مقاومت کششی، مقاومت ویژه و توان مالبندی مورد نیاز گاو آهن قلمی (چیزل) در سطوح متفاوت رطوبت خاک و عمق شخم

محمدمقصودی و سمیر رضا اشرفی‌زاده

چکیده
تأثیر سه محدوده از رطوبت خاک (0-5، 10-15 و 20-25 سانتی‌متر) بر مقاومت کششی، مقاومت ویژه و توان مالبندی مورد نیاز گاو آهن قلمی 7 شاخه‌، در یک خاک لری رسی با استفاده از آزمایش گوناگون در قالب طرح بلولای کاملاً تصادفی بررسی گردید. تأثیر عمق شخم بر سه پارامتر فوق مدتی دار بود، به طوری که مقاومت کششی و توان مالبندی، هر دو با افزایش عمق شخم به‌طور ترکیبی کاهش یافتند و مقاومت ویژه با عمق به‌طور چشی و کاهش داشت. رطوبت خاک در محدوده‌های مختلف مورد مطالعه باعث تغییرات متفاوتی در مقاومت ویژه تولید شد. این نتایج نشان می‌دهد که در آزمایش‌های دیگر، تأثیر عمق شخم بر مقاومت ویژه تولید شده از یک خاک مورد مطالعه به توجه قرار گیرد.

مقدمه
بررسی شاخ مقاله مورد نظر در خاک، قبل و بعد از عملیات شخم، حاکی از وجود سختی‌ای نیست که در عمق 20-30 سانتی‌متر از سطح خاک گروه که با اندازه‌گیری شخم بر روی شد، این سختی نمایده شد. جایی که مقداری از زیر عملیات‌های زراعی انجام شده‌باشد، حاکی از تأثیر عمق شخم در تغییرات مقاومت ویژه گاو از آهن قلمی است.

واژه‌های کلیدی: خاک وری، گاو آهن قلمی (چیزل)، مقاومت کششی، مقاومت ویژه، توان مالبندی.
نموده و‌ها می‌دهد. این وسیله‌زمای به‌تنهایی کارآمدی از خودشان می‌دهد که نسبت خشک و سخت باشد. در این شرایط وسیله پس از عبور، طولی ناهموار را به‌جای خواهد گذاشته که ضمن حدود کدین تبخیر، طولی نفرد آب به درون خاک را به‌هم پیش‌خیلی خورا، قصد خارجی می‌رود یا به‌جای خودشان می‌دهد. این افزایش رطوبت، ملکه‌ای آب با جمع بر سطح ذرات خاک، خاصیت به‌هم‌چسباندن آنها را کاهش داده و خاصیت چسبندگی در امکان پاسخ‌ریزی گام‌های مراحل و زیرشاخی کشاورزی را به‌جای مجموعه‌بندی سطح خاک قابل کشت در معرض سیال‌بندی فشار قرار گرفته و به‌جای این سرمایه‌وری ملی دچار اندام می‌گردد. در میان علل و عوامل مؤثر در این روند تخریبی، استفاده از اجزاء خاک و روزی نامناسب نقش مهم‌تری ایفا می‌نماید. گاه آهن‌برداران رایگ ترین و سیل‌پدیدیست که برای خشک‌کردن کشاورزی مراعات می‌کنند، از این پاره‌برداری اندازه‌گیری کنندگی نسبت زیاد به‌علت برگرداننمودن کامل جزئیات و حذف پوشش گیاهی، اعمال‌خاک را در معرض بسیاری قرار داده، سپس این می‌گردد که این رطوبت‌زدایی های هزاران بیکاری به سرعت کاهش یابد. ایجاده‌ای های خشک و غیرقابل نفوذ برای آب و روش‌گیری زراعی در این عمل منابع خشک را در حداقل ممکن خماید، از این‌جای مشکلات این نوع گاوانه‌ها یا بسیاری شکل‌دادن‌ها خاصاً در مناطق خشک و نیمه‌خشک جنوب، موجب گردیده تا از سال‌ها قبل تحقیقات قسط‌رده ای در زمینه کاربرد روش‌های خاکری و حفاظتی ای اجرای گذشته شود. از جمله نتایج این تحقیقات پیداشید این‌چنین گاه آهن ولی، یا به‌کسانی وسیله‌ای که در این میان می‌گیرد قابل اعمال در سایه و وضعیت بیشتری پربرکردگر است. تنها می‌توانند به‌ویژه که ماهیت افزایش مراد نیاز اجزاء خاک و روزی، نتیجه‌گیری استفاده طراحان و کارشناسان مکاتب‌نامه و

1- Conservation
2- Paraplow
3- Beantex
4- Cohesion
5- Clay loam
6- Silt loam
7- Loamy sand
مقاومت کششی، متقاونت و توکان مالبنی مورد نیاز گاو آهن تلیم

گاو آهن مورد استفاده، یک دستگاه گاو آهن قلمی نوع سوار شونده را به‌ساده‌تر و با دقت‌های لازم به‌عنوان یک سانسورت آلکین، پیش‌بینی کننده قرار گرفته است. زیرا مکانیکی ماشین‌های کشاورزی قرار گیرد.

مواد و روش‌ها

آزمایش در مرزه‌های محصولات دانشکده کشاورزی دانشگاه شیراز (پایگاه) واقع در ۱۶ کیلومتری شمال غرب شیراز اجرا گردید. جهت آن ها، محققان بوده که در زمین مورد آزمایش کشت شده و پس از برداشت آن با کمیاب‌ای، کاه و گلش به جای مانده توسط مانند به‌عنوان علوفه جمع آوری و بایران‌اند. آن یک باری دام پاکسازی شده بود. تا زمان انجام آزمایش در خرداد ۱۳۸۴، حدود دو سال از آماده‌امیده زمین می‌گذشته، لنگ خاک لوم (یکی/۵/۴۰/۰،۰۳/۳/۵/۲/۵/۲/۵/۳) و شب زمین در دو جهت طولی و عرضی در دو هزار بود.

در این تحقیق آزمایش فاکتوریل در قالب طرح بلوک‌های کاملاً تصادفی به یک تیمار (۳ رطوبت خاک × ۳ عضو شمش) و در سه تکرار استفاده گردید. در این آزمون تأثیر دو متغیر مستقل، شاخص رطوبت خاک در سه محدوده ۰-۶، ۶-۱۲ و ۱۲-۱۸ درصد و پنجم درصد ضخامت در سه طبقه ۲۰، ۳۵ و ۵۰ سانتی‌متر، متقاونت کششی گاو آهن قلمی بر عناوین متغیر وایه بررسی گردید.

در ارتباط با محدوده‌های رطوبتی فوق هک تهدید به و در طرف نسبتاً محدوده (۳۰-۶۰ درصد) استاندارد می‌گردد. در نهایت این پژوهش، اصول‌آگرایی گاو آهن قلمی در رطوبت بالا (پانچ ۱۴ درصد)، متغیر بخشک خاک، که هدف اصلی شخم می‌باشد، تغییر داده و با این طرف مبتنی بر تغییرات نیاز به‌عنوان گزینه‌ها و ماتریکس داشته است. این آزمایش و گوناگونی در اطراف مصب عضو تری در رنگ‌آمیزی، مقدار نیرو باید به‌طور معمول گزارش گرایش داشته است. این امر با توجه به نتایج ذکر داده شده است،و در نظر گرفته شده بود که تغییرات نحوه ورود و دیگرگونه را کنترل کرده و در محدوده عضو کافی‌تیته های گاو آهن قلمی رطوبت خاک معمولی از ۸ درصد می‌تواند نمایه‌ای باشد.
شکل ۱ - اندازه‌گیری مقاومت کششی گاومیدان قلمی سوار گوشندگان با استفاده از روش دو تراکتوری و دینامومتر مالندی

میانگین‌های مقادیر ثبت شده توسط دینامومتر در مراحل مختلف بار و کشش بدون بار به عنوان مقاومت کششی گاومیدان قلمی در هر کرت منظور می‌گردد.

پس از استخراج مقادیر مقاومت کششی گاومیدان قلمی از منحنی‌های ترسرش شده توسط دینامومتر و محاسبه ضریب بالشی تراکتور در حال کشش با بار، با تقابل میانگین ضریب بالشی از تراکتور در زمان ثبت شده به وسیله کرونومتر، توان مالندی صرف شده در هر کرت با استفاده از فرمول (۱) محاسبه می‌گردد.

\[D_{bp} = \frac{FS}{V^3/2} \]

در این رابطه:
- دب = توان مالن‌دی مورد نیاز گاومیدان قلمی
- بر حسب دب = kW
- مقاومت کششی گاومیدان قلمی جیزل بر حسب
- F = kN
- سرعت پیشرفته تراکتور در حال شکم بر حسب
- S = km/h
- مقاومت ویژه گاومیدان قلمی در هر کرت، بر حسب نیوتن
- Ds = F / bd

براساس می‌توان با استفاده از فرمول (۲) محاسبه گردید.

در این رابطه:
- مقاومت کششی گاومیدان قلمی بر حسب نیوتن
- b = عرض گاومیدان قلمی بر حسب سانتی‌متر
- d = عمق گاومیدان قلمی بر حسب سانتی‌متر

همچنین به منظور تعیین سرعت دقیق پیشرفته تراکتور در هر کرت، زمان پیمودن این مسیر ۳۰ متری در دو کرونومتر ثبت می‌گردد. بر سریع‌ترین مسیر ۳۰ متری دیگر را طی می‌نمودند تا در طول آن دینامومتر نیروی مقاومت غلافی تراکتور حامل گاومیدان قلمی (کشش بدون بار) را ثبت نماید. پس از امر انتهای هر کرت به منظور گردیدن تراکتورها، جهت بازگشت به ابتدا کردن باید در نظر گرفته شده بود. تفاصل

۱- Specific draft
۲- Cone penetrometer
جدول 1- میانگین مربیات اثرات اصلی و متقابل رطوبت خاک و عمق شیم بر مقاومت کششی، مقاومت ویژه و چرخ انرژی مورد نیاز گاز آهن تلیمی (چهل حلقه).

<table>
<thead>
<tr>
<th>مجموع مربیات</th>
<th>درجات آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>توان ملایمی</td>
<td>مقاومت ویژه</td>
<td>مقاومت کششی</td>
</tr>
<tr>
<td>127/69*</td>
<td>0/211ns</td>
<td>3/242ns</td>
</tr>
<tr>
<td>77/85*</td>
<td>1/764**</td>
<td>28/888**</td>
</tr>
<tr>
<td>7/68**</td>
<td>0/339ns</td>
<td></td>
</tr>
<tr>
<td>1/56</td>
<td>0/11</td>
<td>0/46</td>
</tr>
<tr>
<td>2/10</td>
<td>0/20</td>
<td>1/77</td>
</tr>
</tbody>
</table>

نتایج نشان می‌دهد که تغییر رطوبت خاک در محدوده مورد مطالعه، تاثیری بر مقاومت کششی و مقاومت ویژه نداشته ولی تاثیر آن بر توان ملایمی نشان دهنده احتمال بوده که 95 درصد معنی‌دار می‌باشد. این در حالی است که تغییر عمق شیم بر روی هر سه عامل مورد مطالعه با اختلال نسبی 99 درصد مؤثر است ولی هیچگونه اثرات متقابلی بین عمق شیم و رطوبت خاک مشاهده نمی‌گردد.

مقاومه میانگین‌های مقاومت کششی در سطوح مختلف عمق شیم و رطوبت خاک با استفاده از آزمون چند دامنه ای دانکی (جدول 3) نشان می‌دهد که مقاومت کششی با افزایش عمق شیم افزایش معنی‌دار دارد. این نتایج نشان می‌دهد که با افزایش رطوبت خاک تغییر معنی‌دار داری نشان می‌دهد. میانگین‌های متوسط در آخرین سطح و أخرین ردیف جدول 2 به ترتیب میانگین‌های هر دو سطح از جدول هستند که در حقیقت میانگین تغییرات مقاومت کششی در سطوح مختلف رطوبت خاک و یا عمق شیم می‌باشند. این میانگین‌ها در سطح 45 با یکدیگر مقایسه کرده‌اند. یا وجود هر گونه تفاوت احتمالی بین آنها تشریح داده شود. اتخاذ این روش در انتخاب سطح احتمالی بین سه گروه می‌تواند مقایسه بین مقاومت ویژه و توان ملایمی گاز آهن قلمی در جدول 1 ارائه گردد.

1- Cone index 2- Duncan's Multiple range test (DMRT)
جدول ۲- مقایسه میانگین‌های مقاامت کششی گار آهن لقمی بر حسب کیلوبیون در سطوح مختلف عمق شخم و رطوبت خاک

<table>
<thead>
<tr>
<th>میانگین</th>
<th>عمق شخم (سانتیمتر)</th>
<th>رطوبت خاک (% وزن خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۲۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۲۵/۶۶</td>
<td>۱۵/۸۴</td>
<td>۱۵/۷۰</td>
</tr>
<tr>
<td>۲۰/۶۶</td>
<td>۱۵/۳۸</td>
<td>۱۵/۴۵</td>
</tr>
<tr>
<td>۱۵/۰۰</td>
<td>۱۵/۴۵</td>
<td>۱۵/۴۵</td>
</tr>
<tr>
<td>میانگین</td>
<td>۱۵/۰۰</td>
<td>۱۴/۶۶</td>
</tr>
</tbody>
</table>

۱: میانگین‌هایی که در هر ستون با رنگی که با حروف مشترک نشان داده شده‌اند در سطح ۱/۰ دارای اختلاف نمی‌باشند (آزمون دانکن).

۲: میانگین‌هایی (X̄) که با حروف مشترک نشان داده شده‌اند در سطح ۵/۰ دارای اختلاف نمی‌باشند (آزمون دانکن).

شکل ۲- تغییرات میانگین مقاومت کششی در اعماق مختلف عمق شخم در هر یک از سطوح رطوبت خاک

ترتبیه حفظ گردیده است. تغییرات مقاومت کششی به ازای تغییر عمق شخم، برای هر یک از سطوح رطوبت مورد مطالعه توسط نمودارهای شکل ۲ نشان داده شده است. با توجه به معنی دار بودن تغییرات مقاومت کششی در سطوح مختلف رطوبت خاک، نمودار میانگین مقاومت ها (X̄)، که به صورت نموداری تقریباً خطی است، می‌تواند نشان دهنده روند کلی تغییر مقاومت کششی با عمق شخم باشد. این نتایج با یافته‌ها های تعودیدی از محققین از
جدول 3- مقایسه میانگینهای مقاومت ویژه گاز آهن قلمی بر حسب نیوت سانتی‌متر معی در سطوح مختلف عمق شخم و رطوبت خاک

<table>
<thead>
<tr>
<th>عمق شخم (سانتی‌متر)</th>
<th>رطوبت خاک (% وزن خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین \bar{X} 25</td>
<td>4/23b 3/20ac 4/16a 8-10</td>
</tr>
<tr>
<td></td>
<td>3/62ab 3/61ab 4/61ab 10-12</td>
</tr>
<tr>
<td></td>
<td>4/16a 5/13 12-14</td>
</tr>
</tbody>
</table>
| میانگین (\bar{X}) | 4/17a 4/17a | 1- میانگین‌هایی که در هر ستون با رنگ حجاری دارند مشترک نشان داده شده‌اند در سطح 1% دارای اختلاف نمی‌باشند (آزمون دانتیک).

جدول 4- مقایسه میانگینهای توان مالبندی مورد نیاز گاز آهن قلمی بر حسب کیلووات در سطوح مختلف عمق شخم و رطوبت خاک

<table>
<thead>
<tr>
<th>عمق شخم (سانتی‌متر)</th>
<th>رطوبت خاک (% وزن خشک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین \bar{X} 25</td>
<td>21/57a 23/56a 22/49a 8-10</td>
</tr>
<tr>
<td></td>
<td>19/33b 22/56b 21/49b 10-12</td>
</tr>
<tr>
<td></td>
<td>21/10a 22/57a 12-14</td>
</tr>
</tbody>
</table>
| میانگین (\bar{X}) | 21/57a 17/53b | 1- میانگین‌هایی که در هر ستون با رنگ حجاری دارند مشترک نشان داده‌اند در سطح 1% دارای اختلاف نمی‌باشند (آزمون دانتیک).

نکته: مقایسه میانگینهای توان مالبندی مورد نیاز گاز آهن قلمی در سطوح مختلف عمق شخم و رطوبت خاک (جدول 4) نشان می‌دهد که با افزایش عمق شخم توان مالبندی مورد نیاز به طور معنی‌داری افزایش می‌یابد. همچنین در محدوده رطوبت (m2) نسبت به محدوده شکل $\frac{m}{2}$ در 10-8 رشد، توان مالبندی در این رطوبت (m2) نسبت به محدوده شکل $\frac{m}{2}$ 10-8 رشد، آن را در شکل 4 به وضوح می‌پذیرد و توان ناشی از اثر تجمع مکانیکی های آب بر سطح ذرات خاک و کاهش نیروهای همودینامیکی بین آنها در این
شکل 4- تغییرات شاخص مقاومت به تغییر در خاک نسبت به عمق قبل و بعد از اجرای عملیات خاک ورزی توسط گانه قلمی

مدفوعه رطوبت که به خاک خاصیت تردی می‌دهد، دانست.

افزایش مقدار مولکولی با انرژی رطوبت خاک (ندو‌ور) نسبت به 2×10 mho × m 3 می‌تواند ناشی از تأثیر نیروهای دگرگونی بین خاک و تغییرات نرخ چرخت انرژی از افزایش رطوبت و همچنین کاهش خاصیت تردی و ظهور رفتار خمیری در خاک باشد.

در شکل 5 نمودار تغییرات شاخص مقاومت به تغییر در خاک نسبت به عمق قبل و بعد از اجرای عملیات خاک ورزی در کار نمودار میانگین این شاخص پس از اجرای تیمارهای خاک ورزی ترسیم گردیده است. نمودار شاخص مقاومت قبل از شحم حاکی از وجود لایه آتی سختی محدود پس از ۵۰ سانتی‌متری می‌باشد. مقاومت تغییر در این محدوده می‌باشد، مقاومت نفوذ در این محدوده، مقادیر بالاتر از ۲۰۰ کیلو پاسکال را نشان می‌دهد. پوهشگران کاهش شدید رشد ریشه و میزان محصول را در شرایطی که شاخص مقاومت پوزرگر از ۲۰۰ کیلو پاسکال پا به گزارش نموده‌اند (۰ و ۱۹). نمودار شاخص مقاومت نفوذ در خاک پس از اجرای تیمارهای خاک ورزی کاهش قابل توجه مقاومت خاک تا عمق حدود ۲۰ سانتی‌متری با کیلایی مقاومت تیمارهای این آزمایش ایست که نشان می‌دهد افزایش میانگین مقاومت نفوذ پس از اجرای خاک ورزی نسبت به قبل آن در عمق بیش از ۲۰ سانتی‌متری می‌تواند ناشی از فشارگر و تراکم خاک در زیر عمق شحم در اثر ابعاد

شکل 5- تغییرات شاخص معادل نزدیک به نیروهای دگرگونی آن در آزمایش

۱- Adhesion ۲- Plasticity
جدول 5 - مقایسه نوع و شرایط خاک، ابعاد شخم و نتایج آزمایش مقاومت کششی گاوان ثرمی در تحقیق حاضر با سایر تحقیقات مشابه

<table>
<thead>
<tr>
<th>شماره شخم</th>
<th>شکم شکم</th>
<th>تغییر</th>
<th>چخلین</th>
<th>مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/8/5</td>
<td>7/8</td>
<td>7/3/2</td>
<td>7/8/3</td>
<td>7/2/3</td>
</tr>
<tr>
<td>8/5/5</td>
<td>8/5</td>
<td>3/8/7</td>
<td>3/8/7</td>
<td>3/8/7</td>
</tr>
<tr>
<td>9/1/2</td>
<td>9/1/2</td>
<td>9/1/2</td>
<td>9/1/2</td>
<td>9/1/2</td>
</tr>
<tr>
<td>10/5/6</td>
<td>10/5/6</td>
<td>10/5/6</td>
<td>10/5/6</td>
<td>10/5/6</td>
</tr>
</tbody>
</table>

جدول 6 - مقایسه میانگین‌های مقاومت واحده گاوان ثرمی در عمق شکم 20 سانتیمتر

<table>
<thead>
<tr>
<th>رطوبت خاک (%)</th>
<th>مقاومت واحده گاوان ثرمی برگرداندار / قلمی (kN/m)</th>
<th>برگرداندار (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/5</td>
<td>7/5</td>
<td>7/5</td>
</tr>
<tr>
<td>8/6</td>
<td>8/6</td>
<td>8/6</td>
</tr>
<tr>
<td>9/0</td>
<td>9/0</td>
<td>9/0</td>
</tr>
<tr>
<td>10/25</td>
<td>10/25</td>
<td>10/25</td>
</tr>
</tbody>
</table>

میانگین
سپاسگزاری
این مقاله حاصل تجربه بخشی از طرح پژوهشی دانشگاه شیراز تحت عنوان "ازرسایی مقاومت کششی و توان مالبندی مورد نیاز ادوات خاک وزری" می‌باشد که به منظور انجام آزمایشات در سرعت متوسط 4/25 کیلومتر در ساعت و گاوهای آن قلمی با سرعت متوسط 5/25 کیلومتر در ساعت انجام گردیده و مقاومت کششی گاوهای بزرگ‌پرداز نابع درجه 2 و گاوهای آن قلمی مورد استفاده قرار گرفته‌اند.

منابع مورد استفاده
1- شفیعی، س. 1374. قفسه‌ای خاک وزری. مرکز نشر دانشگاهی، تهران، 216 صفحه.

