تأثیر آبیاری با فاضلاب بر عملکرد و کیفیت کاهو و برخی ویژگی‌های خاک

چکیده

به‌منظور آگاهی از تأثیر کاربرد فاضلاب‌های تصفیه‌شده خانگی بر عملکرد و کیفیت کاهو، Fine loamy mixed mesic Calcixerolic Xerochrepts آزمایشی در یک خاک به لحاظ لوم رنگی، که بر پایه سیستم رده‌بندی حیاتی در کیفیت کاهو، Lactuca sativa (آبیاری با فاضلاب تصفیه شده خانگی) T1 (آبیاری با فاضلاب تصفیه شده خانگی + آب چاه به تنار)، T2 (آبیاری با آب چاه + کود حیاتی و گازی)، T3 (آبیاری با آب چاه + کود حیاتی و گازی + فسفر) و T4 (آبیاری با آب چاه، شاهد) DIS نتایج تجزیه شیمیایی آب چاه نشان داد که این آب برای کشاورزی محرومیتی خاصی ندارد.

نتایج به دست‌آمده از این آزمایش مشخص کرد که عملکرد کاهو در کلیه تیمارها افزایش داشت. در مقایسه با تیمار شاهد، بیشترین عملکرد در انتفاع هوایی کاهو (برگ) به ترتیب در تیمارهای T3 و T1 و بیشترین افزایش وزن خشک برگ کاهو به ترتیب در تیمارهای T1 و دیده شد. نتایج تجزیه‌گذاری نشان داد که غلظت عنصر غذایی پروتئین در سنجین در انتفاع هوایی و ریشه کاهو در کلیه تیمارها و D3 نیز مثبت بود. در افزایش نسبی، فلزات آزمایش داشته، است. در تیمار T1 آزمایش به تیمار شاهد، افزایش داشت. در تیمار T2 آزمایش به مرتب بیش از دیگر تیمارها بود. نتایج خاک سطحی (0-30 سانتی‌متر) نشان داد که با کاربرد فاضلاب، کاهش هنیه الکتروکی‌بیابه یا اصلاح، تیترول که فاصله علت جذب، و حمله و عنصر سنجین خاک افزایش داشت. ولی مقدار آن زیر مرز استاندارد، هیچ‌گونه اثر یافت. کاهو نبوده است. تفاوت‌های ایجاد شده در ویژگی‌های بیکار دیگری مانند خاک نداشت، هرچند ضروری است به تلاش حاصله در حالی استفاده به تلاش‌های بعد نباید توجه گردد.

واژه‌های کلیدی: پساب، آبیاری، کاهو، عملکرد، آلودگی میکروبی

۱. میری آبیاری، دانشگاه کشاورزی، دانشگاه شاهد
۲. استاد خانگی‌شناسی، دانشگاه کشاورزی، دانشگاه فردوسی مشهد
۳. استاد آبیاری، دانشگاه کشاورزی، دانشگاه فردوسی مشهد

۷۱
مقده

با توجه به کمیابی آب در مناطق خشک و نیمه خشک، مانند ایران، در اجرای تحلیلی به منظور توسعه و بهره‌برداری از منابع آب جدید، به ویژه در بخش کشاورزی، استفاده از پساب فاضلاب‌های کشاورزی، مناسب، شئ و روش‌های می‌تواند به عنوان منابع آب مورد توجه قرار گیرد. یا آن کار نه تنها کم‌بود آب کشاورزی، بلکه از آن‌ها می‌تواند تخلیه بی‌رویه فاضلاب‌ها و خصوصاً آن آب باعث کشاورزی و محیط زیست نیز داشته‌گری خواهد شد.

هم اکنون در شهر مشهد سالانه ۱۲۵ میلیون متر مکعب آب در این ایستگاه‌ها به ب.sz، بسته نیز آب آمیخته با آب‌های صنعتی مصرف می‌گردد. پیش‌بینی می‌شود نیاز به این آب تا بزرد گمی‌شود در سال ۱۳۵۷ در حدود ۴۶۰ میلیون متر مکعب بسیار معنی‌دار می‌باشد. (۲۳) برای اجرای برنامه‌های موجود، ۶۰ درصد آب مصرفی به فاضلاب‌های نیز شده و به داخل کشاورزی از آن برآورده‌گر نیز می‌باشد. فاقل‌های موجود در شهر مشهد سالانه ۴۶۰ میلیون متر مکعب به‌شرکت می‌کنند. (۲۳)

با توجه به این نقد، به توجه به این نکته که فاضلاب‌های موجود در شهر مشهد سالانه ۴۶۰ میلیون متر مکعب به‌شرکت می‌کنند. (۲۳)

برای جزئیات، توضیحات و نکات دیگر، مشاهده شود. فاضلاب‌های موجود در شهر مشهد سالانه ۴۶۰ میلیون متر مکعب به‌شرکت می‌کنند.

ابر برگزاری‌های موجود، نهضت کاربردهای فلزی که در سال ۱۳۵۵ میلادی و سپس در اسکاندنوردا نیز انجام‌پذیر است. این باعث به شمار شدن، قبلاً تاریخی گروهی این است که فاضلاب‌ها و لجن تولید شده از آن، خیلی جدید است. می‌تواند، به توجه به این نکته که فاضلاب‌های موجود در شهر مشهد سالانه ۴۶۰ میلیون متر مکعب به‌شرکت می‌کنند. (۲۳)

ابراهیم علی‌اکبر مشهی و همکارانش در بهبود و تولید فاضلاب‌های موجود، توجه به این نکته که فاضلاب‌های موجود در شهر مشهد سالانه ۴۶۰ میلیون متر مکعب به‌شرکت می‌کنند. (۲۳)

به‌طور کلی، با توجه به این نکته که فاضلاب‌های موجود در شهر مشهد سالانه ۴۶۰ میلیون متر مکعب به‌شرکت می‌کنند. (۲۳)

امکان‌ها و انتخابات فلزی در کلیفنه‌های که در کالیفرنیا انجام داده‌اند. این پروژه فلزی تنها الگوی برون‌بودن چنین چیزی است که به لوکس، کشاورزی و چه به لحاظ بهداشتی، پخش سیستمی موجود در آب‌های شیکاسویی که در کالیفرنیا آرامی، و اولین مقرات استفاده جدید از فاضلاب در آب‌های شیکاسویی که در کالیفرنیا آرامی، و اولین مقرات استفاده جدید از فاضلاب در ۱۳۸۶ در این ایالت‌های ترکیه و ایران بود.

۷۲
تأثير آبیاری با فاضلاب بر عملکرد و کیفیت کاهو و برخی ویژگی‌های خاک

به منظور تأمین برخی عناصر تغذیه‌ای گیاهان (P, N) مورد بررسی قرار داده، و در مقارن سرده‌های تا مدت هفت سال اثر ناحیه‌ای از تعیین فشارهای مشابه‌تر کردن. کالاب و همکاران (23) اثر پاس پایین تجربه ویژه‌ای را. از جنگ این ایالات مختلف آمریکا در مورد عملکرد گیاه‌های دلت، و نیز شماری از گیاهان علفی‌های مختلف مورد نیاز به نتیجه ریسیدن که تأثیر پاس با کاربرد کردن شیمیایی به صورت ترکیبات شیمیایی از نظر تأمین نیاز گیاهی کامل قابل مقایسه است.

پیوسته و همکاران (19)، در یک آزمایش مداوم پنج ساله تأثیر آبیاری با پاس را بر سبزی‌های بکه به صورت خام صرف می‌شوند، بررسی کرده، نمیدرکننده، در برابر میانگین میانگین دانه‌ای گیاهان گیاهی محصولات تولیدی با گونه پرداخته‌ای‌ای که به صورت خام صرف می‌شوند، بررسی کرده، نمیدرکننده، در برابر میانگین میانگین دانه‌ای گیاهان گیاهی محصولات تولیدی با گونه پرداخته‌ای‌ای که به صورت خام صرف می‌شوند، بررسی کرده، نمیدرکننده، در برابر میانگین میانگ

کشتی، بر اساس کرت‌های مشخص شده تیمار T1 ازوده شد.

فنشات فیت‌پخته به میزان 250 کیلوگرم در هوراک شد. در یک نوبت اضافه گردید.

کشتی بذر کاهو کیچ (Lactuca sativa) در کرت‌های به ابعاد 168x168 متر مربع و با فاصله رفیق 60 سانتی‌متر طول‌بندی گردید. تیمار T0 مورد نیاز گیاه از چاه عمقی یک گرادیانت با عمق 120 متر در فاصله دو کیلومتری مزرعه تامین گردید. پس از انتقال به مخرج دختری موقت استفاده گردید. آبیاری به صورت سطحی (حوضچه‌ای) و مطالبی عرف منطقه انجام شد.

پاس مورد استفاده در همان روز آبیاری از تصفیه خانه شهربان شد. واقع در اراضی قاسم‌آباد (د) کیلومتری مشهد به وسیله تکانگ به محل آزمایش حمل و در دو منطقه موقتی ذخیره شد و به مقدار حاصله شده به کرت‌ها اضافه گردید. در تصفیه‌های مذکور فاضلاب‌های خاسی‌گری به کمک روش‌های تصفیه مقدماتی و ثانویه تصفیه می‌شود. این مطلب به دو روش انگیزه و با فشار خاک‌های آشغال درخشان کردن که به خواص چربی و نرمی می‌تواند بر انتقال استفاده شود، یکی از این روش‌ها است. هدف از این پروژه ابزاری تأثیر پاس و آب آبیاری با یا بدون کود دامی و ترشید و فسفر، بر عملکرد و ترکیب شیمیایی کاهو در منطقه مشهد بوده است.

مواد و روش‌ها

این آزمایش در مرزهای پژوهشی دانشگاه کشاورزی دانشگاه فردوسی مشهد انجام شد. مزارع در غرب جلگه‌ای 31 درجه و 13 دقیقه شمایل و طول جغرافیایی 59 درجه و 38 دقیقه شرقی، و با متوسط ارتفاع 889 متر از سطح دریا می‌باشد. خاک محل مورد آزمایش از نوع لوم- رسمی است. که بر اساس Fine loamy mixed mesic Calciexerolls Xerochrept

محصول کندنی و غیر قابل نفوذ بود.

پس از تست‌پذیری و آماده‌سازی زمین مورد نظر و پیش از کاشت، مقدار 25 تن در هکتار کود دامی (گاری) پوسیده بر اساس کرت‌های مشخص شده تیمار T0 ازصف گردید. مقدار 100 x 100 کیلوگرم نپرنوز در هکتار به صورت اوره در قسمت مصالحی به صورت پیشکشت و پشت هفته پس از
تأثیر آپاریاپن با فضایل بر عملکرد و کیفیت کاهو و پری ویژگی‌های خاک

دو مین استخراج طبیعت فضایل را 1/2/5 و 1/2/7 گزارش کرده است. تجربه پایان نشان داد که نیترات و نیتریژن به‌صورت شخصیات شکر کلسیم‌هایی از آن است که به وسیله کلرید گزارش گردید. این داده‌ها نشان می‌دهد که ترکیب دو مین استخراج طبیعت فضایل چندان هم ثابت و یکنواخت نیست. در پایان آزمایشان، ده برابر از نیترات به فرم نیترات و 27/7 دمای خاک می‌زدیک بر 11 درصد از نیترات به فرم آمونیوم و 18/8 درصد به فرم نیترات‌هایپوکسید به صورت دو مین استخراج پایان به فرم از 25 درصد از فرم پایان به فرم آلی از تشکیل خاک و پودری بود.

فضایل با پودر آلو در بینر فضایل‌های خانگی از اهمیت کمی مصرفی دارند ولی می‌توانند در فضایل‌های صنعتی و جنگلی تولید شینه قابل استفاده از اینکه می‌باشد. در این جا با آراوری می‌شود که مقدار نیترات و فسفر در پایان شکرک لاغری کمتر از آن است که به وسیله پروتئین (30) در دو مین استخراج طبیعت فضایل در آمریکا انجام گیرد و گزارش شده است. کمی کاربرد سرطان آب در ایران (150 برابر در شیبگرد) و در برای آمریکا (170 برابر در شیبگرد) همچنین، ناهمساندی عادات غذا و خوراکی‌ها در و در کشور می‌تواند دلایلی بر این نتایج‌های مشاهده شو. میانگین شوری پساب 3/50 کسی نمی‌تواند به متر بود ولی روی همه شوری پساب شکر لازم 12 سیسمین بر متر کمر بود که در دامنه شوری گزارش شده پسابها 0/20 نا 2/7 چهار گزارش می‌باشد. و 0/20 کیفیت مشاهده گردید که مقدار کلسیم کمی بیشتر از منیزیم، از میان آن‌ها مقدار کلر بیشتر از بی‌پتن و سولفات‌های بود. میانگین عنصر محلول

پساب تصفیه‌خانه شکر کلسیم در مقایسه با شوری و عنصر محلول دو مین استخراج طبیعت فضایل شهروی آمریکا که به وسیله پروتئین (30) گزارش شده است، نشان می‌دهد که بین ویژگی‌های پساب در تشفیه‌خانه شکر لاغری بالاتر از آمریکا است. اختلاف سرطان آب در ایران در برای آمریکا، و نیز زیدان نمک و سختی آب آشامیدنی شهر

شده و دل‌خور نامتنفی در اندام‌های هوایی ریشه گیاه تعیین گردید.

ویژگی‌هایشیمیایی آب و پساب در فصل رشد، و به طور ماهانه اندام‌هایگری‌ش به رای آبادگیر کمی از روح شد می‌پذیرد، (چپ) (17) به‌طوری‌ش که

نمونه‌برداری از خاک مربوط به هر تیار در پنج دقیقه از نقطه مزرعه، و از عمق صفر تا 30 سانتی‌متری با آگر فولادی انجام گرفت. به وسیله درستگاه m/s و PH به روش اصلی، زیستی و الکتریکی، فسفر با عصاره‌گیری به وسیله پروتئین و

8/5 pPH

تیروپلیک با نیتروستورن، تیرگی به وسیله روش روشگویی با

پروتئین-یادگارهای سدیم و پتاسیم به روش فلورسنت در BOD (39) کلرک‌ها و پنتن کلر به روش بیکرومات (14) و

روش تیروپلیک بین کلر و COD به روش بیکرومات (14) و دیگر عنصر استفاده از دستگاه جدید ایین اندام‌هایگری شدن (20) بی‌فیتوکسیک و شیمیایی خاک در جدول 1 آمده است. برای آگاهی در وضعیت بهداشتی (میکروی و

انگل‌شناسی) پساب، در هر نوت از آپاری، نمونه‌های پساب به آزمایشگاه ارسال و آزمایش‌های مربوط با توجه به کشت‌های

میکروی انجام گردید. تشخیص تکیه‌گاه کبودروپاتیمی به

روش کیفیت‌شناسی پساب است. مشاهده که آن بوده است. تخم‌کرم با مشاهده خیلی در

پساب فشرده داده که در تمام موارد از میکروکوب استفاده گردید (21) همچنین، برای تعیین آن‌گاه‌های اختلالی

ایجاد شده در خاک، از عمق صفر تا 15 سانتی‌متری نمونه‌برداری به آزمایشگاه فرستاده شد.

نتایج و بحث

کیفیت آب و پساب

نیتروژن، فسفر و پتاسیم مهمترین عنصر غذایی موجود در فضایل می‌باشند که روی همه رفتنه نسبت N/P/K در پساب برای 1:100/9/9 نسبت K به N/P/K در

پتاسیم و فسفر کاهش می‌یابد. الیوت (20) نسبت که

70
<table>
<thead>
<tr>
<th>مینه</th>
<th>کیفی</th>
<th>نرخ</th>
<th>یکپئی</th>
<th>یکپئی</th>
<th>یکپئی</th>
<th>یکپئی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد</td>
<td>آغشته</td>
<td>صنعت</td>
<td>حجم</td>
<td>نرخ</td>
<td>آغشته</td>
<td>صنعت</td>
</tr>
<tr>
<td>گاز</td>
<td>گلبول</td>
<td>گزینه</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
</tr>
<tr>
<td>گاز</td>
<td>گلبول</td>
<td>گزینه</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
</tr>
<tr>
<td>گاز</td>
<td>گلبول</td>
<td>گزینه</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
</tr>
<tr>
<td>گاز</td>
<td>گلبول</td>
<td>گزینه</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
<td>گزارش</td>
</tr>
</tbody>
</table>
عمدلکر کاهو

تایپ نشان می‌دهد که عمدلکر کاهو در کلیه تیمارها در مقایسه با شاهد افزایش داشته است (جدول ۴). به طوری که میانگین عمدلکر مهیه در تیمارهای T۱ و T۳ به ترتیب ۱۹/۴ و ۱۸/۳ درصد برابر و تریم ۸/۷ درصد بوده است، در تیمارهای T۲ و T۴ این افزایش به ترتیب ۶/۰ و ۴/۹ درصد بوده. میانگین حداکثر افزایش عمدلکر کل مهیه در خشک می‌باشد که در تیمارهای T۱ و T۳ به ترتیب ۱۹ و ۱/۸ درصد بوده است.

وصفات کل افزایش نشان می‌دهد که خشکی در تیمارهای T۱ و T۳ به ترتیب ۸/۷ و ۸/۳ درصد برابر و تریم ۸/۷ درصد بوده است. میانگین حداکثر افزایش وصل شده نسبت به تیمار شاهد افزایش داشته است. به طوری که میانگین حداکثر افزایش عمدلکر کل مهیه در خشک می‌باشد که در تیمارهای T۱ و T۳ به ترتیب ۱۹ و ۱/۸ درصد بوده است.

پایان نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد. این نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد.

محتوای میانگین عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۸/۷ و ۸/۳ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است.

میزان فعالیت و استفاده از مواد شیمیایی در تولید دهه است. پرتوزوالاسی‌فیت (Ptychoderma) و زیباریس (Cryptosporidium) فاقد میزان وابسته به ورود آن به محیط بیماری است. به وسیله این میزان می‌تواند به خشکی در تیمارهای T۱ و T۳ و در تیمارهای T۲ و T۴ این افزایش به ترتیب ۶/۰ و ۴/۹ درصد بوده. میانگین حداکثر افزایش عمدلکر کل مهیه در خشک می‌باشد که در تیمارهای T۱ و T۳ به ترتیب ۱۹ و ۱۸ درصد بوده است.

پایان نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد. این نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد.

محتوای میانگین عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۸/۷ و ۸/۳ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است.

میزان فعالیت و استفاده از مواد شیمیایی در تولید دهه است. پرتوزوالاسی‌فیت (Ptychoderma) و زیباریس (Cryptosporidium) فاقد میزان وابسته به ورود آن به محیط بیماری است. به وسیله این میزان می‌تواند به خشکی در تیمارهای T۱ و T۳ و در تیمارهای T۲ و T۴ این افزایش به ترتیب ۶/۰ و ۴/۹ درصد بوده. میانگین حداکثر افزایش عمدلکر کل مهیه در خشک می‌باشد که در تیمارهای T۱ و T۳ به ترتیب ۱۹ و ۱۸ درصد بوده است.

پایان نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد. این نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد.

محتوای میانگین عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۸/۷ و ۸/۳ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است.

میزان فعالیت و استفاده از مواد شیمیایی در تولید دهه است. پرتوزوالاسی‌فیت (Ptychoderma) و زیباریس (Cryptosporidium) فاقد میزان وابسته به ورود آن به محیط بیماری است. به وسیله این میزان می‌تواند به خشکی در تیمارهای T۱ و T۳ و در تیمارهای T۲ و T۴ این افزایش به ترتیب ۶/۰ و ۴/۹ درصد بوده. میانگین حداکثر افزایش عمدلکر کل مهیه در خشک می‌باشد که در تیمارهای T۱ و T۳ به ترتیب ۱۹ و ۱۸ درصد بوده است.

پایان نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد. این نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد.

محتوای میانگین عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۸/۷ و ۸/۳ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است. مهم‌ترین این افزایش عمدلکر کاهو در تیمارهای T۱ و T۳ به ترتیب ۱۹/۷ و ۱/۸ درصد بوده است.

میزان فعالیت و استفاده از مواد شیمیایی در تولید دهه است. پرتوزوالاسی‌فیت (Ptychoderma) و زیباریس (Cryptosporidium) فاقد میزان وابسته به ورود آن به محیط بیماری است. به وسیله این میزان می‌تواند به خشکی در تیمارهای T۱ و T۳ و در تیمارهای T۲ و T۴ این افزایش به ترتیب ۶/۰ و ۴/۹ درصد بوده. میانگین حداکثر افزایش عمدلکر کل مهیه در خشک می‌باشد که در تیمارهای T۱ و T۳ به ترتیب ۱۹ و ۱۸ درصد بوده است.

پایان نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد. این نتایج به دست آمده، می‌توانند که فضل‌الاب تصفیه شده‌اند که در رتبه بندی عناصر غلافی مختلف مورد نظر کاهو و تیمارهای T۱ و T۳ می‌باشد.
جدول 2. میانگین ترکیب شیمیایی آب چاه و پساب (میلی گرم در لیتر)

<table>
<thead>
<tr>
<th>میزان استاندارد آلوده</th>
<th>گذره مجاز آب آبیاری</th>
<th>پساب</th>
<th>آب چاه</th>
<th>معیارهای اندازه‌گیری شده</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف</td>
<td>پرسه استفاده نا</td>
</tr>
<tr>
<td>تخلیه به آب‌های آب‌های و آب‌های سطحی و آب‌های سطحی</td>
<td>0.5 - 0.7</td>
<td>0.3 - 0.4</td>
<td>0.2 - 0.3</td>
<td>0.1 - 0.2</td>
<td>0.05 - 0.1</td>
</tr>
<tr>
<td>نیتروژن کل</td>
<td>4.5 - 6.0</td>
<td>6.0 - 7.0</td>
<td>7.0 - 8.0</td>
<td>8.0 - 9.0</td>
<td>9.0 - 10.0</td>
</tr>
<tr>
<td>نیتروژن نیتروژن ترانس</td>
<td>3.0 - 4.0</td>
<td>4.0 - 5.0</td>
<td>5.0 - 6.0</td>
<td>6.0 - 7.0</td>
<td>7.0 - 8.0</td>
</tr>
<tr>
<td>نیتروژن نیتروژن ترانس</td>
<td>2.0 - 3.0</td>
<td>3.0 - 4.0</td>
<td>4.0 - 5.0</td>
<td>5.0 - 6.0</td>
<td>6.0 - 7.0</td>
</tr>
<tr>
<td>فسفر کل</td>
<td>0.3 - 0.5</td>
<td>0.5 - 0.7</td>
<td>0.7 - 0.9</td>
<td>0.9 - 1.1</td>
<td>1.1 - 1.3</td>
</tr>
<tr>
<td>فسفر اکسیژن</td>
<td>0.2 - 0.3</td>
<td>0.3 - 0.4</td>
<td>0.4 - 0.5</td>
<td>0.5 - 0.6</td>
<td>0.6 - 0.7</td>
</tr>
<tr>
<td>کربن</td>
<td>0.5 - 0.7</td>
<td>0.7 - 0.9</td>
<td>0.9 - 1.1</td>
<td>1.1 - 1.3</td>
<td>1.3 - 1.5</td>
</tr>
<tr>
<td>کربن</td>
<td>0.2 - 0.3</td>
<td>0.3 - 0.4</td>
<td>0.4 - 0.5</td>
<td>0.5 - 0.6</td>
<td>0.6 - 0.7</td>
</tr>
<tr>
<td>کربن</td>
<td>0.1 - 0.2</td>
<td>0.2 - 0.3</td>
<td>0.3 - 0.4</td>
<td>0.4 - 0.5</td>
<td>0.5 - 0.6</td>
</tr>
<tr>
<td>کربن</td>
<td>0.05 - 0.1</td>
<td>0.1 - 0.15</td>
<td>0.15 - 0.2</td>
<td>0.2 - 0.25</td>
<td>0.25 - 0.3</td>
</tr>
<tr>
<td>کربن</td>
<td>0.02 - 0.05</td>
<td>0.05 - 0.07</td>
<td>0.07 - 0.09</td>
<td>0.09 - 0.11</td>
<td>0.11 - 0.13</td>
</tr>
<tr>
<td>کربن</td>
<td>0.01 - 0.02</td>
<td>0.02 - 0.03</td>
<td>0.03 - 0.04</td>
<td>0.04 - 0.05</td>
<td>0.05 - 0.06</td>
</tr>
<tr>
<td>کربن</td>
<td>0.005 - 0.01</td>
<td>0.01 - 0.015</td>
<td>0.015 - 0.02</td>
<td>0.02 - 0.025</td>
<td>0.025 - 0.03</td>
</tr>
<tr>
<td>کربن</td>
<td>0.002 - 0.005</td>
<td>0.005 - 0.007</td>
<td>0.007 - 0.009</td>
<td>0.009 - 0.01</td>
<td>0.01 - 0.012</td>
</tr>
<tr>
<td>کربن</td>
<td>0.001 - 0.002</td>
<td>0.002 - 0.003</td>
<td>0.003 - 0.004</td>
<td>0.004 - 0.005</td>
<td>0.005 - 0.006</td>
</tr>
<tr>
<td>کربن</td>
<td>0.0005 - 0.001</td>
<td>0.001 - 0.0015</td>
<td>0.0015 - 0.002</td>
<td>0.002 - 0.0025</td>
<td>0.0025 - 0.003</td>
</tr>
<tr>
<td>کربن</td>
<td>0.0002 - 0.0005</td>
<td>0.0005 - 0.0007</td>
<td>0.0007 - 0.0009</td>
<td>0.0009 - 0.001</td>
<td>0.001 - 0.0012</td>
</tr>
<tr>
<td>کربن</td>
<td>0.0001 - 0.0002</td>
<td>0.0002 - 0.0003</td>
<td>0.0003 - 0.0004</td>
<td>0.0004 - 0.0005</td>
<td>0.0005 - 0.0006</td>
</tr>
<tr>
<td>کربن</td>
<td>0.00005 - 0.0001</td>
<td>0.0001 - 0.00015</td>
<td>0.00015 - 0.0002</td>
<td>0.0002 - 0.00025</td>
<td>0.00025 - 0.0003</td>
</tr>
<tr>
<td>کربن</td>
<td>0.00002 - 0.00005</td>
<td>0.00005 - 0.00007</td>
<td>0.00007 - 0.00009</td>
<td>0.00009 - 0.0001</td>
<td>0.0001 - 0.00012</td>
</tr>
<tr>
<td>کربن</td>
<td>0.00001 - 0.00002</td>
<td>0.00002 - 0.00003</td>
<td>0.00003 - 0.00004</td>
<td>0.00004 - 0.00005</td>
<td>0.00005 - 0.00006</td>
</tr>
<tr>
<td>کربن</td>
<td>0.000005 - 0.000007</td>
<td>0.000005 - 0.000007</td>
<td>0.000007 - 0.000009</td>
<td>0.000009 - 0.00001</td>
<td>0.00001 - 0.000012</td>
</tr>
<tr>
<td>کربن</td>
<td>0.000002 - 0.000005</td>
<td>0.000005 - 0.000007</td>
<td>0.000007 - 0.000009</td>
<td>0.000009 - 0.00001</td>
<td>0.00001 - 0.000012</td>
</tr>
<tr>
<td>کربن</td>
<td>0.000001 - 0.000002</td>
<td>0.000002 - 0.000003</td>
<td>0.000003 - 0.000004</td>
<td>0.000004 - 0.000005</td>
<td>0.000005 - 0.000006</td>
</tr>
</tbody>
</table>

(1) برگرفته از بی‌هی (1995)
(2) برگرفته از بی‌هی (1998)
(3) برگرفته از بی‌هی (1999)
(4) برگرفته از بی‌هی (2000)
جدول ۳. کیفیت میکروبیولوژی و انگلی آب‌های آب‌پیمان

<table>
<thead>
<tr>
<th>دانه‌های مجاز آب آپاری</th>
<th>فاضلاب تصفیه شده خانگی</th>
<th>آب چاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10 x 10 - 1</td>
<td>1/176 x 1/15</td>
<td>67/10</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/10 x 1/10</td>
<td>1/123 x 1/10</td>
<td>1/130</td>
</tr>
</tbody>
</table>

میزان‌های اندازه‌گیری شده

- شمار کلم‌های زیست‌ناپایدار در میلی‌لیتر
- شمار کلم‌های زیست‌ناپایدار در میلی‌لیتر
- عدد (کلم‌های زیست‌ناپایدار در 100 میلی‌لیتر)

- کلم‌های زیست‌ناپایدار
- حضور تکان‌نداز
- حضور مخصوص
- حضور دارد
- حضور دارد

لکتوپاسیل، استرنیتوکوک
بکتری‌های پاسیله‌شکل گرم
منفی مینیتکوک به پروتوس مولت
های از جنس پاسیله‌سوسی
باکتری‌های توسسی شکل گرم
مثبت از جنس مینیتکوک

پیش‌آمدها

<table>
<thead>
<tr>
<th>آپاری</th>
<th>M. P. N.</th>
<th>WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>(33)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

کیفیت آپ بر اساس جدول پروتوزیا
کرم‌های پروتوسوردیوم
زیوریا
کرم‌های آسکارس
کرم‌های برتکوک
(تراماتود)
فاسیولا
نیکی
کرم سنجاقی
کرم پیپین

1. برگرفته از خورشید (33) و WHO (33)

جدول ۴. تیمارهای آپاری بر عملکرد اندام موایی (برگ) کاوه

<table>
<thead>
<tr>
<th>برترین نسبت به تیمار شاهد (درصد)</th>
<th>وزن برگ کاوه (کیلوگرم در هکتار)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک</td>
<td>وزن خشک</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>82</td>
<td>511.a</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>6716.a</td>
</tr>
<tr>
<td>81</td>
<td>81</td>
<td>581.a</td>
</tr>
<tr>
<td>71</td>
<td>71</td>
<td>512.a</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>528.a</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌ها که دارای حروف مشابه هستند، بر اساس آزمون دانکن در سطح 0.05 قاره تفاوت معنی‌دار می‌باشد.
عملاک دیگران در مراز ایبایی شده برای پایه، در مقایسه با مراز ایبایی شده برای بيروز، بررسی است. و آیبایی ایجاد (قاب) شده هیچ گونه تأثیر مثبت بر کمیت و کیفیت ایبایی نداشت، و از موضوع پیامدهای مسالمت، و شاید بهتر از ارزش کودی که به موسوم است.

تجزیه گیاهی

تأثیر تجزیه گیاهی نشان داد که غلظت تیترژون فسفر و پتاسیم در کلیه اندازه‌های گیاه کاهش در تیمار T1، نسبت به شاهد افزایش داشت (شکل‌های 1 و 2). بیشترین مقدار تیترژون و فسفر در اندازه‌های و رشد کاه مورد بررسی در تیمارهای T1 و T3 و T5 و کمترین آن بر روی T2 و T4. بیشترین مقادیر پتاسیم در اندازه‌های و رشد کاه مورد بررسی در T1 و T3 و کمترین آن بر روی T2 و T4 مشاهده شد. مقادیر انرژی بر مصرف در اندازه‌های کاه بودند، در بهترین بستر از روی مشاهده.

ناپیاوی گیاه در گیاه به آب و هوا، نمونه، نمونه‌گیری و مدیریت کشاورزی وابسته است. ولی در بیشتر گیاهان کشت شده مقادیر انرژی بر مصرف در دانه کوچکی می‌تواند باشد (۹). کارودس و هواک (۷) گزارش کردند که آبایی ۵۰٪ سانتی‌متر در هفته از جو سربر استثنایی فعالیتی نمی‌تواند تیترژون جذب شده به بیشتر گیاهان را چربی جنگند. در یک دوره ۵ ساله، برداشت سالانه تیترژون کاه خاک، با برداشت در زمینه دانه‌ای ۱۲۰ درصد و در زمینه فلزه‌ای ۱۱۵ تا ۱۲۴ درصد، برای میزان وردی با پایه بوده است. در کشت پونجه و زمینه سیلوئی، برداشت نسبت به مشاوه خاصی بوده که آبایی ۵۰٪ سانتی‌متر در هفته از پایه به خاک انزیم‌های شده است. با آبایی ۵ سانتی‌متر در هفته، برداشت نسبت با کاه خاک در کشت پونجه، سال پیش در حال کشت و در کشت در زمینه سیلوئی در همه سال‌های کشت جنگند شده است. اگر در سیلوئی در هر هفته به مسایل ۷۵ سانتی‌متر فعالیت تیمار آبایی شود، مقادیر انرژی به مسایل آماده از محصول برداشت شده
شکل ۱. اثر تیمارهای آبیاری بر غلظت تیتروزن و گسترش در برگ و ریشه کاهو سترونیایی که با یک حرف مشترک مشخص شده‌اند طبق آزمون دانک در سطح پنج درصد معنی‌دار نمی‌باشد.

شکل ۲. اثر تیمارهای آبیاری بر غلظت فسفر و بر در برگ و ریشه کاهو سترونیایی که با یک حرف مشترک مشخص شده‌اند طبق آزمون دانک در سطح پنج درصد معنی‌دار نمی‌باشد.
جدول 5: مقادیر نشان‌دهنده موجود در گرگ و ریشه خشک کاهو (درصد)

<table>
<thead>
<tr>
<th>عنصر غذایی</th>
<th>سدیم</th>
<th>منیزیم</th>
<th>کلسیم</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>برکه</td>
<td>1/5</td>
<td>7/8</td>
<td>6/5</td>
<td>T1</td>
</tr>
<tr>
<td>ریشه</td>
<td>1/5</td>
<td>7/8</td>
<td>6/5</td>
<td>T2</td>
</tr>
<tr>
<td>برکه</td>
<td>1/5</td>
<td>7/8</td>
<td>6/5</td>
<td>T3</td>
</tr>
<tr>
<td>ریشه</td>
<td>1/5</td>
<td>7/8</td>
<td>6/5</td>
<td>T4</td>
</tr>
<tr>
<td>برکه</td>
<td>1/5</td>
<td>7/8</td>
<td>6/5</td>
<td>T5</td>
</tr>
<tr>
<td>ریشه</td>
<td>1/5</td>
<td>7/8</td>
<td>6/5</td>
<td>T6</td>
</tr>
</tbody>
</table>

میزان جذب منگنز هم طور چشم‌گیری در میان گونه‌های گیاهی متفاوت است. ولی به طور کلی میزان جذب آن کمتر از انواع مختلفی که تحت تأثیر قرار گرفته‌اند. منیزیم و سدیم مشابه منگنز در گیاه‌ها تأثیر بسزایی بر عملکرد گیاه دارند. مقادیر منگنز و سدیم در ریشه‌ها و بافت‌های گیاهی نیز متفاوت است. میزان منگنز در این نوسانات زیادی دارد. به طریقی گروه‌های گیاهی تأثیر می‌گذارد که در برخی از گونه‌های گیاهی، سدیم به نشانه‌ای است. لازم به ذکر است که این نتایج به ترتیب مستند به سلول کلم می‌باشد.
جدول 1. غلظت عناصر در برق و ریشه خشک کاهو (میلی‌گرم در کیلوگرم)

| عناصر | کسره مجاز | غلظت گاز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>26/7</td>
<td>31/7</td>
</tr>
<tr>
<td>T2</td>
<td>53/9</td>
<td>48/5</td>
</tr>
<tr>
<td>T3</td>
<td>48/5</td>
<td>48/7</td>
</tr>
<tr>
<td>T4</td>
<td>31/7</td>
<td>39/7</td>
</tr>
<tr>
<td>T5</td>
<td>21/2</td>
<td>39/7</td>
</tr>
</tbody>
</table>

۱. ب ر ا ف ر ه ا از استوان (۲۸)، بآویل (۴۹)، نونک (۲۸) و مالکوتین (۷).

در گیاه دانسته است (۹)، به تازگی نظریه‌های زیادی وجود دارد که بر این که نیکل ممکن است در سوخت و ساز حیوانات و احتمالاً گیاهان ضروری باشد. مقدار نیکل در آندازه‌های کاهو در دامنه به‌بینی گیاهان زراعی بود.

با استفاده از ۲۳ گونه گیاهی که در کشت مایع با محلول جاری و ریسه‌های شده بودند، نشان دادند که اگرچه ریشه بسیاری از گونه‌های این گیاهان مقدار چشم‌گیری کادمیوم را از محلول جذب می‌کند، انتقال انعکس در داخل گیاه محدود است. به‌نظر می‌رسد که کادمیوم در مکان‌های بازیلی ریشه نگهداری می‌شود و کلسیم، منزه‌زم و روی می‌تواند جایگزین آن شود. از آن جا که کلسیم به طور معمول، اکتاون غلیظ در محلول خاک به شمار می‌رود ممکن است این محلول‌ها بازیلی ریشه به طور کلی تحت تأثیر قرار دهد. محلودایت جای جایی کادمیوم از ریشه به سمت اندام هواپیام گیاه ممکن است به ویژه در اثر فسفات‌هاستویک پایان (۷).
در عوض، چنان (31) و پترزوی (32) گزارش کردن که توانایی کادری ممکن بوده باشد. این نتایج درون حالتی خیلی به‌مراتب بیش از دیگر فلزات سنجابی بوده و از انتقال سریع تر بروز نادر است. فاقد کامیکوم در اندام‌های گواره‌ای کمتر از ریشه، و در دامنه بسیاری است. غلظت عصاره سریع گفت و مولپسید در اندام‌های گواره‌ای صفر بود. این است که فلزات سنجابی در اندام‌های گواره‌ای کمتر از تیمارهای دیگر روشن خاصی را نشان داد. نتایج آزمایش‌شناسی داد که همه عضوی کمیابی دارای غلظت کمتر از استاندارد مستحکم‌سازدن بوده و استفاده از فاصله‌ای صفحه شدی‌کنی دست کم در یک دوره کوتاه آزمایش‌های اثر سرمایه‌گذاری مورد آزمایش نشان داده است.

این یکی که پریکر که T3 نتیجه نشان داد که رنگ برگ کاهو در تیمارهای 4/20 و 4/207 در صورتی که برگ که T3 کاهو در تیمارهای 4/207 و 4/207 تودرگی کل کاهو بوده و گواره‌ای که T3 و 4/207 تودرگی کل کاهو داده. کلیه تیمارها در درصد رطوبت و وزن برگ و طول ریشه کاهو تفاوت ناچیز داشتند. برگ کاهو در تیمارهای مختلف آبایری طعم مشابهی داشت. دریافت میوه‌ای ازدیدند و وزن و روزیادند شدن آن سبب وجود فضور فرآوانی در فاصله‌ای تصفیه‌سازدن خانگی می‌باشد. (30).

آئودیوستاکی احتمالی میکروئی در سطح برگ کاهو

بیشترین شمار کلی فرم و عدد M.P.N. بوده که در 100 میلی لیتر پساب، بی‌تر بوده در تیمارهای 1 و مشاهده شده (جدول 2). بکری هی‌یا پسیلوس در کلیه تیمارهای شناسایی شد. بکری هی‌یا سمنولن در تیمارهای 1 و 2 دیده شد. نتایج آزمایش‌های بیور (19) هر گونه اختلاف میان داری را بین جمعیت‌های کلی فرم موجود در محصولات آبایری شده با فاصله‌ای و جمعیت‌های کلی فرم محصولات آبایری شده با آب چاپ نشان نداد. یافته‌های جنگینز (30).

84
جدول 7. اثر تیمارهای آب آپاری بر وزن‌های کیفی کاهو

<table>
<thead>
<tr>
<th>رطوبت وزنی (درصد)</th>
<th>شکل</th>
<th>رنگ</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>عادی</td>
<td>تیره</td>
<td>T_1</td>
</tr>
<tr>
<td>95</td>
<td>عادی</td>
<td>روشان متمایل به تیره</td>
<td>T_2</td>
</tr>
<tr>
<td>94</td>
<td>عادی</td>
<td>تیره متمایل به روشان</td>
<td>T_3</td>
</tr>
<tr>
<td>94</td>
<td>عادی</td>
<td>تیره</td>
<td>T_4</td>
</tr>
<tr>
<td>95</td>
<td>روشان</td>
<td>روشان</td>
<td>T_5</td>
</tr>
</tbody>
</table>

جدول 8. نتایج آزمایش‌های میکروبی انجم شده روی گرم کاهو

<table>
<thead>
<tr>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عضویت ویژه‌ای (محتمل ترین شمار)</th>
<th>شمار کلی باکتری‌های نوع سالمونلا</th>
<th>شمار کلی باکتری‌های نوع کلی فرم</th>
<th>شمار کلی رژیجندراز شناسایی شده</th>
<th>در هر میلی لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>استرپتوکس سپر مثبت</td>
<td>7/4 x 10^8</td>
<td>4/8 x 10^7</td>
<td>3/7 x 10^6</td>
<td>T_1</td>
</tr>
<tr>
<td>باسیلوس گرم متغیر</td>
<td>7/4 x 10^7</td>
<td>4/8 x 10^7</td>
<td>3/7 x 10^6</td>
<td>T_2</td>
</tr>
<tr>
<td>پروتئوزهای زیاردیا، کرم‌های آسکاریس، نینا و فاسیولا</td>
<td>7/4 x 10^7</td>
<td>4/8 x 10^7</td>
<td>3/7 x 10^6</td>
<td>T_3</td>
</tr>
<tr>
<td>آکتواسپل گرم مثبت و کرم آسکاریس</td>
<td>7/4 x 10^7</td>
<td>4/8 x 10^7</td>
<td>3/7 x 10^6</td>
<td>T_4</td>
</tr>
<tr>
<td>استرپتوکس غیر بیماریزا و باسیلوس گرم مثبت</td>
<td>7/4 x 10^7</td>
<td>4/8 x 10^7</td>
<td>3/7 x 10^6</td>
<td>T_5</td>
</tr>
<tr>
<td>باسیلوس‌های گرم متغیر نخست‌های آسکاریس کمتر از 21 روز</td>
<td>280-280</td>
<td>10-15 روز</td>
<td>0-6 روز</td>
<td>T_6</td>
</tr>
<tr>
<td>ویروس‌ها کمتر از 100 روز</td>
<td>0-6 روز</td>
<td>21-28 روز</td>
<td>10-15 روز</td>
<td>T_7</td>
</tr>
<tr>
<td>ویلی معمولاً کمتر از 20 روز</td>
<td>0-6 روز</td>
<td>21-28 روز</td>
<td>10-15 روز</td>
<td>T_8</td>
</tr>
</tbody>
</table>
جدول 9: ویژگی‌های شیمیایی خاک (۳۰ سانتی‌متر) پیش و پس از پایان آزمایش

<table>
<thead>
<tr>
<th>میزان میلی‌گرم در کیلوگرم</th>
<th>تیماب</th>
<th>خاک پیش</th>
<th>تیماب</th>
<th>خاک پس از کاشت</th>
<th>معیارهای اندازه‌گیری شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>V/2 a</td>
<td>V/2 a</td>
<td>V/5 a</td>
<td>V/5 a</td>
<td>pH</td>
</tr>
<tr>
<td>CEC</td>
<td>۱/۰۹ a</td>
<td>۱/۰۹ a</td>
<td>۱/۰۹ a</td>
<td>۱/۰۹ a</td>
<td>CEC</td>
</tr>
<tr>
<td>(سانتی‌مول در کیلوگرم)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(سانتی‌مول در کیلوگرم)</td>
</tr>
<tr>
<td>EC</td>
<td>۱/۵ a</td>
<td>۱/۵ a</td>
<td>۱/۵ a</td>
<td>۱/۵ a</td>
<td>EC</td>
</tr>
<tr>
<td>(دی‌زینمیس بر متر)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(دی‌زینمیس بر متر)</td>
</tr>
<tr>
<td>SAR</td>
<td>۲/۱۸ e</td>
<td>۲/۱۸ e</td>
<td>۲/۱۸ e</td>
<td>۲/۱۸ e</td>
<td>SAR</td>
</tr>
<tr>
<td>(درصد)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(درصد)</td>
</tr>
<tr>
<td>TN</td>
<td>۰/۰۸ d</td>
<td>۰/۰۸ d</td>
<td>۰/۰۸ d</td>
<td>۰/۰۸ d</td>
<td>TN</td>
</tr>
<tr>
<td>(درصد)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(درصد)</td>
</tr>
<tr>
<td>فسفر اقلام جذب</td>
</tr>
<tr>
<td>Na⁺</td>
<td>۸/۰۴ a</td>
<td>۲/۰۱ b</td>
<td>۸/۰۱ b</td>
<td>۸/۰۱ c</td>
<td>Na⁺</td>
</tr>
<tr>
<td>K⁺</td>
<td>۰/۰۲ a</td>
<td>۰/۰۲ a</td>
<td>۰/۰۲ a</td>
<td>۰/۰۲ a</td>
<td>K⁺</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>۰/۲ a</td>
<td>۰/۲ a</td>
<td>۰/۲ a</td>
<td>۰/۲ a</td>
<td>Ca²⁺</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>۵/۷ c</td>
<td>۵/۷ c</td>
<td>۵/۷ c</td>
<td>۵/۷ c</td>
<td>Mg²⁺</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>۰/۱۱ b</td>
<td>۰/۱۱ b</td>
<td>۰/۱۱ b</td>
<td>۰/۱۱ b</td>
<td>CO₃⁻</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>۱/۰۲ e</td>
<td>۱/۰۲ e</td>
<td>۱/۰۲ e</td>
<td>۱/۰۲ e</td>
<td>HCO₃⁻</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>۱/۸ a</td>
<td>۱/۸ a</td>
<td>۱/۸ a</td>
<td>۱/۸ a</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>۱/۰ c</td>
<td>۱/۰ c</td>
<td>۱/۰ c</td>
<td>۱/۰ c</td>
<td>SO₄²⁻</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>Na⁺</td>
<td>۱/۲ a</td>
<td>۱/۲ a</td>
<td>۱/۲ a</td>
<td>۱/۲ a</td>
<td>Na⁺</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>K⁺</td>
<td>۶/۰ a</td>
<td>۶/۰ a</td>
<td>۶/۰ a</td>
<td>۶/۰ a</td>
<td>K⁺</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>۷/۰ a</td>
<td>۷/۰ a</td>
<td>۷/۰ a</td>
<td>۷/۰ a</td>
<td>Ca²⁺</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>۴/۲ c</td>
<td>۴/۲ c</td>
<td>۴/۲ c</td>
<td>۴/۲ c</td>
<td>Mg²⁺</td>
</tr>
<tr>
<td>(میلی‌گرم در در)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(میلی‌گرم در در)</td>
</tr>
</tbody>
</table>

در هر سانتی‌متر مالی‌هایی که در آمریک حرف می‌شود یعنی در اساس از آزمون دانل در سطح ۵/۰ فاقد تفاوت معنادار می‌باشد.

خاک به مقدار کمی کاهش داشته است. به لحاظ آماری در مقایسه با شاهد ممکن است نبود. به طوری که در دو خاک پیکان، آن که شورت است، به دلیل تغییرات تعدادی و pH، نمک کمتری داشته باشد (۵). گزارش‌های میانگین pH، pH صابر (۲) درباره اثر آب‌یاری با فاضلاب نشان دهنده کاهش می‌باشد. به‌نحوی چنین به این پژوهش هم‌خوانی دارد. ولی کاردورس خواهد شد. کاهش میزان محلول و تبدیل خاک‌های آب‌پذیر شده با فاضلاب تصمیم سه‌خاکی، نسبت به خاک‌های آب‌پذیر شده آب‌چاه، می‌تواند بر اثر تشکیل کم‌پیکس‌هایی با یون‌های یون‌هایی باشد (۲۵، ۳۵ و ۴۳).

نتایج تجزیه خاک‌های نمونه‌برداری شده از عمق ۳۰-۵۰ سانتی‌متری، با توجه به طول مدت آزمایش، نشان داده که pH
جدول 11. کیفیت میکروبیولوژی خاک در عمق 0-50 سانتی‌متر پس از برداشت کامو

| عناصر کمیاب | تیمار | تعداد خاک پیش | تعداد خاک پیش از کشت | تعداد خاک‌های خاک‌پیش | تعداد خاک‌های متغیر | تعداد خاک‌های معیار کم | تعداد خاک‌های مشابه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>140</td>
<td>108</td>
<td>80/8</td>
<td>80</td>
<td>8/8</td>
<td>77/1</td>
<td>77/1</td>
</tr>
<tr>
<td>T2</td>
<td>4/1</td>
<td>4/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>T3</td>
<td>3/1</td>
<td>3/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>T4</td>
<td>2/1</td>
<td>2/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>T5</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

در هر سمت میانگین‌هایی که دارای حروف مشابه هستند بر اساس آزمون دانکر در سطح ۵٪ احتمال تفاوت معنادار می‌باشند.
است و در لایه تجمع نمک‌های محلول در کانال‌های رسی خاک تثبیت می‌شود. لازم به ذکر است که در این پروتئین تپاسیم محلول در کانال‌های رسی خاک، با پاسخ خاک به اثر چهار سطح داشته‌اند، در اینجا با کانال‌های رسی خاک شده به آن‌را که شوری کمتری دارند، بیشتر است. در بررسی گزارش‌های متعدد شده تاکنون به نمایه سازی نشان داده‌اند که پاسخ دارد به سپاره‌ای با پاسخ از سر بر تپاسیم خاک داشته باشند برخورد نشده است.

عنصر سنجان خاک‌های آبیاری شده با پاس به مقایسه با خاک‌های آبیاری شده با آب چاه افزایش یافته، ولی این افزایش در دامنه سنگین‌ترین عنصر خاک‌های بود (جدول 10). در استفاده دراز مدت از پاس با باید باید به موضوع ابتنی‌گی این عنصر در لایه‌های خاک توجه شود. همچنین، باید پیگیری کیفیت و میزان ماده آلی فازفاصله‌ای تصفیه شده در کنترل کننده تغییرات نیافته و CEC خاک نیز تغییر نکرد.

۳۵) نشان می‌دهد که فازفاصله خاک‌های آبیاری شده با قابلیت بهتر در کنار خاک‌های آبیاری شده با پاس از پاس‌های کم‌فازفاصله است. در نتایج این پژوهش با تأثیر هم‌خوانی دارد، و فازفاصله جدید خاک‌های آبیاری شده با پاس با تفاوت معنی‌داری بیشتر از خاک‌های آبیاری شده با آب ماهنشین است. انتشار مورد استفاده از آب از آبیاری با ۱۳۶۹ می‌گری در لایه فازفاصله کل چشمه‌ها به توجه گردید.

نتیجه‌گیری

با توجه به توانایی دست امده از آزمایش، کارآیی بیشتر تیمار فازفاصله تصفیه‌گر، در مقایسه با تیمار کوده‌های شیمیایی، از نظر جذب عناصر، و نیز صفره‌گویی در هر دو پژوهش می‌باشد. است. کاربرد فازفاصله تصفیه‌گر در کانال‌های رسی خاک کم در پیدا می‌کند. تاثیر نامطلوبی بر ویژگی‌های خاک و گیاهی نداشت.

۸۸
متابع ورد استفاده

1. داش، ش. غ. حقیقت و ع. علیزاده. 1370. اثر فاضلاب‌های تصفیه شده خانگی بر عملکرد و کیفیت محصول چغندر قند و چغندر علفهای. گزارش تحقیقاتی معاونت پژوهشی دانشگاه فردوسی مشهد.

2. علیزاده، غ. و. ش.真的是 (مرجع). 1372. اصول تصفیه قیام. ظلم دی. تأثیر منگل و کربنی، مرکز نشر دانشگاهی.

4. کریمیان، ن. (مرجع). 1371. شیمی خاک. تأثیر برنکوت و همکاران، مرکز نشر دانشگاهی.

5. مجله، غ. (مرجع). 1372. شیمی خاک. تأثیر برنکوت و همکاران، مرکز نشر دانشگاهی.

6. معاونت تحقیقاتی سازمان حفاظت محیط زیست. 1373. استاندارد خریدی فاضلاب‌های، اشیاء دفتر امور زیست‌محیطی.

7. ملکوبی، غ. و. ح. 1372. حاصل خیزی خاک‌های مناطق خشکی، اشیاء دفتر امور زیست‌محیطی.

8. منزوی، غ. و. 1372. فاضلاب شهربانی، ظلم دی: توصیه فاضلاب‌های، اشیاء دفتر امور زیست‌محیطی.

