استفاده از آپنیتر از طریق آب آشامیدنی بر عملکرد چوجه‌ها گوشته

چکیده

این آزمایش‌ها به نظریه بررسی اثر مصرف آپنیتر از طریق آب آشامیدنی بر عملکرد چوجه‌ها گوشته به‌منظور گرفتن اطلاعاتی انجام گرفت. در تحقیق، برای مطالعه تأثیر آپنیتر بر عملکرد چوجه‌ها، 42 روزی برکه شد. از آن‌ها 30 چوجه گوشته را به روز رسانی کردند و 7 چوجه از شست‌شدن و هر یک از شست‌شوی‌های آب آشامیدنی از سه هفته تا ۳۰ روزگی به چهار گروه تقسیم شدند. در طول آزمایش، چوجه‌ها به آب و غذا ترک نشدند. در این آزمایش، از ماهی گوشته از دو چهار گروه تأمین شدند. چوجه‌ها هر تکرار که در ۴۰۰ متر از دریاچه می‌شدند. موارد معمولی مربوط به ۴۰۵ روزگری بودند. با این حال، آزمایش‌ها در سنین ۳۰ و اسکی و مصرف غذایی گروه میانگین شد. در پایان دوره از هر تکرار در مراکز دارویی و خلیج‌های انتخاب، ذخیره و درصد لازمی. تحقیقات این مدل در خورش و مرگ جمع‌آوری مختلط و نشان از شمارش باکتری‌ها در ۳۰ متجمد شدند. در سنین ۴۰ و یدک، اضافه و روزانه، ضربی نبودن یا رطوبت به ترتیب تأثیر معنی‌دار (P<0/01) سطح آپنیتر قرار گرفتند.

معیارهای ملکریس با مصرف بیش از ۴۰ درصد آب پنیر کاهش و ضربی نبودن یا رطوبت به تأثیر معنی‌دار (P<0/01) داشتند. درصد این معنی‌دار با مصرف بیش از ۴۰ درصد آب پنیر به سطح معنی‌دار (P<0/01) کاهش یافت. درصد همچنین بهتر بود که در نتیجه نشان داد. درصد این معنی‌دار با مصرف بیش از ۴۰ درصد آب پنیر باعث کاهش عملکرد چوجه‌ها گوشته شد. در اختلال معنی‌داری در نشان داد.

واژه‌های کلیدی: آب پنیر، چوجه‌های گوشته، باکتری‌های روده، رطوبت بستر

1. به ترتیب استاد و مربی (دانشجوی) علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
مقدمه

آب‌پی‌پر مایع برگیدن است که یکی از نه‌پر به‌دست‌می‌آید. آب‌پی‌پر دارای لک‌الکزور، پروتئین‌های محلول، مواد از لحاظ غیرپروتئینی، چربی، ویتامین‌ها و آماده‌عندی است. آب‌پی‌پر تا زمان pH 6/7 و ماده خشک آن حدود 7/5 درصد است که آن را پروتئین تشکیل می‌دهد.

از ویتامین‌های محلول در آب، بی‌فلورالین قسمت شاخصی در آب‌پی‌پر دارد. حدود 50 درصد کلسیم و فسفر شیرت در آب‌پی‌پر یافت می‌شود. ارزش بیولوژیکی پروتئین آب‌پی‌پر می‌باشد در حالی که در کازئین 80‌گزارش شده است (1 و 2).

(Biochemical Oxygen Demand) BOD بالایی که دارای آب‌پی‌پر محلول می‌شود و تا سال 1979 به‌میزان آب‌پی‌پر تولیدی در دنیا بصورت‌های مختلف دفع و به نمایندگی زیست وارد می‌گردد (13). به دلیل ابتدا آب‌پی‌پر محیطی فاقد از تولید آب‌پی‌پر، تلاش‌های گسترش‌دهنده‌ای به منظور بالاگیری راه حل این مشکل انجام گرفته تا به عنوان روش‌های اول‌مرکزی و مصرف آن پیامد کرد. به همین منظور روش‌های مختلفی مانند اولترافلتراسیون، میکروفلتراسیون، تغییر فشار تحت خلاء و غیره به کار گرفته‌شده است (3). تحقیق این تلاش‌ها باید شد تا آب‌پی‌پر به عنوان یک ماده غذایی با ارزش بی‌فلورالین باشد. شرکت‌های مورد ارزیابی و سه‌سازی در روزگار غذایی افسل‌فورد ساخته شده، همچنین از فع‌آب‌پی‌پر در فاضلات‌ها کاهش بینایه و خطرات زیست‌محیطی آن کم شود. به‌وسیله تأثیر کارخانه‌های تونیر ایران، تولید آن می‌باشد به سرعت افزایش یافته است و در نتیجه مشکلات زیست‌محیطی ایجاد شده توسط سموم‌های را می‌شود.

آب‌پی‌پر مایع برگیدن است که پس از به‌هنگام تهیه و تولید می‌شود که در مقایسه با مقدار تولید سالانه زمین را به‌سیار ناچیزی را تشکیل می‌دهد. بر اساس کارزاره‌های کل صنایع استان اصفهان در سال 1368 تولید نیول در این استان 1410 تن و آب‌پی‌پر 4062 تن است که از این مقدار 2000 تن به‌طور آب‌پی‌پر می‌رسید و مقدار 3200 تن پودر آب‌پی‌پر تولید می‌شود.

یکی از راه‌هایی که شاید بتواند باعث کاهش آلودگی محیط آب‌پی‌پر شود مصرف آن توسط جمعیت موثر طور باشد، زیرا این ماده محیط مناسب برای رشد و تثبیت گیاهانی مثل پروتئین‌ها را به‌وجود آورده.

برای ویژه‌گران، برای آب‌پی‌پر یکی از کلیه‌هایی است که با ابتدا کلیه‌هایی در دستگاه کارزار به‌عنوان یکی از جمعیت میکرو‌ریزه‌ها به تغییر گرفته.

میکرو‌ریزه‌ی آن شده و این جمعیت میکرو‌ریزه‌ها به نفع باکتیری‌های مفید تغییر می‌دهند (14). گالب‌شنند نیز جمعیت یک گروه میکرو‌ریزه‌ی یکی از جمعیت میکرو‌ریزه‌ها است که تا پایان عمر جمعیت میکرو‌ریزه‌ها به طور همزمان باعث حفظ سلامت، افزایش قابل‌توجه، جذب مواد غذایی (7 و 9) و گل‌گیری از عفونت‌های رویداده گردیده (5 و 15).

اکوسیست‌ما تغییر می‌دهد و جذب گروه‌های بری‌پورتئین‌ها، چربی‌ها، پروتئین‌ها و نیز ساخت ویتامین‌های K و B شده است. چنین کلیه‌هایی تشکیل می‌دهند. هرگز مواد غذایی به فرم‌های باکری‌ها نمی‌تواند به‌عنوان گروه‌های کلیه‌های میکرو‌ریزه‌ها استفاده شده باشد. همچنین از بقیه BOD ناشی از فع‌آب‌پی‌پر در فاضلات‌ها کاهش و تمرکز به بی‌فلورالین، نه‌پر و به‌طور مصرف پروتئینی در نه‌پر و باعث کاهش pH و تسریع جذب مواد غذایی می‌شود (13).

مصرف پروتئینی همراه آب‌پی‌پر باعث کاهش عفونت‌های سالمونلایا می‌شود و لقب‌های این این باهامی‌های ایجاد شده توسط سالمونلایا را می‌کاهد (9 و 15).
استفاده از آب پنیر بر طریق آب آشامیدنی بر عنوان جوجه‌های گوشتخوار

1. تأثیر آب پنیر بر میکروفلور روده.

مواد و روش‌ها

آزمایش در قالب طرح کاملاً تصادفی با ۶ تیمار و ۴ تکرار اجرا شد. شمار ۲۷۰ قطعه جوجه گوشتخواری به روزه راس، به ۲۴ گروه به تعداد ۳۰ جوجه در هر گروه به وسیله به‌دست‌یافتن سلامتی و عملکرد جوجه‌ها کردن (۲۸۰)، مصرف لاکتواسیل‌ها در جوجه‌های گوشتخوار و کاهش فعالیت آنزیم اورژه در دستگاه گوارش و افزایش فعالیت آنزیم‌های گوارشی جوجه‌های گوشتخوار و بدنی. وسیله به‌دست‌یافتن سلامتی و عملکرد جوجه‌ها

در طرح مشخص مورد توجه بود. آب پنیر به روزه راس از یک خانه تولید پنیر تهیه و به نسبت‌های مشخص به آب آشامیدنی مخلوط و مصرف می‌شد. طی دوره آزمایش جوجه‌ها با شیر جیره افزایش، رسیده و یا (جدول ۱) تغذیه شدند. تمام شرایط پرورش در طول دوره آزمایش مطابق با استانداردهای توصیه شده برای جوجه‌ها فراهم شد و جوجه‌ها در این مدت به آب و غذا دسترسی آزاد داشتند.

در طول آزمایش غذای مصرفی، وزن بدن، اضافه وزن و روزانه و ضربی تبدیل گذابی هر قسم در سین ۴۲ و ۵۴ گروگان اندوزه‌گیری شد. در سین ۴۲ و ۵۴ روزگی، از هر نقطه نمونه بستر جمع آوری و حرارت آن اندوزه‌گیری شد. در پایان دوره آزمایش از هر نقطه در قطعه مربع و و قطعه خروس که وزن آن‌ها حدود میانگین روزه و خروس‌های هر نقطه بود ذخیر و درصد لازم، وزن سنگدان، لزوم تغذیه، ایلکوم و چربی خطری بیش از اندازه‌گیری شد. محصولات این‌گونه در قطعه مربع و و قطعه خروس جمع آوری و برای شمارش باکتری‌ها در ۲۰ درجه سانتی‌گراد نگهداریده شدند. تعداد کل باکتری‌ها، انتروبیکس‌ها و لاکتواسیل‌ها در یک گرم نمونه تعیین گردید.

شمارش باکتری‌های نمونه‌های ایلکوم به شرح زیر انجام شد:

1. تأثیر سطح مشخص آب پنیر بر طریق آب آشامیدنی بر عملکرد جوجه‌های گوشتخوار.

2. تعیین بهترین سطح مصرف آن برای جوجه‌های گوشتخوار.
جدول 1. ترکیب چربی‌های آزمایشی

<table>
<thead>
<tr>
<th>پایانی</th>
<th>شروع</th>
<th>افزایش</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/145</td>
<td>0/165</td>
<td>0/142</td>
<td></td>
</tr>
<tr>
<td>0/185</td>
<td>0/87</td>
<td>0/85</td>
<td></td>
</tr>
<tr>
<td>0/220</td>
<td>0/55</td>
<td>0/53</td>
<td></td>
</tr>
<tr>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

یافته‌ها پذیرفته شده‌اند و در برابر آماری با 95% اطمینان است. (1)

** ترکیب محاسبه‌ای

انرژی قابل سوخت و ساز (کیلوکارژی در کیلوگرم)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2885</td>
<td>2862</td>
<td>2875</td>
</tr>
<tr>
<td>19/2</td>
<td>20/4</td>
<td>22/4</td>
</tr>
<tr>
<td>1/0</td>
<td>1/0</td>
<td>1/0</td>
</tr>
<tr>
<td>1/04</td>
<td>1/05</td>
<td>1/05</td>
</tr>
<tr>
<td>1/40</td>
<td>1/46</td>
<td>1/46</td>
</tr>
<tr>
<td>1/09</td>
<td>1/07</td>
<td>1/07</td>
</tr>
</tbody>
</table>

یافته‌ها پذیرفته شده‌اند و در برابر آماری با 95% اطمینان است. (1)

** نتیجه‌گیری‌ها:**

پایه‌های باره یک کیلوگرم در تاریکی چربی‌های آزمایشی مقدار ثابت، بطور عمومی 80 کیلوگرم، از آن‌ها 60 کیلوگرم، سه گرم، یک گرم و یک گرم و ماده

خنثی آن‌ها 3 کیلوگرم.

** نتیجه‌گیری‌ها:**

پایه‌های باره یک کیلوگرم در تاریکی چربی‌های آزمایشی مقدار ثابت، بطور عمومی 80 کیلوگرم، از آن‌ها 60 کیلوگرم، سه گرم، یک گرم و یک گرم و ماده

خنثی آن‌ها 3 کیلوگرم.

** نتیجه‌گیری‌ها:**

پایه‌های باره یک کیلوگرم در تاریکی چربی‌های آزمایشی مقدار ثابت، بطور عمومی 80 کیلوگرم، از آن‌ها 60 کیلوگرم، سه گرم، یک گرم و یک گرم و ماده

خنثی آن‌ها 3 کیلوگرم.

** نتیجه‌گیری‌ها:**

پایه‌های باره یک کیلوگرم در تاریکی چربی‌های آزمایشی مقدار ثابت، بطور عمومی 80 کیلوگرم، از آن‌ها 60 کیلوگرم، سه گرم، یک گرم و یک گرم و ماده

خنثی آن‌ها 3 کیلوگرم.

** نتیجه‌گیری‌ها:**

پایه‌های باره یک کیلوگرم در تاریکی چربی‌های آزمایشی مقدار ثابت، بطور عمومی 80 کیلوگرم، از آن‌ها 60 کیلوگرم، سه گرم، یک گرم و یک گرم و ماده

خنثی آن‌ها 3 کیلوگرم.

** نتیجه‌گیری‌ها:**

پایه‌های باره یک کیلوگرم در تاریکی چربی‌های آزمایشی مقدار ثابت، بطور عمومی 80 کیلوگرم، از آن‌ها 60 کیلوگرم، سه گرم، یک گرم و یک گرم و ماده

خنثی آن‌ها 3 کیلوگرم.
نتایج
امروز سطح مختلف آب پنیر بر وزن بدن، اضافه وزن روزانه، مصرف و ضربت تبدیل غذا در سه 21 روزگی در جدول 2 نشان داده شده است (جدول 2). تأثیر سطح مختلف آب پنیر بر وزن بدن و اضافه وزن روزانه معنی‌دار بود (P<0.05). مصرف و ضربت تبدیل غذا تحت تأثیر معنی‌دار سطح آب پنیر قرار گرفتند. انفیش مصرف سطح مختلف آب پنیر بر وزن بدن اضافه وزن روزانه گردیده، به طوری که اختلاف بین دو روزن به صورت 50 درصد آب پنیر به اضافه وزن بدن گروه شاهد معنی‌دار بود (P<0.05). وزن بدن و اضافه وزن روزانه 100 درصد آب پنیر بنا به شاهد سبب تغییر آزمایشی است. روئند کاهش وزن بدن و اضافه وزن روزانه در کل دوره 73-75 روزگی) در اثر افزایش سطح آب پنیر همانند سایر سنین بود (جدول 4). به طوری که اختلاف وزن بدن و اضافه وزن روزانه گروه‌هایی که 120 درصد آب پنیر دریافت کرده بود (P<0.05) معنی‌دار بود. وزن بدن اضافه وزن روزانه 70 درصد آب پنیر قرار نگرفتند (جدول 5). ضرایب تبدیل غذا تحت تأثیر معنی‌دار سطح آب پنیر قرار گرفتند (P<0.05). وزن بدن اضافه وزن روزانه 50 درصد آب پنیر بنا به شاهد سبب تغییر آزمایشی است.
میانگین‌های هر ستون که دارای حروف غربی‌شده هستند اختلال‌های معنادار است. (P<0.001)

جدول 2: وزن درد، اضطراب وزن، ضربان، ضربان تبیدی غذا و رطوبت بستری در سین 41 روزگری

<table>
<thead>
<tr>
<th>وزن بدن (گرم)</th>
<th>ضربان تبیدی غذا (رشت/غذا)</th>
<th>میزان آب‌پوش (درصد)</th>
<th>اضطراب وزن (گرم در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/8</td>
<td>21/9b</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>6/7</td>
<td>2/8/4ab</td>
<td>22/9a</td>
<td>112/6ab</td>
</tr>
<tr>
<td>6/5</td>
<td>2/8/4ab</td>
<td>22/9a</td>
<td>112/6ab</td>
</tr>
<tr>
<td>6/3</td>
<td>2/8/4ab</td>
<td>22/9a</td>
<td>112/6ab</td>
</tr>
<tr>
<td>5/9</td>
<td>2/8/4ab</td>
<td>22/9a</td>
<td>112/6ab</td>
</tr>
<tr>
<td>5/8</td>
<td>2/8/4ab</td>
<td>22/9a</td>
<td>112/6ab</td>
</tr>
<tr>
<td>5/7</td>
<td>2/8/4ab</td>
<td>22/9a</td>
<td>112/6ab</td>
</tr>
<tr>
<td>5/6</td>
<td>2/8/4ab</td>
<td>22/9a</td>
<td>112/6ab</td>
</tr>
</tbody>
</table>

میانگین‌های هر ستون که دارای حروف غربی‌شده هستند اختلال‌های معنادار است. (P<0.001)

جدول 3: وزن درد، اضطراب وزن، ضربان، ضربان تبیدی غذا و رطوبت بستری در سین 42 روزگری

<table>
<thead>
<tr>
<th>رطوبت بستری (%)</th>
<th>مصرف غذا (رشت/غذا)</th>
<th>وزن بدن (گرم)</th>
<th>اضطراب وزن (گرم در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/7</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>3/6</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>3/5</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>3/4</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>3/3</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>3/2</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>3/1</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
<tr>
<td>3/0</td>
<td>2/8/4</td>
<td>58/4a</td>
<td>122/6f</td>
</tr>
</tbody>
</table>

میانگین‌های هر ستون که دارای حروف غربی‌شده هستند اختلال‌های معنادار است. (P<0.001)

بدنی افراشی سطح آب‌پوش مصرفی (30 و 100) و اضطراب نشان داد و این اختلالات با گروه شاهد معيار داد بودند. چربی حفره افراشی سطح آب‌پوش روند کاهش نشان داد.

معادلات رگرسیون سطحی آب‌پوش در آب و معیارهای انتخاب گیری شده در سین 54 روزگری نشان دادند که مصرف آب‌پوش بیش از 40 درصد باعث کاهش اضطراب و وزن بدن و افزایش مصرف خوراک و رطوبت بستر و ضربان تبیدی غذا گردید. مصرف غذا در اثر مصرف بیش از 40 درصد آب‌پوش کاهش نشان داد (2/34/1922/R^2=0.008) و

*parameters that have been marked with English letters indicate significant differences. (P<0.001)
جدول ۵. وزن بدن، اضافه وزن، مصرف و ضریب تبدیل غذا و رطوبت بستر در سه‌ماهه‌های درآمد ۴۰ روزگر

<table>
<thead>
<tr>
<th>ضریب تبدیل غذا (رشته/غذا)</th>
<th>مصرف غذا (گرم در روز)</th>
<th>اضافه وزن (گرم در روز)</th>
<th>وزن بدن (گرم)</th>
<th>رطوبت بستر (%)</th>
<th>میزان آب پنیر (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۳۷</td>
<td>۱۱۶۰</td>
<td>۵۰/۱۰</td>
<td>۲۳۵۶/۰/۹۹</td>
<td>۶۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱/۳۸</td>
<td>۱۱۷۰</td>
<td>۴۷/۹/ab</td>
<td>۲۳۵۶/۰/۹۹</td>
<td>۱۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱/۴۲</td>
<td>۱۱۸۰</td>
<td>۴۷/۹/ab</td>
<td>۲۳۵۶/۰/۹۹</td>
<td>۲۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱/۴۶</td>
<td>۱۱۹۰</td>
<td>۴۷/۹/ab</td>
<td>۲۳۵۶/۰/۹۹</td>
<td>۳۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲/۵۱</td>
<td>۱۱۵/۹</td>
<td>۴۷/۹/ab</td>
<td>۲۳۵۶/۰/۹۹</td>
<td>۴۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲/۵۲</td>
<td>۱۱۶/۰</td>
<td>۴۷/۹/ab</td>
<td>۲۳۵۶/۰/۹۹</td>
<td>۵۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

انحراف معيار

<table>
<thead>
<tr>
<th>میانگین‌های هر سنتون که دارای حریف غیرشماره‌هستند اختلاف‌تان معنا دار است (۰۰۰۰۱) (p)</th>
</tr>
</thead>
</table>
| ۴۵ روزگر روند مشابه داشت و نشان داد که مقدار آب پنیر در آب به میزان ۴۰ درصد، تأثیر منفی بر وزن بدن و ثبات اضافه وزن روزانه نداشت. همچنین وزن بدن و اضافه وزن روزانه در کل دوره آزمایش تحت تأثیر منفی مصرف آب پنیر نا ۴۰ درصد آب آشامیدنی قرار نگرفتند. مصرف بیشتر آب پنیر باعث کاهش معیار در وزن و اضافه وزن گردید. این روند در تمام سه‌ماهه و نیز کل دوره یکسان بود. این کاهش وزن بدن و اضافه وزن روزانه ناشی از مصرف بیش از حد آب پنیر احتمالا به دلیل افزایش مصرف آب به حاطر افزایش سمن و در نتیجه افزایش

بحث

اثر مصرف آب پنیر از طریق آب آشامیدنی بر عملکرد جهش‌های گوشی...
جدول ۷. تأثیر سطح آب‌پیم‌ در اب پاک‌تری‌های ایلوتوم (اعداد نگارشی مثبت).

<table>
<thead>
<tr>
<th>کل باکتری‌ها</th>
<th>سطح آب‌پیم</th>
<th>لاکتوینیل</th>
<th>انتروپاکتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۹۸۴۶abc</td>
<td>۷/۸۹۵۵</td>
<td>۷/۴۶۹۵a</td>
<td>۶/۸۹۵۵</td>
</tr>
<tr>
<td>۷/۶۸۹۶abc</td>
<td>۷/۶۸۹۶</td>
<td>۷/۴۳۱۴b</td>
<td>۶/۴۳۱۴b</td>
</tr>
<tr>
<td>۷/۶۸۹۶abc</td>
<td>۷/۶۸۹۶</td>
<td>۷/۶۹۱۷abc</td>
<td>۶/۷۶۱۷abc</td>
</tr>
<tr>
<td>۷/۶۸۹۶abc</td>
<td>۷/۶۸۹۶</td>
<td>۷/۶۹۱۷abc</td>
<td>۶/۷۶۱۷abc</td>
</tr>
<tr>
<td>۷/۶۸۹۶abc</td>
<td>۷/۶۸۹۶</td>
<td>۷/۶۹۱۷abc</td>
<td>۶/۷۶۱۷abc</td>
</tr>
</tbody>
</table>

میانگین‌های مثبت در ستون حروف غیرشماره امتیاز اخلاق‌شناسی معی و عوارض معی دار است (۱۰0/۰) (p).[*]

ضریب تبدیل غذا در ۵۴ روژگر و کل دوره، تحت تأثیر مثبت سطح آب‌پیم قرار گرفت. اگرچه مصرف پیشر در ۴۰ درصد آب‌پیم، وزن بدی و عوارض وزن روشن‌های کاهش داد ولی با توجه به عدم تأثیر مثبت سطح آب‌پیم بر ضریب تبدیل غذا می‌توان نتیجه گرفت که مصرف پیشر آب‌پیم از لحاظ اقتصادی بر عملکرد تأثیر منفی ندارد.

نخست نشان می‌دهد که وجود آب‌پیم به تنهایی و بدون حضور پروپیوکسی‌ها نتیجه‌ای است تأثیر مثبت بر جمعیت میکرو‌بی‌های گیاهش به‌اشتی و یافته‌های این آزمایش در توافق با سایر گزارش‌ها (۵) و (۶) می‌بینی تأثیر مثبت مواد اسیدی کننده دستگاه گوارش و یا پروپیوکسی‌ها بر عملکرد طیور نیست. زیرا به نظر می‌رسد برای تأثیر مثبت آب‌پیم، ضریب تبدیل غذا در ۵۴ روژگر و کل دوره تحت تأثیر معنادار سطح آب‌پیم قرار گرفتند و با افزایش سطح آب‌پیم در آب، مصرف غذا و ضریب تبدیل غذا روند افزایشی نشان دادند، ولی اختلاف در ضریب تبدیل در سن ۴۲ روژگر نشان داده‌اند که با گروه‌های معی و عوارض معی دار است (۱۰۰/۰) (p).[*]
استفاده از آب انبیور از طریق آب آشامیدنی بر عملکرد جوجه‌های گوشتی

حضر پروپیوتیک‌ها نیز ضروری است.

وجود 40 درصد آبنیپر در آب، تأثیر منفی بر درصد لاثه نداشت و درصد لاثه با سطح بالاتر آبنیپر کاهش نشان داد که این امر ناشی از تیمار کاهش وزن در سطوح بالاتر آبنیپر است.

وزن انجام در مرصد شمرده گذشته و احتمالاً این فاکتوری را به بیشتر هم چنین برای بسیار تأثیر این ماده بر عملکرد و سلامت طبیعی سپری اثبات نصیحت و ضروری است تحقیقات بیشتری به خصوص در مرصد آن با پروپیوتیک‌ها انجام پذیرد.

سیاست‌گذاری

بیدن و سلبه از حوزه معاونت پرورشی دانشگاه صنعتی اصفهان به خاطر تامین بودجه طرح (کد IAGG ۷۹/۱) سیاست‌گذاری می‌شود. هم‌چنین از همکاری مستقل کارخانه تولید پنیر گلچین واقع در توقف‌های تأمین روزانه آبنیپر و همکاری سرمای خانه اصلاحات برای تایپ گزارش‌های ویژه‌گر شکر و قدردانی می‌گوید.

متابع مورد استفاده

1. حکمتیار، م. ۱۳۷۹. اصول تنها سیر انتشارات مرکز نشر دانشگاهی، تهران.
2. رجایی، م. ۱۳۷۹. خواص آبنیپر و نحوه استفاده از آن. نشریه فنی شماره ۸۸. مؤسسه تحقيقات دامپروری، خیبر آباد کرج.
3. میرطلاوی فیاضی، ح. و. صنعتی. شرکت بهداشتی ایران. ۱۳۷۸. از تیمار چه می‌دانید؟ انتشارات ماهی، دانشگاه تهران.