایط چشم پویشی از تأثیر کمک‌سنجش و ویژکریته بر آزمایش‌ها نشان داده شد. عدد سیرکولاسیون، عدد فرود و نسبت استغراق پارامترهایی برای مدل بر گردید. می‌باشد. نمودار شکل های 12-15 را می‌توان با استفاده از اعداد به‌دست‌آمده در نهایت نمودار صورت نمودار شکل 15 خلاصه‌نمود. در نهایت نمودار
نگر و تناول نشانه‌های مبتنی بر اندازه‌گیری می‌گردد. شکل 15 نیوامپیها در افزایش استخراج
مرحله‌آهنگی، افزایش آبگیری از کف بر ضریب تخلیه آبگیری قائم به
طراحان برای طرح سازه‌های ضد گرداب کمک خواهد نمود.
با در نظر گرفتن شرایط جریان در آبگیر و استفاده از شکل
15 نیوامپیها استخراج آبگیری را به دست آورده و سپس ضریب
تخلیه آبگیری R با استفاده از رابطه 5 محاسبه نمود.

نتیجه‌گیری

آبگیر قائم یکی از آسان‌‌نواص است که به مثابه نحوه افزایش
روش‌های را با مکانیزم استخراج آبگیری. از مشکلات اصلی که
این نوع آبگیرها با آن مواجه هستند، ایجاد گرداب‌های قوی در
دهان آهنگی که منجر به آنتی‌پاسیاتمی آبگیری می‌شود.
در این مطالعه با ساخت مدل آزمایشگاهی اثر مؤلفه‌های میان‌سازی
سرعت جریان تقرب و ارتقای دهانه آبگیر بر ضریب تخلیه آن
با 126 آزمایش بررسی شده است. با تحلیل ابعادی دنده‌ای شده
شهد استخراج گرداب بعد به ریوندز، فرود، و به صورت
استخراج آبگیری مناسب‌ترین. با در نظر گرفتن

نتیجه‌گیری

1. افزایش جریان برای جریان با عدد فرود
نیوامپیها در آبگیری برحسب تخلیه آبگیر می‌شود. همچنین
با کاهش عدد فرود جریان، اثر عدد سیرکولاسیون بر ضریب
تخلیه آبگیر کاهش می‌یابد و بر عکس.
2. با افزایش عدد فرود جریان تأثیرپذیری تغییر سیرکولاسیون
بر گرداب نیز بیشتر می‌شود. این سیالی در نمودار شکل
15 افزایش شیب خطوط تغییر نسبت استخراج در برابر تغییر
سیرکولاسیون برای اعداد فرود مختلف مشاهده می‌شود.
3. با توجه به این که عدد سیرکولاسیون مستقیماً تابعی از
مؤلفه‌های میان‌سازی سرعت می‌باشد، عواملی که باعث کاهش
با توجه به این امر در طراحی آبگیرهای به منظور افزایش دهانه آبگیر از کف باعث افزایش ضرابی تخلیه آبگیر خواهد شد. در نتیجه کاهش زاویه جریان تقرب و همچنین افزایش ارتفاع دهانه آبگیر از کف باعث افزایش ضرابی تخلیه آبگیر می‌شود.

4. عواملی که باعث افزایش سیرکولاسیون جریان تقرب می‌گردد باعث کاهش بازده سیستم آبگیر نیز می‌شوند. با توجه به این امر در طراحی آبگیرهای به منظور افزایش دهانه آبگیر، باید سعی شوید زاویه جریان تقرب نسبت به دهانه آبگیر حداکثر ممکن و همچنین ارتفاع دهانه آبگیر از کف در حداقل ممکن باشد. که این مسئله می‌تواند باعث تضعیف گرداب و کاهش هزینه‌های تحمیلی بر آبگیر گردد. با توجه به نتایج فوق اعمال نظرات زیر در طراحی آبگیرهای

منابع مورد استفاده

1. زمردان، س. م. ع. و. م. ر. شجاعیان. 1361. مطالعه تأثیر هندسه کانال تقرب بر ضرابی آبگیرهای به منظور استفاده از مدل آزمایشگاهی. مجموعه مقالات ششمین سمینار بین‌المللی مهندسی رودخانه، اهواز، صفحه 559-565.

2. شجاعیان، م. ر. 1381. مطالعه آزمایشگاهی هندسه کانال تقرب بر ضرابی تخلیه سربری نیلوفاری. پایان نامه کارشناسی ارشد، مهندسی عمران، گرایش سازه‌های هیدرولیکی، دانشگاه شهید باهنر کرمان.

3. کیبی، سامانی، ع. و. س. م. برقی. 1380. بررسی نحوه قرارگیری صفحات ضد گرداب بر پایانه‌سازه‌های آبگیرهای نیلوفاری. مجموعه مقالات سومین کنفرانس هیدرولیکی ایران، تهران، صفحه 97-108.

