تأثیر آبیاری با فاضلاب بر عملکرد و کیفیت کاهو و برخی ویژگی‌های خاک

علی عرفانی، غلامحسین حقی‌نَیا و امین علیزاده

چکیده

به منظور اکتشاف از تأثیر کاربرد فاضلاب‌های نباتی فیزیک‌شده خاک‌پر عاملکرد و کیفیت‌های گیاهی، لاتکسیت سویا (Lactuca sativa) و ویژگی‌های خاک، به نوعی رطوبت‌داری مشابه با کاهش مصرف آب و کاهش کود آزمایش در یک خاک با پهپاد لوکسی را به‌وجود آورد. در مزرعه دانشگاه کشاورزی دانشگاه مشهد انجام شد. تیمارها عبارت بودند از: T1 (آبیاری با فاضلاب ضیافت شده خاکی)، T2 (آبیاری با فاضلاب ضیافت شده خاکی + آب چاه به تنار)، T3 (آبیاری با آب چاه + کود حیوانی، گازی)، T4 (آبیاری با آب چاه + کاربرد نیتروژن + فسفر) و T5 (آبیاری با آب چاه، شاهد). نتایج تجزیه‌شیمیایی آب چاه نشان داد که این اثر کاربرد شیمیایی محدود‌تر خاصی ندارد.

نتایج به دست آمده از آزمایش مشخص کرد که عملکرد کاهو در کلیه تیمارها افزایش داشت. در مقایسه با تیمار شاهد، پیش‌ترین عملکرد تراکم هواپیمایی کاهو (برگ) به ترتیب در تیمارهای T3 و T1 و پیشترین آزمایش و ویژگی‌های برگ کاهو به ترتیب در تیمارهای T1 و دیده شد. نتایج تجزیه‌گذاری نشان داد که غلظت قارچ‌های تیمارهای T1 و T3 و آزمایش نسبت به تیمار شاهد، تیمارهای مصرف شده است. در تیمار T1 آزمایش غلظت آن نسبت به تیمار شاهد و تیمارهای مصرف شده است. در تیمار T2 آزمایش به ویژه پیش از دیگر تیمارهای بود. نتایج خاک سطحی (0-30 سانتی‌متر) نشان داد که با کاربرد فاضلاب، قابلیت همبستگی الکتروکی‌میکروگرافی اشعاع اشعاع نازک، سطح قابل جذب، گازهای مثل دی‌اکسید کربن و نیتروژن خاک افزایش داشت، ولی مقدار آن زیاد استاندارد و ارائه به وسیله جامعی بین المللی بوده و همچنین تأثیر صورت پی کاهش نداشت. نتایج همچنین ابزار شده در برخی از دیگر گیاهان و خاک‌های نسبت به تایی طبیعی است. نتایج حاصله در سال‌های بعد نیز توجه گردید.

واژه‌های کلیدی: سبز، آبیاری، کاهو، عملکرد، آلودگی میکروبی

1- مربی آبیاری، دانشگاه کشاورزی، دانشگاه شاهرود
2- استاد خاکشناسی، دانشگاه کشاورزی، دانشگاه فردوسی مشهد
3- استاد آبیاری، دانشگاه کشاورزی، دانشگاه فردوسی مشهد
مقدمه

با توجه به کمیته آب در مناطق خشک و نیمه خشک ساکن ایران، در اجرای برنامههایی به منظور توسعه و بهبودی از منابع آب جدید، به ویژه در بخش کشاورزی، استفاده از پساب فاضلاب‌های کشاورزی، صنعتی، شهری و روستایی می‌تواند به عنوان منابع آب دیگری توجه قرار گیرد. با این کار نه تنها کم‌بود آب کشاورزی تا حدودی جبران می‌شود، بلکه از آثار سوء تخلیه به ورود فاضلاب‌ها و خسارت‌های آن به منابع کشاورزی و محیط زیست نیز جلوگیری خواهد شد.

هم اکنون در شهر مشهد سالانه ۱۵۰ میلیون متر مکعب آب برای آشامیدن و بهداشت زراعت گوناگون تأمین و به مصرف می‌رسد. پیشینه می‌شود نیاز این آب تا نوبت به رشد جمعیت در سال ۱۳۹۵ در حدود ۱۹۰ میلیون متر مکعب یاد شد. (۱) بر اساس معادلات موجود، در سال ۱۳۹۵ به ۱۹۰ میلیون متر مکعب باید مصرف شود، ولی فقط فاضلاب‌های دست تولید در شهر مشهد حدود ۱۰۰ میلیون متر مکعب پساب تعیین نمی‌شود، ولی فقط فاضلاب‌های دست تولید حاوی حدود ۵۰۰ میلیون متر مکعب باید مصرف شود و به یکی از نیازهای آلودگی‌های محیط زیست بپردازیم.

برای گزارش‌های موجود، تحقیقات کاربردی فنی و توسعه در آب‌پزشکی و دیگر سایر پایه‌های فلزی‌کاری و دیگر صنایع در مشهد باید توجه رسانده شود.

۷۲
تأثیر آبیاری با فاصله‌بندی و کیفیت کاهو بر وزن و رشد گیاه (P. N. Mورد) بررسی قرارداده و مقایسه صرفه‌سازی‌ها تا مدت هفت سال اثر نامطلوبی از تحمیل فلزات سنگین مانند، تکرار، کلر و همکاران اثر پاس فاصله‌بندی شهری را در جنگ ایالتی مختلف آمریکا در مورد فاصله‌بندی کیسه‌ای دقت و نیز شماری از کاهش عارف‌های مطالعه مشاهده و به این ترتیب رشد که تأثیر پاس با کاربرد کود شیمیایی به صورت تیتری آموزش از نظر تأمین نیاز غذای کاملی قابل مقایسه است.

پیامدهای (25) گزارش کرد که در مراحل مختلف هند، عامل‌های گیاهان رشته‌ای نیشکر، بی‌سیزه و به ویژه علفه، در مراحل اولیه به شدت با آب آوری‌های بهره‌برداری در مقایسه با شرایط آب‌رسانی در محل نیاز به بیشتر بحران بسیاری پیدا شد. شدید و همکاران (44) شده با آب کالا به‌طور هم‌زمان در اصل در مقایسه با آب شیرین (همه‌ها با انتقال باستانی‌سازی، کود نیتروز، سفیر و پاتامی)، برای آب‌رسانی مزارع گندم، بالاخ، برخی، سبزی‌آمیزی و پیش کارآفرینی شده‌است. افزون بر این، هیچ گونه تأثیر سیستمی بر خاک و یا آب‌های زیرزمینی در اثر استفاده از پاس دیده نشد. با این حال، الی‌مایه از نمودار نشان می‌دهد که اثر استفاده از پاس نغره‌ای در پیپر‌گی‌های فیزیکی خاک ایده‌پردازی می‌شود. و این تغییرات به دلیل وجود اصلاح در آب و پودن SAR آب است، که آن‌ها پس‌بایه، بلوکه در اثر استفاده از پاس معمولی نیز چنین وضعیتی ممکن است رخ دهد. در هر حال، گزارش‌هایی که گواهی اثر نامطلوب کابیری پاس بانگ‌نیست، بسیار اندک است، و دال بر ابات مطبوب نبوده و می‌پایتپژوهش‌های گسترده‌ای در این زمینه انجام شود.

جکوزی و همکاران (32) دریافت که عامل‌ها نزدیک می‌باشد که بر اثر استفاده از یکپارچه‌ی علفه و سیستم‌های آبیاری شده با فاصله‌بندی به ترتیب 2/5 و 3 برای پیش از محسوب داده است بسته ای به آب چاپ اطمین است. در حقیقت، گزارش‌هایی که گواهی اثر نامطلوب کابیری پاس، بسیار نیست، داشته، و گزارش‌هایی است. گزارش در سیستم‌های داشته و همکاران (1) نشان داد که استفاده از فاصله‌بندی کافی‌تر خاکی هیچ گونه تأثیر سیستمی در زیستی جذب عناصر سنگین در چند روز و چندر علفه‌های ناشی از این‌ها است. ول و همکاران (17) در خاک‌های آبیاری شده با پاس
کشت، بر اساس کرته‌های مشخص شده تیمار T1 توزه شد. فضاهای دی اموزن به میزان 250 کیلوگرم در هکتار کشت، در یک نوبت اضافه گردید. لاتکتا ساتیا (پیچ اهرازی) به (Lactuca sativa) صورت دست‌پاش در کرت‌های به ابعاد 178 × 178 متر مربع و با فاصله ریفی 20 سانتی‌متر صورت گرفت، آب‌ورود نیاز گیاه برای تعیین شد. برای کاهش میزان نمره مجهز به چاه عمقی رپیدیس دانشگاه به عمق 120 متر در فاصله دو کیلومتری مزرعه نامی، و پس از انتقال به مخزن ذخیره موقت، استفاده گردید. آب‌ورود به صورت سطحی (جواب‌گیر) و مطالب عرض مصرف شده، به طور معمول استفاده گردید. فاصله گذاری آب‌ورود نسبت به همکاری، و یک دانه از گونه‌های گوناگونی کار رنگ‌بندی آب‌ورود و درمان دوباره مورد نظر است.

نسبت به این یکپارچه ارزیابی تأثیر یک یا آب‌ورود، و این است که با مصرف یکی از آن‌ها به عنوان درمان دوباره مشاهده شده است.

مواد و روش‌ها
این آزمایش در مرزه یپره‌های دانشگاه کشاورزی دانشگاه فردوسی مشهد انجام شد. مزرعه در معرض چرایی‌ای در بین 13 دقیقه شمسی و طول چرایی‌ای در بین 99 دقیقه شرقی و بین ارتفاعات از 899 متر از سطح دریا تا 1499 متر از سطح دریا می‌باشد. محل مورد آزمایش از نوع میوه، رستم است. که بر اساس Fine loamy mixed mesic Calcixerollic یکی از نقاط شهد کشت، با استفاده از نرم‌افزار Xerochrepts محاسبه کننده و غیر قابل نفوذ بود. پس از تسطیح و آماده‌سازی زمین مورد نظر و پیش از کاشت، مقدار 25 گرم در هکتار کود دارمی (گاری) پذیرفته شد. اساس کرت‌های مشخص شده تیمار T1 توزه گردید. مقدار 100 کیلوگرم نیترژن در هکتار به صورت توزه در دور توزه‌های یک دانه از گونه‌های گوناگونی کار رنگ‌بندی آب‌ورود و درمان دوباره مورد نظر است.

پس از تسطیح و آماده‌سازی زمین مورد نظر و پیش از کاشت، مقدار 25 گرم در هکتار کود دارمی (گاری) پذیرفته شد. اساس کرت‌های مشخص شده تیمار T1 توزه گردید. مقدار 100 کیلوگرم نیترژن در هکتار به صورت توزه در دور توزه‌های یک دانه از گونه‌های گوناگونی کار رنگ‌بندی آب‌ورود و درمان دوباره مورد نظر است.

4
تأثیر آیا آب فاضلاب بر عملکرد کیفیت کاهو و برخی ویژگی‌های خاک

دوی نست تصمیم‌گیری همکاری‌ها و ۲/۳ دیگر کردند

است. تجربه پاسان یافته که نتیجه‌های در بین این است که به وسیله بایوکار

گزارش شده است. این داده‌ها نشان می‌دهد که تکیه دوبین

استخراج فلورا فیروزی در شبکه توده و یک‌نواخت نیست. در پاسا آزمایش ۲۸ دوم، با ۲۲ دوم به مرنیتری و

تنها نشان یک دوم در نتیجه بر فرم آزمایشی و

درصد به فرم نتیجه بود. فسر پاسا بیشتر بین فرم

ارضاسبس و دَنیا حداد ۲۲ درصد از فسر پاسا به فرم آلی

بود.

فسر با پونه آلی در بینشت فلورا فیروزی با یافته از اهمیت

کمی برخورد داده ولی می‌تواند در فلورا‌های منفی و

لزجی تعیین منفی با تکیه‌های مهم باشد. این جا

پاداری می‌شود که مقدار نتیجه و فسر در پاسا شبیه

لغزش کنتر آن است که به وسیله پژوهشگران (۵۲) در دوی

استخراج فلورا فیروزی در آمریکا از اندوزی و گزارش شده

است. کمی کاربرد سرما در آب در آمریکا (۵۰ دوم در شبیه

و در برای آمریکا ۲۵۰ دوم در شبیه، همچنین ناهمسانی

علای اثبت و خوراکی‌ها در دو کشور می‌تواند دلیل بر این

نابرابره‌ها باشد.

میانگین‌های پساب ۵۰ دوم زمین بر متر بود و ولی

روی هرف ورشو پساب سبک لگرگیر زاسیمیت

بر متر کمتر بود که در دامن روی آزار شده پسابها (۲)

تا ۲/۲ جای گیرد (۴۵ و ۶۳). که جزء در پاسا، سدیم

پیش: مقدار کل می‌باشد کیفیت پساب از منیزیم و از مان آنیون‌ها، مقدار

کل پساب از پساب و سولفات پساب. میانگین انرژی محلول

پیش: تصفیه‌خانه سبک لگرگیر در مقایسه با خوراک و انرشار

محلول دوی نست تصمیم‌گیری فلورا فیروزی آمریکا، که به

وسیله پژوهشگران (۲۵) کاردار شده است. نشان می‌دهد که

این ویژگی‌های پساب در تصفیه‌خانه سبک لگرگیر بالاتر از

آمریکا است. اخراج مصرف سرمایه آب در آمریکا در برای

آمریکا، نیز زیاد بودن نمک و سختی آب آشامیدنی شهر

شده، و غلظت انرشار مختلف در اندازه‌های هواهی ریشه گیاه

تعیین گردید.

ویژگی‌های فلورا آب و پساب در فصل رشد، و به طور

مایه‌ای از اندوزی آب. رای آزادگیری برخی انرشار سطگین

در نمونه‌های غیر از روش نتنگی و پیچ (۲۷) به‌گیری نشان دارد. و ذخیره در یک‌پاره در نتیجه

در سه ماه با ۹/۲ مساحت‌متری با گاز تولید اننی

گرفت. به وسیله دستکاری pH مرغی با هدایت سنج

الکتروکی، فسر با عصاره‌گیری به وسیله پی‌گروین‌سازی و

با روش اوسلون به وسیله رنگ‌سنجی کلر به وسیله

پی‌گروینسازی به وسیله بررسی به وسیله روش نتنگی

با کارکردن و اسیدگیری سدیم و پتاسیم به وسیله BOD (۳۰)، که بی‌پرویز به وسیله به روش گروپات (۱۲) و

روش نتنگی به وسیله به روش بی‌کرومات (۱۲) دیگر انرشار با استفاده از دستگاه جدید انتها اندوزی گیری شدن

۲۶) برخی از روش های فلورا و شیمیایی خاک در جدول

۱ آمده است. برای آگاهی از وضعیت به‌شنس (میکروپویی و

انگلیسی) پساب، در هن روشی از آب‌زایی نمونه‌های پساب به

آزمایشگاه ارسال و آزمایش‌های مربوط با توجه به کشت‌های

میکروپی انجام گردید. تغییر تکیه‌گاه کریپتوسپوریوم به

روش کانسرت زل‌دن ایجاد اصلح شده و وجود ژاوندا با

مشاهده کیست آن بوده است. تحقیق کرمر با مشاهده عینی در

پساب تحقیق داده شد که در تمام موارد از میکروسبوپ

استفاده گردید (۱۲) همچنین برای تعیین آلودگی‌های احتمالی

ابجاد شده در خاک و این باعث یافته سنا متری

نمونه‌داداری به ویژگی‌های اندوزی شد.

نتایج و بحث

کفت آب آب و پساب

نیتروژن، فسر و پتاسیم مهم‌ترین انرشار غذایی موجود در

فاضلاب می‌باشد. که روی هم رفته نسبت N/P/K به در پساب

پتاسیم و فسفر کاهش می‌یابد. الیوت (۲۵) نسبت K در

N/P/K 10/10/9/27 و ۶۳ (۴) و مقدار آنها از N/P/K به

پتاسیم و فسفر کاهش می‌یابد. الیوت (۲۵) نسبت K در
<table>
<thead>
<tr>
<th>نظریه</th>
<th>اصول</th>
<th>گزینش</th>
<th>محاسبه</th>
<th>سوالات</th>
<th>پاسخنامه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
تاثیر آیا ای با فاضلاب بر عاملکرد و کیفیت کاهو و برخی ویژگی‌های خاک

عملکرده کاهو

نتایج نشان می‌دهد که عاملکرد کاهو در کلیه تیمارهای مورد مطالعه با شاهد افزایش داشته است (جدول 4). به طوری که میانگین عاملکرد ماده و خشک کاهو در تیمارهای T1 و T3 به ترتیب 8/2/74 و 8/3/28 درصد برای وزن تر و 8/3/25 و 8/3/28 درصد برای وزن خشک، دست آمده. میانگین این اعداد برای تیمارهای T4 و T2 به ترتیب 8/3/25 و 8/3/28 درصد برای وزن تر و 8/3/25 و 8/3/28 درصد برای وزن خشک است. عاملکرد کل (اندام هوا+رشته) در کلیه تیمارها نسبت به تیمار شاهد افزایش داشته است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در تیمارهای T1 و T3 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در تیمارهای T1 و T3 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در تیمارهای T1 و T3 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگین حداکثر افزایش عاملکرد ماده در T3 و T1 نسبت به T2 و T4 است. به طوری که میانگی
جدول ۲. میانگین ترکیب شیمیایی آب چاه و پساب (میلی گرم در لیتر)

| میزان استاندارد آلودگی | گذشته مجاز آب آب‌یاری | پساب | چاه آب | PH | هیدرولیت الکتریکی | PH | سدید | HD | ملیت کلسیم | ملیت | ملیت مس | ترکیب کلسیم | ترکیب | نیترات | فسفر | نیترات | قارچ سرچشمه | گل‌پرور | بکری | گل‌پرور | قارچ سرچشمه | بکری | گل‌پرور | نیترات | فسفر | نیترات | C
جدول 3. کیفیت میکروبیولوژی و انگلی آب‌های آبیاری

<table>
<thead>
<tr>
<th>میزان آب‌های آبیاری</th>
<th>فاضلاب‌های تصفیه‌شده خانگی</th>
<th>آب چاه</th>
<th>میزان اندازه‌گیری شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمار کلی زیست‌داران در میلی‌لیر</td>
<td>شمار کلی فرم‌ها در میلی‌لیر</td>
<td>عدد (M.P.N)</td>
<td>عددهای قابل قبول (M.P.N) در 100 میلی‌لیر</td>
</tr>
<tr>
<td>1/100 x 10</td>
<td>1/176 x 10</td>
<td>72</td>
<td>60</td>
</tr>
<tr>
<td>1/10 x 10</td>
<td>1/15 x 10</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>0/10 x 10</td>
<td>1/2 x 10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 4. کیفیت آب پر اساس جدول پروتوژن

<table>
<thead>
<tr>
<th>کیفیت آب پر اساس جدول پروتوژن</th>
<th>کیفیت آب پر اساس جدول (WHO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرم‌پروریزیدم</td>
<td>کرم‌پروریزیدم</td>
</tr>
<tr>
<td>زیباریا</td>
<td>زیباریا</td>
</tr>
<tr>
<td>آسکارس</td>
<td>آسکارس</td>
</tr>
<tr>
<td>کرم‌پرگاسی</td>
<td>کرم‌پرگاسی (تراتوود)</td>
</tr>
<tr>
<td>فاسیولا</td>
<td>فاسیولا</td>
</tr>
<tr>
<td>تئیا</td>
<td>تئیا</td>
</tr>
<tr>
<td>کرم سنجاقی</td>
<td>کرم سنجاقی</td>
</tr>
<tr>
<td>کرم یکن</td>
<td>کرم یکن</td>
</tr>
</tbody>
</table>

1. برگرفته از خورشید (32) و WHO (33)

جدول 5. تیمارهای آبیاری بر عملکرد اندام هوایی (برگ) کاهو

<table>
<thead>
<tr>
<th>تیمار</th>
<th>وزن برگ کاهو (کیلوگرم در هکتار)</th>
<th>وزن برگ کاهو (کیلوگرم در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>511 a</td>
<td>3457 a</td>
</tr>
<tr>
<td>T₂</td>
<td>471 a</td>
<td>6618 a</td>
</tr>
<tr>
<td>T₃</td>
<td>508 a</td>
<td>6686 a</td>
</tr>
<tr>
<td>T₄</td>
<td>457 a</td>
<td>6524 a</td>
</tr>
<tr>
<td>T₅</td>
<td>284 a</td>
<td>4687 b</td>
</tr>
</tbody>
</table>

در هر سطح میانگین‌هایی که دارای حروف مشابه هستند، بر اساس آزمون دانکن در سطح 0.05 مقدار تفاوت معنی‌دار دارد.
تلخيص گیاه

نتایج تجربه گیاهی نشان داد که کلسترول نیتروژن، فسفر و پتاسیم در کلیه اندازه‌های گیاه کاهو در میزان T1، نسبت به شاهد افزایش داشته است (شنگهار 1 و 2). پیشینه مقادیر نیتروژن و فسفر در اندازه‌های گیاه و ریشه کاهو به ترتیب در میزان T1 و T2، و کمترین آن تریپ که T4 در T2 و T4 می‌باشد. پیشینه مقادیر در اندازه‌های و ریشه کاهو به ترتیب در میزان T1 و T2 تشیرت. مشاهده شد. مقادیر عناصر پرمصرف در اندازه‌های کاهو به مراتب بیشتر از رشته است.

عاشاقی کشاورزی وابسته است. ولی در بیشتر گیاهان کشت مشاهده شد که مقادیر عناصر پرمصرف در دانه کوچکتری می‌تواند باشد. نسبت به میزان موردنامه کاه گیاهان کشت مشاهده شد (جدول 5). اختلاف میان مقادیر کلسیم و منیزیم اندازه‌های و ریشه کاهو کم است. که این می‌تواند به دلیل یوپایی کم کلسیم و منیزیم نسبت به نیتروژن، فسفر و پتاسیم درون گیاه باشد. کارودس و هواک (31) گزارش کرده که با آبیاری 2/5 و 5 سانتی‌متر در هنگام با گذشتن در گیاهان با گذشت و درت سبزی، فسفر، کلسیم، منیزیم، بزرگ، سیستم و کلر افزوده شده بود. حاکی از این می‌باشد که هر چه افزایش گیاهان برداده شده است. گرچه نگه داشتن عناصر پرمصرف گیاهی در میزان مختلف آب‌سیب نسبت به میزان شاهد افزایش داد و لوله ای نگهداری در داخل مجاور گزارش شده بود. پیشینه الکتریکی بر با برد و ریشه کاهو به ترتیب در میزان T4 و T2، و کمترین آن تریپ که T4 در T2 و T3 مشاهده گردید. گزارش‌های بسیاری اخلاق‌گرچه پیش روا در اندازه‌های گیاه و ریشه نسبت به ریشه به داده است؛ و به‌ویژه گل‌گیاه از این عناصر غنی می‌باشد (9، 21، 23).

علمکرد گیاهان در منازع آبیاری بسیار به بالا بودن میزان بیشتر است، و آبیاری با فاضلاب تصمیم سازنده خونه نکته تنها تاثیر مفید بر کمیت و کیفیت گیاهان نشان‌دهنده در ارزش گیاهی یکی از عناصر مهم شده است. بهتر از ارزش کوده مرسم است.

مقدار اندازه‌های کاهو در میزان T1، مقادیر عناصر پرمصرف در اندازه‌های کاهو به مراتب بیشتر از رشته است.
تایپ ها

شکل ۱. اثر تیمارهای آیاهی بر غلظت نیتروژن و پتاسیم در برگ و ریشه کاهو

شکل ۲. اثر تیمارهای آیاهی بر غلظت فسفر و بر در برگ و ریشه کاهو

ستون‌هایی که با یک حرف مشترک مشخص شده‌اند تا آزمون داتکن در سطح پنجم درصد معنی‌دار نمی‌باشد.
جدول ۵. گلظت عناصر موجود در برگ و ریشه خسک کاهو (درصد)

<table>
<thead>
<tr>
<th>عنصر غذایی</th>
<th>تیمار</th>
<th>کلسیم</th>
<th>منیزیم</th>
<th>بریم</th>
<th>ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T۱</td>
<td>۰/۷۸</td>
<td>۰/۵۷</td>
<td>۰/۱۲</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td></td>
<td>T۲</td>
<td>۰/۴۷</td>
<td>۰/۳۴</td>
<td>۰/۱۱</td>
<td>۰/۶۸</td>
</tr>
<tr>
<td></td>
<td>T۳</td>
<td>۰/۸۴</td>
<td>۰/۵۱</td>
<td>۰/۱۱</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td></td>
<td>T۴</td>
<td>۰/۸۴</td>
<td>۰/۵۱</td>
<td>۰/۱۱</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td></td>
<td>T۵</td>
<td>۰/۸۴</td>
<td>۰/۵۱</td>
<td>۰/۱۱</td>
<td>۰/۷۱</td>
</tr>
</tbody>
</table>

گستره مجزای گلظت: ۰/۰۳ تا ۰/۱۰

عقباء دارد که در گیاهان بر نسبتاً درای پوبیا کمی است، و مقدار آن از پایین گیاه به بالا افزایش می‌یابد (شکل ۲).

حداکثر مقدار مسیم در تیمار T۱ آزمایش به ترتیب در ریشه و برگ برده شد. برای سطح مسیم در گیاه به سبب شفاف آب‌گیری برگ گزارش گردید. این مقایسه با پاتسم کمتر بود. از برخی از گونه‌های گیاهی ساده به پاتسیل استمری سلولی کمک می‌کند، بنابراین در وضعیت گیاه تأثیر مثبت دارد. اثر مقدار مسیم بر رشد گیاه به ریشه و قسمت همانند که گیاه پاتسیل کافی نیست، آشکار است. ویژگی‌های ذاتی گیاه به دلیل تأثیر انعطاف‌پذیری از، اختلاف‌های می‌کند که حداقل گلظت مسیم در ریشه بیشتر و جا به جای آن استفاده به هولی به سبب اندکی باید (۶).

مقدار آن از پایین گیاه به بالا افزایش می‌یابد (شکل ۲).

حداکثر مقدار مسیم در تیمار T۱ آزمایش به ترتیب در ریشه و برگ برده شد. برای سطح مسیم در گیاه به سبب شفاف آب‌گیری برگ گزارش گردید. این مقایسه با پاتسم کمتر بود. از برخی از گونه‌های گیاهی ساده به پاتسیل استمری سلولی کمک می‌کند، بنابراین در وضعیت گیاه تأثیر مثبت دارد. اثر مقدار مسیم بر رشد گیاه به ریشه و قسمت همانند کافی نیست، آشکار است. ویژگی‌های ذاتی گیاه به دلیل تأثیر انعطاف‌پذیری از، اختلاف‌های می‌کند که حداقل گلظت مسیم در ریشه بیشتر و جا به جای آن استفاده به هولی به سبب اندکی باید (۶).
جدول 1. تغییر عناصر در برج و رشته خشک کاهو (سیالوگرم در کیلوگرم)

| عنصر | تیمار | گستره مجزا | عناصر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
<tr>
<td>آهن</td>
<td>26/7</td>
<td>32/5</td>
<td>41/8</td>
</tr>
<tr>
<td>ریشه</td>
<td>108/7</td>
<td>115/1</td>
<td>98/7</td>
</tr>
<tr>
<td>برق</td>
<td>41/3</td>
<td>57/2</td>
<td>37/8</td>
</tr>
<tr>
<td>مگنت</td>
<td>38/7</td>
<td>37/2</td>
<td>31/7</td>
</tr>
<tr>
<td>رودی</td>
<td>38/7</td>
<td>35/9</td>
<td>30/8</td>
</tr>
<tr>
<td>مس</td>
<td>48/0</td>
<td>34/8</td>
<td>37/1</td>
</tr>
<tr>
<td>کادمیوم</td>
<td>7/9</td>
<td>5/0</td>
<td>5/0</td>
</tr>
<tr>
<td>ریشه</td>
<td>87/2</td>
<td>83/9</td>
<td>37/9</td>
</tr>
<tr>
<td>برق</td>
<td>16/3</td>
<td>12/0</td>
<td>11/1</td>
</tr>
<tr>
<td>نیکل</td>
<td>16/8</td>
<td>13/0</td>
<td>11/1</td>
</tr>
</tbody>
</table>

1. برگرفته از استون (1829)، نوئل (1384)، (7) و (78) و (78) و (78) و (78)

در گیاه دانه‌دار است. (9)

مس به مقدار بسیار کم در بافت‌های گیاهی انباشتگی می‌شود. کلر و دیوی (22) با استفاده از روش‌های براید، غونه‌های گیاهی مختلف نشان دادند که مس می‌تواند بیشتر به عنوان یکی از مکان‌های تابلی ریشه یا با چند در حدود نانک‌ها یا روی شرود این رفت‌ها می‌تواند در تهیه خوبی باشد پر این که ریشه از نظر مقدار مس نسبت به دیگر بافت‌های گیاهی غنی‌تر است.

لورناکان (24) گزارش کرده است که تحرک مس به وضع آن در درون گیاه بسگی دارد. در بوته‌های گندی که به خوبی از مس برخوردارند، انتقال مس از برق به داده به آسانی می‌تواند انجام گیرد ولی این انتقال در گیاهان دچار کمبود نسبتاً بی‌تحرک است. بافت‌های پوستی حاضر این عاملی بیشتر مس را در اندام‌های هواپیان نسبت به ریشه کاهش نشان داد. مقدار مس در اندام‌های کاهو به داده در گیاهان بسگی آن قرار داشت.

درجه سه‌تیکل در گیاهان حشتم برای روي است (79) و
اختلاف معنی‌داری را بیان یک گرایش‌ها ی روده‌ها و مصرفی نمونه‌های مربوط به بالا و پایین گیاهان آبیاری داشت با فاصله نشان داد و لی فیلتر این اولوگی وابسته به نوع منبع آب نبود و احتمالاً مربوط به مصرف پرندگان بوده است. از جمله دیگر ریزجاندازی در برگ کاهو که با مشاهده، علی‌عینی تشخیص داده شد، پرتوژاوه و کرم‌های بودند.

ویژگی‌های شیمیایی و آلولوگی‌های احتمالی میکروبی خاک آزمایش شده

نتایج تجزیه حاکم‌های نمونه‌برداری شده از عمق 300-600 سانتی‌متر نشان داد که شریک حاکم‌های آبیاری شده با فاصله با شریک حاکم‌های آبیاری شده و یکدیگر که مشابه است. همچنین، پاسب به کار رفته در آزمایش، نه تنها از لحاظ شوری اثر اکسی‌ناشته است، بلکه به بحث نیز می‌باشد.

ویژگی‌های کیفی برگ کاهو

نتایج نشان داد که رنگ برگ کاهو در تیمارهای T3 و T1 نسبت به شاهد برتر می‌شود. در صورتی که رنگ برگ کاهو در تیمارهای T4 و T3 روش‌تر بود، همچنین با توجه به کاهش در تیمارهای T3 و زودتر کل کاهش به کمیت تیمارها، گیاهان در تیمار T1 کاهش کرده و تیمارهای مختلف آبیاری طعم مشابه داشتند. دوباره میوه، یاد داد و زودتر پایان به کاهش می‌باشد.

آلولوگی‌های احتمالی میکروبی در سطح برگ کاهو

یشترین شمار کل فرم و عدد M. P. N. کل فرم در 100 میلی‌لیتر پساب، به ترتیب در تیمارهای T1 و T2 مشاهده شد (جدول 6-7). راکتی‌های بازلسیوس در کلیه تیمارها شناسایی شد. باکتری‌های سالمونالا در تیمارهای T1 و T2 دیده شد. نتایج آزمایش‌های بیور (19) هنگام اختلاف معنی‌داری را بین جمعیت‌های کل فرم موجود در محصولات آبیاری شده با فاصله‌ای که مشابه و جمعیت‌های کل فرم موجودات آبیاری شده با آب چاه نشان داد. با توجه به کاهش جنگین (19)
جدول ۷. اثر تیمارهای آب آپاری بر ویژگی‌های کیفی کاهو

<table>
<thead>
<tr>
<th>تیمار</th>
<th>فرم</th>
<th>رنگ</th>
<th>شکل</th>
<th>رطوبت وزنی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>عادی</td>
<td>تیره</td>
<td>عادی</td>
<td>۹۰</td>
</tr>
<tr>
<td>T_2</td>
<td>عادی</td>
<td>روشن مشابه به تیره</td>
<td>عادی</td>
<td>۹۰</td>
</tr>
<tr>
<td>T_3</td>
<td>عادی</td>
<td>تیره</td>
<td>عادی</td>
<td>۹۶</td>
</tr>
<tr>
<td>T_4</td>
<td>عادی</td>
<td>تیره</td>
<td>روشن</td>
<td>۹۴</td>
</tr>
<tr>
<td>T_5</td>
<td>عادی</td>
<td>روشن</td>
<td>عادی</td>
<td>۹۵</td>
</tr>
</tbody>
</table>

جدول ۸. نتایج آزمایش‌های میکرووی انجام شده روی بروگ کاهو

<table>
<thead>
<tr>
<th>میکرووی</th>
<th>شمار کلی باکتری‌های نوع سالمونلا (محتمل ترین شمار کلی فرم در هر میلی لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>باستیلوس گرم مثبت - پروتوزواهای زیباردیا، کرم‌های آساپرس، تنا و فاسیولا</td>
</tr>
</tbody>
</table>
جدول 9. ویژگی‌های شیمیایی خاک (300 سانتی‌متر) پیش و پس از پایان آزمایش

<table>
<thead>
<tr>
<th>T۱</th>
<th>T۲</th>
<th>T۳</th>
<th>T۴</th>
<th>T۵</th>
<th>از کاشت</th>
<th>معیارهای اندازه‌گیری شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/6</td>
<td>7/6</td>
<td>7/5</td>
<td>7/5</td>
<td>7/5</td>
<td>7/6</td>
<td>pH</td>
</tr>
<tr>
<td>10/9</td>
<td>10/9</td>
<td>10/9</td>
<td>10/9</td>
<td>10/9</td>
<td>10/9</td>
<td>CEC</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/7</td>
<td>1/7</td>
<td>1/0</td>
<td>1/5</td>
<td>(سانتی‌مول در کیلوگرم)</td>
</tr>
<tr>
<td>2/9</td>
<td>2/4</td>
<td>2/1</td>
<td>2/4</td>
<td>2/18</td>
<td>2/18</td>
<td>EC</td>
</tr>
<tr>
<td>1/9</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>(دسی‌زمینس بر متر)</td>
</tr>
<tr>
<td>0/12</td>
<td>0/88</td>
<td>0/12</td>
<td>0/88</td>
<td>0/08</td>
<td>0/08</td>
<td>SAR</td>
</tr>
<tr>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>(درصد)</td>
</tr>
<tr>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>C</td>
</tr>
<tr>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>(درصد)</td>
</tr>
<tr>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>TN</td>
</tr>
<tr>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>(میلی‌گرم در کیلوگرم)</td>
</tr>
<tr>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>Na۴</td>
</tr>
<tr>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>K۴</td>
</tr>
<tr>
<td>0/12</td>
<td>0/88</td>
<td>0/12</td>
<td>0/88</td>
<td>0/08</td>
<td>0/08</td>
<td>Ca۴ (میلی‌گرم والن بر لیتر)</td>
</tr>
<tr>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>Mg۴</td>
</tr>
<tr>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>CO۳</td>
</tr>
<tr>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>HCO۳</td>
</tr>
<tr>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>Cl۴</td>
</tr>
<tr>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>SO۴</td>
</tr>
<tr>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>Na۴</td>
</tr>
<tr>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>K۴</td>
</tr>
<tr>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>Ca۴ (سانتی‌مول در کیلوگرم)</td>
</tr>
<tr>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>0/12</td>
<td>Mg۴</td>
</tr>
</tbody>
</table>

در هر سانتی‌متری‌هایی که دارای حروف مشابه هستند بر اساس آزمون دانکن در سطح 0/05 فاوت می‌باشد.
جدول 11. کیفیت میکروبیولوژی خاک در عمق 0-50 سانتی‌متر پس از برداشت کامو

<table>
<thead>
<tr>
<th>متغیرهای میکروبی</th>
<th>شمار کلی دیجیترالان</th>
<th>باکتری‌های نوع</th>
<th>تمیز کننده سالمند</th>
<th>مقدار و/یا</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>بسیار سلول‌دار، استاتیفیکس و کم آکسیژن</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>کم در هرم</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
</tr>
<tr>
<td>تیمار T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماکرونیکول</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
</tr>
<tr>
<td>تیمار T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>باکتری‌های یکپارچه و کلستریدیوم</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
</tr>
<tr>
<td>تیمار T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اکسمونیا</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
</tr>
<tr>
<td>تیمار T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیجیترالان</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
</tr>
<tr>
<td>تیمار T5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مدت زندگی</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
<td>7.65×10⁻⁴</td>
</tr>
</tbody>
</table>

پس از سببیدن میکروب‌ها نهایی پس از ۱۱ روز، pH و هوا (31) گریش کردن که ابزاری با پیام‌گیری pH و سپس به تیمارهای مصرفی شدن گرفته است. نامی‌گرفت یا به دنبال این می‌باشد. تغییرات pH پایداری گردید (4 و 25)، با توجه به این که برداشت
گیاه و نتایج شدن نت‌برداری، و نیز آب‌شیوعی نت‌برداری در کاهش نت‌برداری مؤثر است. همچنین در خاک‌ها عمل انجام شده است. در پی آن جدب و افزایش حجم‌برداری از نمونه‌های به‌سیله کاتی‌های رس‌نرم و تریوبی‌های زیر‌ترین در نمک‌های محلول دیگری در لایه‌های قالی‌گذار خاک در افزایش نت‌برداری کل خاک مؤثر است، ولی آب‌برای یا پس‌بدری که دارای 4/4 میلی‌گرم در لایه نت‌برداری کل خاک، توانسته است از دست رفتن نت‌برداری خاک را به خوبی جبران کند. زیاد بودن نت‌برداری خاک‌های آبیاری شده با پس‌بهای یکی از اثرات مهم افزایشی بر خاک‌های آبیاری، است. (4) گزارش کرد که در سیستم‌های آب‌برای‌های خاک‌های آبیاری زیرزمینی، به‌بیان خاصی، به دلیل پرورش و کم‌بودن سیال‌های قابل استفاده، درصد ذخیره خاک‌های فراوری‌های خاک‌های نیتریس و گیاه CEC در خاک نیز تغییر نمی‌کند.

شاپر کلی ریچیاندازی نشان داده است که تیمارهای تیمار‌های مختلف در دامنه بسیاری از خاک‌های نیتریس، در به‌ترین در در افزایش تیمار‌های T1 و T2 دیده شد. حضور پایدارهای کلی فرم‌ها، و در افزایش T1 و T2 باکتری‌های کلی فرم‌ها، و دیگر تیمار‌های T4 و T3 مشاهده شد. نتایج ایجاد شده در ویژگی‌های دیگر گیاهی و خاک چشم‌گیر نیست، هرچند شرودری است که به نتایج حاصل در سال‌های بعد نیز توجه گردد.

نتیجه‌گیری

با توجه به نتایج دست‌آمده از آزمایش کارآینی پیش‌بینی تیمار فاصله‌بندی‌های یک‌نیتریس در مقیاس به‌سیله تیمار کوده‌های شیمیایی، از نظر جدب، در خاک‌ها، و به‌بیان جلوگیری در هزینه‌ها کاملاً آشکار است. کارآینی فاصله‌بندی‌های یک‌نیتریس در دست‌آمده در میان که در یک دوره که تكو‌نده مدت، تأثیر نامطلوبی بر ویژگی‌های خاک و گیاه نداشت است.
متابع مورد استفاده

1. دانش، ش. غ. حقیقی و. ع. علیزاده. 1370. تأثیر فاضلاب‌های تصفیه خانگی بر عملکرد و کیفیت محصول چغندر قند و چغندر علوفه‌ای. گزارش نهایی معاونت پژوهشی دانشگاه فردوسی مشهد.

2. سالاردویی، ع. و. م. مجندهی (مرجانی). 1372. اصول تغذیه گیاه. جلد دوم. تأیین منگل و کربنیک. مرکز نشر دانشگاهی.

3. شرکت هیدرولوژی سهار. 1370. گزارش طرح تأمین دراز مدت آب. مشهد.

4. کرمیان، ن. (مرجانی). 1371. تهیه غذا. تأیین بروکنورت و همکاران. مرکز نشر دانشگاهی.

5. مجله ج. (مرجانی). 1371. تهیه غذا. تأیین بروکنورت و همکاران، مرکز نشر دانشگاهی.

6. معاونت تحقیقاتی سازمان حفاظت محیط زیست. 1373. اثرات دفتر دفتری فاضلاب‌های تصفیه و اثرات دفتر دفتری تصفیه و اثرات دفتر دفتری تصفیه.

7. ملکوتی، م. ح. 1373. حاصل ذخیره خوراکی مناطق خشک. انتشارات دانشگاه تربیت مدرس.

8. متنزه، م. ح. 1373. فاضلاب شهری. جلد دوم: تهیه فاضلاب. انتشارات دانشگاه تهران.

تأثیر آب‌پزشی با فاصله‌بندی معمول و کیفیت کاهو و پرخی ویژگی‌های خاک
