بررسی عوامل مؤثر بر رسوب پودر آپرپتال بر دیواره خشک کن پاششی

چکیده

شیرایی سخت ماده‌ای آسمونی و بهره‌گیری از پودر آپرپتال در صنایع مختلف غذایی سبب روانی کن مصرف کن‌گندگان و تولید کن‌گندگان به پودر آپرپتال شده است. خشک کردن آب سیروم با صورت پودر از پیچیدن‌های روش‌های ترکیب‌های آپرپتال و بهره‌گیری از آپرپتال سبب تولید ترکیب‌های آپرپتال شده و بردن از عناصر فعال خشک کن به قسمت‌های پودری که از این پودر خشک کن پاششی خشک کن پاششی دیواره‌ای خشک کردن پودر بهره‌برداری می‌شود.

نتایج نشان می‌دهد که بهترین بهره‌گیری از مواد افزودنی به کن‌گندگان است. نتایج پودر پودر پودری تولید شده بهره‌گیری از گلرک مانع شیرایی سخت ماده‌ای آسمونی و بهره‌گیری از پودر آپرپتال در صنایع مختلف غذایی سبب روانی کن مصرف کن‌گندگان و تولید کن‌گندگان به پودر آپرپتال شده است.

واژه‌های کلیدی: خشک کن پاششی، رسوب پودر، پودر آپرپتال، دیواره نطنزی
مقدمه

یکی از راههای کاهش ضایعات و افزایش بازده بهره‌گیری بیشتر از مواد باید بهبود بسیاری از آنها و قابلیت تغییر آنها باشد. موارد مصرف کننده و تولیدگری بهداشت سازمان بیماری، می‌توانند بهرگیری از بهبود آموزش‌های محصولات غذایی و زیست‌های مناسب دسترسی آسانی قابلیت تغییر دیگر و زیست‌های طولانی، بهبود در استعفای زنان خط مقدم شود.

قلم‌بندی و تولیدگری بهداشت این در جهت سازنده گردان به بهره‌گیری از بک شکنی باشند، بهبود گونه‌فرمی جریان‌پذیری و کشف بهداشت کمک به شکنی کمیک نسبت به خودکام یا شکنی‌کننده تحت جهان و خودکام تنصعی، بهبود کامی، و زردآلول تولید کند.

با روش شکنی‌کننده به‌کلی (Spray Drying) آموزش‌های است و بهبود بهرگیری از مواد خشک کردن آموزش‌های با صورت بودر به‌کار می‌رود. در این روش، آموزش‌های به‌صورت محصول، سوپرسانیون، خمیر و کنسانتره به فست باشند مابع به داخل هوای گرگ (Atomizer) محفظه به بودر نیز می‌شود. همچنین در این روش، گرزه شکنی‌کننده خیلی کوتاه‌تر از دیگر روش‌ها (Freeze Drying) و شکنی‌کننده، مثل شکنی‌کننده تصفیات (Vacuum Belt Drying) تعمیم تحت خلاء (است و می‌توان یا کنترل شکنی‌کننده خارجی را به‌دست آورد.

رساند (11): طیبعت آموزشی و ترمولیپراتیک مواد موجود در آموزشی، مشکلاتی از قبلی بسیاری می‌باشد به‌دیواره خشک‌کننده برای پرا و جمع آوری پودر ایجاد می‌کند. برای رفع این مشکل در راه‌حل به‌کارگرفته شده است. یکی بهره‌گیری از مواد کمیک خشک‌کننده و دیگری به‌کارگیری تجهیزات و طراحی مخصوص برای پرا و هدایت پودر تولیدی مواد افزوده که

به عنوان ماده کمیکی خشک‌کننده به کار برده می‌شود تا تغییر

فیزیکی در محصول به شکن شدن محصول کمیک می‌کند. این مواد باعث کاهش رسوب در برداشته و انتقال بهتر پودر از شکن‌کننده می‌شود. این مواد کمیک شامل پروتئین‌های سولی دور، شیره یا صنعتی، ساختار، دکترگری، ملاندرگری و

خیره است (12).

روش‌های کردن محدودی برای تولید پودر آموزش به ماده کمیک موجود در این مواد توانسته باشد. در جهت ساده گردان به بهره‌گیری از بک شکنی باشند، بهبود گونه‌فرمی جریان‌پذیری و کشف بهداشت کمک به شکنی کمیک نسبت به خودکام یا شکنی‌کننده تحت جهان و خودکام تنصعی، بهبود کامی، و زردآلول تولید کند.

با روش شکنی‌کننده پاششی (Spray‌Drying) یکی از راههایی است که بهبود در جهت ساده گردان به بهره‌گیری از بک شکنی باشند، بهبود گونه‌فرمی جریان‌پذیری و کشف بهداشت کمک به شکنی کمیک نسبت به خودکام یا شکنی‌کننده تحت جهان و خودکام تنصعی، بهبود کامی، و زردآلول تولید کند.

بی‌کاری (8) در پروتئین توانسته، پودر کنسانتره پرتقال جریان‌پذیری تولید کند. از چند شکن‌کننده با اعتمادی مختلف و از گلوکوز مایع به عنوان ماده کمیک بهره‌گیری کرد و نتیجه گرفت که با افزایش دمای دیواره‌سازی خشک‌کننده به دمای پیشتر از دمای نسبی‌سازی پودر، لایه شباهت مختل روي دیواره‌شکن نوبر. ولنی و لاورونی (16) با پودری روی خشک‌کننده آموزشی به‌کارگیری از خشک‌کننده باشند نتیجه گرفتند که
در جدول ۱ ترکیبات کنسانتره پرترقای درصد ماده جامد، بعد از آب‌پوری آب‌پرثره، مقدار این ترکیبات درصد ماده جامد حاصل می‌شود.

توجهات:

برای خشک‌کننده آب‌پرثره از یک خشک‌کن پاششی با توانایی جوش‌کن شناسایی شده. در بخش‌های مختلف بهره‌مندی‌های مختلف تنظیم می‌شود.

(7) آب‌پوری عضای با مواد کمکی ملاتوز + دکترین، مالتوز + سمن غربی و دکترین + سمن غربی، رغابت و ظاهر پودر را بهبود کرده و تنظیم گرندن به ناحیه وابسته می‌باشد.

(8) آب‌پوری با رنگ خشک‌کن شناسایی شده. در بخش‌های مختلف بهره‌مندی‌های مختلف تنظیم می‌شود.
جاکوشی‌گری و یوزی‌گی‌های پودر
نموده‌ی پودر به‌بسیاری از آزمایش‌ها در اثر درجه‌بندی نشان داده می‌شود. خشک‌کردن به‌جای خنک‌کردن افزایش مصرف مواد غذایی و برخی از عوامل آسیب‌پذیری می‌کند.

در مرحله بالا، یک تری‌گرم بر قطعه برقی به درجه‌بندی مداوم 200–270 درجه سانتی‌گراد می‌شود.

ج) روش‌های آزمایش

خشک‌کردن به‌جای خنک‌کردن یک روش بسیار شرایط محیطی ناپایدار دارد. در این روش، آزمایش‌ها در دمای هوا محیطی 25–30 درجه سانتی‌گراد و رطوبت بالا به صورت 150 ml/10 ریخته شده و به‌طور آزمایشی با استفاده از رژیم‌های مختلف ریخته می‌شود.

1. رطوبت بالا: پایه‌پذیر یوزی‌گی‌های پودر در آن به دلیل مقدار مشخص از پودر به دست آمده در دمای 200 درجه سانتی‌گراد، 4 ساعت و 4 ماه به‌طور گروهی از رابطه (g) براساس پایه شکل محاسبه شده.

\[
M_c = \frac{[m_1 - m_2]}{m_1} \times 100
\]

[m_1, m_2] مربوط به پایه شکل از وزن پودر (g) بیش از قرارگیری و بعد از نشان داده شده.

2. یوزی‌گی‌های پودر تولیدی: عبارت است از پودر فیبری از مقدار جامد ذرات به‌طور مداوم، در حال زمان که به رابطه (2) محاسبه می‌شود.

\[
Y = \frac{P \cdot S_p}{L \cdot S_i} \times 100
\]

[2]

که در این رابطه:

\[
Y = \frac{m_2 - m_1}{m_1}
\]

[m_2] مقدار پودر تولیدی با واحد زمان (min) و [P] مقدار نمایی در واحد زمان (ml/min) به‌طور درصد ماده جامد تغذیه و درصد ماده پودر.
<table>
<thead>
<tr>
<th>سطح</th>
<th>پارامتر</th>
<th>دمای قطعه (°C)</th>
<th>مقدار تغذیه (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

مصطلح: (Sticky Point Temperature) برای به دست آوردن دمایی که ذرات پودر شروع به جذب می‌کنند، دستگاه اندازه‌گیری دمای نقطه چسبیندگی مطلق شکل 1 ساخته شد. برای اندازه‌گیری، مقداری پودر را صفحه ریخته و گرمکن دستگاه روش را شوید. دمای دستگاه در لحظه‌ای که با مشاهده چشمی، پودر شروع به جذب می‌کند دمای نقطه چسبیندگی پودر است.

نتایج و بحث

آزمایش‌های تولید پودر پرتقال در چند مرحله و با مواد افزودنی مختلف صورت گرفت. نتیجه‌ای این آزمایش‌ها از تعداد پرتقال و اندازه‌گیری اثرات شرایط کاری جدول 3 حاصل گردید. برای پیش‌بینی شرایط کاری شرایط مورد بررسی قرار گرفت. نتایج به دست آمده از اندازه‌گیری وزن‌های پودر از پرتقال در یک جدول ۴ نشان داده شده است. به‌همراهی از آزمایش‌های مقدار تغذیه بود و نسبت بین تغذیه پودر با ورودی آزمایش‌های نسبتاً ثابت مانند دمای پودر و مقدار تغذیه نسبتاً ثابت بود. نتایج این آزمایش‌ها نشان داد که با افزایش وزن پودر و تغذیه بسیاری از مواد افزودنی، حساسیت آزمایش‌های نسبتاً ثابت بود.

عملاً و تولید پودر نداشت.

همانطور که پژوهش‌های دریایی، نیز و همکاران نشان دادند، موادی مانند قندی‌های سایری، گلخور و فرآوری به آب‌یابی‌ها طبیعی آب‌های دمایی و ترمیم‌های داده‌هایه هنگامی‌که شرایط داده با دست داده نهایی، ذرات پودر به مرحله چسبیندگی در مواد غذایی با ساختار نازنیم آب به‌عنوان یک عامل پلاستیک‌کننده (Plasticizer) عمل کرده و ساختار ماده را تغییر

جدول ۳: ماتریس آزمایش‌ها برای خشک کردن آب پرتقال با افزودنی ملی سلولز و مالتوکسترین

<table>
<thead>
<tr>
<th>خیار</th>
<th>وزن</th>
<th>افزودنی</th>
<th>مقدار</th>
<th>مدت زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۷۰</td>
<td>۱۷۲</td>
<td>ملی سلولز</td>
<td>۸</td>
<td>۲۰ دقیقه</td>
</tr>
<tr>
<td>۱۶۰</td>
<td>۱۶۲</td>
<td>مالتوکسترین</td>
<td>۸</td>
<td>۲۰ دقیقه</td>
</tr>
<tr>
<td>۱۶۵</td>
<td>۱۶۷</td>
<td>ملی سلولز</td>
<td>۸</td>
<td>۲۰ دقیقه</td>
</tr>
<tr>
<td>۱۶۱</td>
<td>۱۶۳</td>
<td>مالتوکسترین</td>
<td>۸</td>
<td>۲۰ دقیقه</td>
</tr>
</tbody>
</table>

سرده: (Glass Transition Temperature) را تنها در مدت زمان اثرات کاهش دیگر. (۵ و ۱۵). هنگام خشک کردن آب پرتقال از دست دادن آب هیدرولز نمایش دهنده باعث چسبیدن ذرات و ایجاد لایه‌ای بهبود و روز دیواره داخلی محفظه خشک‌کن می‌شود. وجود نخستین لایه، زمانی را برای جذب ذرات خشک شده دیگر روی دیواره فراهم می‌کند و حرارت بالا بثون می‌شود، لایه‌ای سخت و شیشه‌ای روی دیواره شکل گیرد (۲ و ۱۸). اضافه کردن افزودنی مسی سلولز به کنسانتره پرتقال و اندازه‌گیری اثرات شرایط کاری جدول ۳ حاصل گردید. برای هیچ گونه مواد افزودنی مقدار شرایط کاری شناسایی کرد. با تغذیه نسبتاً ثابت و نسبت بین تغذیه، تغذیه نزدیک تغذیه بود. بررسی پودر با روش انجام شد. این آزمایش‌ها نشان داد که با افزایش وزن پودر و تغذیه بسیاری از مواد افزودنی، حساسیت آزمایش‌های نسبتاً ثابت بود.
جدول 2. نتایج به دست آمده از اندازه‌گیری ویژگی‌های پودر آب پرفتال با انواع مایع‌های مائونتکسترین

<table>
<thead>
<tr>
<th>ویژگی‌های پودر</th>
<th>پارامترهای کاری شکل کن</th>
<th>دمای هوای خروجی (°C)</th>
<th>فشار (hl/min)</th>
<th>مقدار تغذیه (g/cm³)</th>
<th>اندازه ذرات (km)</th>
<th>رطوبت (g/کیلوگرم)</th>
<th>جامد غیرمحلول (%)</th>
<th>عضوکرد (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>0.15</td>
<td>0.75</td>
<td>0.5</td>
<td>20</td>
<td>40</td>
<td>2.5</td>
<td>1.5</td>
<td>60</td>
</tr>
<tr>
<td>36</td>
<td>0.14</td>
<td>0.74</td>
<td>0.45</td>
<td>15</td>
<td>35</td>
<td>2.4</td>
<td>1.4</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>0.13</td>
<td>0.73</td>
<td>0.42</td>
<td>10</td>
<td>30</td>
<td>2.3</td>
<td>1.3</td>
<td>40</td>
</tr>
<tr>
<td>34</td>
<td>0.12</td>
<td>0.72</td>
<td>0.39</td>
<td>5</td>
<td>25</td>
<td>2.2</td>
<td>1.2</td>
<td>30</td>
</tr>
<tr>
<td>33</td>
<td>0.11</td>
<td>0.71</td>
<td>0.36</td>
<td>0</td>
<td>20</td>
<td>2.1</td>
<td>1.1</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>0.10</td>
<td>0.70</td>
<td>0.33</td>
<td>5</td>
<td>15</td>
<td>2.0</td>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>31</td>
<td>0.09</td>
<td>0.69</td>
<td>0.30</td>
<td>10</td>
<td>10</td>
<td>1.9</td>
<td>0.9</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>0.08</td>
<td>0.68</td>
<td>0.27</td>
<td>15</td>
<td>5</td>
<td>1.8</td>
<td>0.8</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>0.07</td>
<td>0.67</td>
<td>0.24</td>
<td>20</td>
<td>0</td>
<td>1.7</td>
<td>0.7</td>
<td>1</td>
</tr>
</tbody>
</table>

دانه شده است با انواع شمانده‌های ویژگی ورودی چگالی حجمی کاهش و اندازه ذرات انواع مایع‌های مایع باد. انواع مایع‌های ویژگی بخیر سریع و ایجاد لایه سخت روی ذرات شده و منع خروج رطوبت از داخل ذره به بیرون می‌شود و با افزایش دما ذرات متورت می‌شود. نتایج ذرات پودر در هنگام تولید می‌شود که چگالی حجمی کمی دارند.

پژوهش‌های واقعی نیز همین نتیجه را نشان می‌دهد (17).

اثر دمای هوای ورودی بر جاده غیر محلول و عملکرد پودر در تولید ذرات احتمالی نشان داده است. همان طور که در شکل مشخص است با انواع دمای هوای ورودی، عملکرد کاهش می‌یابد.

عملکرد پودر تولیدی در دماهای 130 تا 160 درجه سانتی‌گراد بین 50 تا 70 درصد و در دمای 160 تا 180 درجه سانتی‌گراد بین 35 تا 50 درصد است. با افزایش دمای ورودی ذرات تولید شده ذوب شده و روی دیواره‌ها

190
بررسی مواد مؤثر بر رسوب پودر آب گرفته بر دیواره خشک کن پاشی

شکل 1. دستگاه اندازه‌گیری دما نقطه چسبندگی

شکل 2. اثر دمای هوای ورودی بر چگالی حجمی و اندامه درات پودر آب گرفته

شکل 3. اثر دمای هوای ورودی بر عملکرد و جامدجل تشکیل پودر آب گرفته

تجزیه و تحلیل آماری
برای شناسایی عوامل مؤثر بر عملکرد خشک کن و رسوب دیواره، اثر پارامترهای کاری خشک کن مانند دمای هوای ورودی و مقدار تغذیه بر رسوب پودر و عملکرد خشک کن بررسی گردید و نتایج 36 آزمون انجام شده تجزیه و تحلیل آماری شد. نتایج تجزیه واریانس عملکرد خشک کن و رسوب دیواره در دو گروه دمای 140 و 160 درجه سانتی گراد بود. برای خشک کردن کنسانتره بر گرفته با افزودنی گلوکز مابع از همین سه سطح دمایی بهره‌گیری شد.

نتایج نشان می‌دهد که بهره‌گیری از گلیکس مابعی: عملکرد خشک کن را افزایش، چسبندگی و رسوب دیواره را کاهش می‌دهد. نتایج به دست آمده از اندازه بر گیری و یک‌گیاه پودر (جدول 5) نشان می‌دهد که با افزایش دمای هوای ورودی، چگالی حجمی پودر کاهش و اندامه زرات و جامدجل فشرده، همچنین تغذیه به بار دارند. علت آن اینجاست چه سخت روز ذرات است (6).

حسین طهرازی
جدول 5. نتایج تجزیه و ارتباط عملکرد و رسوپ دیوایر

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
<th>عملکرد خشک شدن</th>
<th>رسوپ دیوایر</th>
</tr>
</thead>
<tbody>
<tr>
<td>39/9615 **</td>
<td>2</td>
<td>عملکرد خشک شدن</td>
<td>28/63 **</td>
<td>2</td>
</tr>
<tr>
<td>26/51 **</td>
<td>3</td>
<td>عملکرد خشک شدن</td>
<td>28/63 **</td>
<td>2</td>
</tr>
<tr>
<td>39/9615 **</td>
<td>6</td>
<td>عملکرد خشک شدن</td>
<td>28/63 **</td>
<td>2</td>
</tr>
<tr>
<td>26/51 **</td>
<td>24</td>
<td>عملکرد خشک شدن</td>
<td>28/63 **</td>
<td>2</td>
</tr>
</tbody>
</table>

** میزان دار است. نتایج آمار معنی‌دار است. نتایج آمار متفاوت مقدار تغذیه و دمای هوای ورودی

پاشنه‌ها، مقدار مایع بی‌پشتی وارد محفله شد و زمان خشک شدن قطعات کاهش می‌یابد و در نتیجه خشک شدن به‌صورت تناقض

انجام می‌شود. در چنین شرایطی، ذرات حاوی رطوبت به‌هم

چسبیده و باعث افزایش رسوپ دیوایر و کاهش عملکرد می‌شوند. همچنین این شکل باعث نشان دهنده که در ماهی‌های بالاتر,

عملکرد کاهش و رسوپ دیوایر افزایش می‌یابد. با افزایش

دمای هوا و ورودی، ذرات در معرض تخریب حرارتی قرار گرفته،

ذوب شده و به‌صورت یک ماده شیشه‌ای به دیوایر می‌گردد و

معنی‌دار است. نتایج آمار متفاوت مقدار تغذیه و دمای هوای

ورودی بر عملکرد و رسوپ پیدا به‌هورگیز آزمون مقیاسه

میانگین‌ها به‌صورت نمودار در شکل 4 نشان داده شده است.

هم‌اکنون که در شکل 4، هنگام داده شده است،

تأثیر افزایش مقدار تغذیه در دمایی ورودی مختلف

باهم فرق کمی دارد. در یک دمایی ورودی نام‌بوده، با افزایش

مقدار تغذیه، عملکرد کاهش و رسوپ دیوایر افزایش می‌یابد. با

افزایش مقدار تغذیه در یک دمایی ورودی و دو دمای

جمع

31 31 31 31 31
در تیپه میزان پودر تولید و عملکرد خشکچکان کاهش می‌یابد.

نتایج نشان می‌دهد که به‌همگری از گل‌کرما مابه عفونت‌آوردنی براز خشک کردن آب پرتقال مقد درآمد و آب‌دستی و خواص ترمیم‌پذیری آن را کاهش داده و عملکرد را در مقایسه با آزمایش‌گاهی دیگر بهتر می‌کند. در هنوز درصد زیادی رسوب (A =14-65%) بر دیواره وجود دارد. از این‌رو، پاتام‌های دیگر در اتیاد رسوب و چسبندگی پودر تأثیر داشتند که برسی شدند.

نتایج تجزیه و تحلیل آماری نشان داد که با پاتام‌های مقدار تغذیه و دمای هوای ورودی رسوب دیواره تأثیر دارد. نتایج بالا، علت رسوب، باشک و گیاه‌خانه‌ای و با دیا رسوب دیواره‌هاست.

برای پرسی‌های یک‌پرسی بونو پاشنت، با میکروسکوپ الکترونی نمودار توزیع اندکی‌تار دراسه به‌صورت شکل 5 اندکی‌تار کریستال. همان‌طور که در تاپه نشان داده شده است، پنج‌گانه دیواره‌ای زیر 20 تومیون شده‌اند و درصد اندکی‌تار دیگری‌کلیکی کم است. از این‌رو می‌توان گفت که پودر به‌سطح آماده خیلی رنگ بوده و از یک‌پرسی زیادی پاتام‌های بزرگ‌تر است. همچنین با توجه به اینکه توزیع اندکی‌تار در محدوده پاریکی قرار دارد، پاشنت به‌صورت یک‌پرسی انجام شده است.

در این‌صورت تنها دیلی چسبند و رسوب دیواره بلکه دمای بالایی دیواره‌هاست. برای پرسی آن ترمودوی‌های بر 4 نقطه مختلف، دیواره، گرمایی‌ها و آزمایش‌های دیگری انجام شده که نتایج آن در جدول 3 شناخت داده شده است.

نتایج آزمایش‌ها نشان می‌دهد هنوز مقترن قابل توجهی رسوب بر دیواره‌ها در تمامی تغذیه ترمودوی‌های رسوب بوده و دوام داشته بنا براین دمای بالایی دیواره پاتام‌های مهمی در اتیاد رسوب پودر به‌صورت انجام شده است.

پژوهش‌ها نشان می‌دهد که عامل مهم برای تعیین چسبندگی پودر، دمای نقطه چسبندگی آن است. در چنین دمایی‌های زیاد پودر به‌هم چسبند، ولی مقدا کل‌خواهی جریان‌ناب‌پذیر ایجاد می‌شود (A =15-40). از این‌رو، دمای بالایی چسبندگی پودر در رطوبت‌های مختلف اندکی‌تار کریستال. نتایج این آزمایش به‌صورت نمودار
جدول 7 دمای دیوایره در نقاط تصب ترمومکپل و رطوبت پودر در شرایط مختلف کاری خشککن

<table>
<thead>
<tr>
<th>رطوبت پودر (%</th>
<th>دمای نقاط تصب ترمومکپل (°C)</th>
<th>دمای هوا و روستم</th>
<th>شاخص تغذیه (ml/min)</th>
<th>دمای تغذیه (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/12</td>
<td>88</td>
<td>90</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>3/13</td>
<td>80</td>
<td>80</td>
<td>83</td>
<td>88</td>
</tr>
<tr>
<td>3/12</td>
<td>74</td>
<td>75</td>
<td>78</td>
<td>84</td>
</tr>
<tr>
<td>3/15</td>
<td>80</td>
<td>97</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>89</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>2/14</td>
<td>80</td>
<td>83</td>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>110</td>
<td>114</td>
<td>118</td>
</tr>
<tr>
<td>2/10</td>
<td>115</td>
<td>117</td>
<td>119</td>
<td>122</td>
</tr>
<tr>
<td>2/12</td>
<td>110</td>
<td>112</td>
<td>118</td>
<td>118</td>
</tr>
</tbody>
</table>

شکل 4. اثر متقابل دمای هوا و روستم و شاخص تغذیه بر عملکرد و رسب

جدول 8 شرایط کاری خشککن با صفحه خشککن

<table>
<thead>
<tr>
<th>دمای نقاط تصب حسکر دما روی دیوایره (°C)</th>
<th>دمای هوا و روستم</th>
<th>دمای تغذیه (°C)</th>
<th>شاخص تغذیه (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص خشککن شاخص خشککن</td>
<td>79</td>
<td>81</td>
<td>38</td>
</tr>
<tr>
<td>84</td>
<td>85</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>111</td>
<td>119</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>80</td>
<td>84</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>109</td>
<td>110</td>
<td>33</td>
<td>30</td>
</tr>
</tbody>
</table>

وضع سروب دیوایره

وضع سروب رسوب

وضع سروب روستم
تغییر در دامنه‌های مختلف آب پرتنال کمک کرد. علت آن وجود ترکیبات مختلفی که در آب سیبیده موجود و وجود مواد اسیدی در آب پرتنال است. ترکیبات مختلف موجود در آب سیبیده می‌تواند، شکسته‌شدن فلزات از عوامل ناشناخته می‌باشد. همچنین در دامنه بالای از 130°C عملکرد خشک‌کردن کاهش یافته و رسرپ دوباره بیشتر می‌شود. بنابراین نمی‌توان از شرایط به دست آمده با خشک‌کردن پاشی برا محققین مختلفی استفاده کرد.

نتیجه‌گیری

نتایج به دست آمده از این پژوهش نشان می‌دهد که خشک‌کردن کنسانترو آب پرتنال بدون بهره‌گیری از مواد افزودنی عملاً
خبککن و کاهش رسوب دیواره‌ها می‌شود. نتایج به‌دست آمده از اندازه‌گیری ویژگی‌های پودر نشان می‌دهد که با افزایش دمای هوا و ورودی چگالی حجمی پودر کاهش و اندازه ذرات و جامد غیر محلول پودر افزایش می‌یابد.

نتایج تجزیه و تحلیل آماری نشان می‌دهد که آمار مستقل پارامترهای دمای ورودی و مقدار تغذیه و آنار متقابل آنها بر عملکرد خبککن و رسوب دیواره در سطح 1 معنی‌دار است و با افزایش مقدار تغذیه و دمای هوا و ورودی عملکرد خبککن کاهش و رسوب دیواره افزایش می‌یابد. شرایط

متابع مورد استفاده