اثرهای شوری آب آبیاری و کاربرد روي بر حلالیت کادمیم خاک و غلظت آن در گندم

چکیده

یک آزمایش فاکتوریل با دو سطح روي (صفر و 1/5 میلی گرم در کیلوگرم خاک)، نش سطح شوری آب آبیاری (صفر، 20، 40 و 180 میلی‌مولار کلسیم اسید و 100 میلی‌مولار نیترات سدیم) با به تدریج افزایش کاربردی روش گندم، رقم روش می‌روشی (Roshan) در داخل گل‌بختنها کشوری گردید. به مناسب برداشت گیاهی، غلظت روي و کادمیم در انفاده‌های هوايی افزایش کرده. لیاقتی تخمین زده شد.

گونه‌های مختلف روي و کادمیم محول خاک با استفاده از نرم‌افزار MINTEQA2 پیش‌بینی شد. در دستورالعمل‌های آزمایشی کلسیم اسید باعث افزایش غلظت کادمیم خاک و نیز کادمیم‌ها بر ضریب حل شده در محلول خاک شد. در CdCl\textsubscript{2} و Cd2+ محلول خاک شد. در حالی که شوری تاثیر سدیم نسبتی بر غلظت کادمیم محول خاک نداشت. غلظت کادمیم‌ها با غلظت کادمیم‌های مختلف محول خاک در محیط‌های مبتنی بر غلظت روي محلول خاک مبتنی متفاوت بود. مصرف سولفات در مواقعی که محیط کادمیم و افزایش غلظت روي در گیاه کفرید. نتایج این آزمایش نشان داد که در محیط‌های مختلف محول خاک و جلب آن به وسیله کیاها دارد.

واژه‌های کلیدی: کادمیم، روي، شوری، گندم.

مقدمه

شوروی آبیاری خاک با فلزات سنگین، دو مشکل اساسی در بسیاری از مناطق خشک که نیمه خشک جهان هستند (11). آلودگی خاک و آب به فلزات سنگین، ضمن کاهش عملکرد و کیفیت محصول، پایداری تولید کشاورزی و سلامت افراد

1. به ترتیب دانشجوی دکتری و استادیار حاکم‌شوری، دانشکده کشاورزی، دانشکده صنعتی اصفهان
2. استاد حاکم‌شوری، دانشکده کشاورزی، دانشگاه شیراز

53
در میان فلزات سنتی، کادمیم در همه زمان و هر گاه استر، به راحتی جذب ریشه گیاه شده و می‌توان آن برای گیاه‌ها تا 20 برای پیشرفت سلول‌های سنتی است (2). ورود کادمیم به زنگ‌های غذا‌یابی و مصرف آن به وسیله انسان و دام‌های مضر است (16).

خاک منع اصلی ورود کادمیم به داخل گیاه است. به طور کلی، قابلیت استفاده کادمیم خاک تحت تأثیر مقدار و نوع رس، مقدار ماده آلی، مقدار و نوع رس، مربوطه و رفتار فلزات است (2).

کادمیم از منابع مختلف وارد خاک می‌شود ولی در زمین‌های کشاورزی، کادمیم موجود در کودهای سفرا، کیک از مهم‌ترین منابع آلودگی خاک با این عنصر می‌باشد (1). نقص کودهای سفرا، به آلودگی خاک‌زایی با کادمیم، در سیستم از منابع گذشته، 20.15.14 و 19. مقدار قابل کاهش کادمیم به‌صورت ناخالصی در کودهای سیمانی‌ساز در خاک می‌شود و جذب داشتن که منشا آن از سلک معناد است (1) در طی سه دهه گذشته، هیچ نظریه بر رشد، توزیع و مصرف کودهای سیمانی‌ساز در ایران نبوده و همین امر موجب شده سیستان‌یا متوقف قابل توجه فسفر و کادمیم وارد خاکی‌های زراعی و باغ‌کش کشور شود (1). یک ماده‌ای مصرف پی‌روی کودهای سفرا، کم‌ترین مقدار و نتیجه کادمیم (یک نقص غذا) و نتیجه کادمیم (یک نقص سبزی) در فناوری گیاهی است (2).

با وجود این که مهم‌ترین عامل کنترل غلظت کادمیم خاک محاسبه شده و به نظر می‌رسد در خاک‌های آهکی و قلبی‌سان، غلظت کادمیم محلول خاک ناپذیر باند و نتایج بررسی‌های متعددی نشان داده است که نقش شوری در
مواد و روش‌ها
این آزمایش در گلخانه‌های تحقیقاتی بسته به استان در آن ساعت می‌باشد.

آزمایش‌های به‌صورت فاکتوریل ۱۲۰×۲۰۰ در فضای رنگ و سطح تیکه انجام شد. ۱/۶ میلی‌گرم رون از منبع سلول‌های رون در کیلوگرم هواک و پنج سطح تیکه آب‌هایی (شامل: ۵۰، ۱۰۰ و ۱۸۰ میلی‌مولار کلرید سدیم و ۱۲۰ میلی‌مولار نیترات سدیم) در سه تکرار اجرا شد. این مقادیر شامل تغییرات تیکه در اراضی زراعی استان قم انتخاب شد. برای تعیین نقش تنش اسپرسی تیکه و قدرت بهبود در جذب کادمیم به وسیله گیاه، از یک سطح تیکه نیترات سدیم نیز استفاده گردید. برای اجرای آزمایشی از خاک سطحی (سانتی‌متری) یکی از اراضی زراعی استان قم دارای مقدار بالای فسفر بود، نمونه‌برداری شد. در طی ۲۰ سال گذشته، مقادیر بسیار بالای کودهای فسفری در این خاک استفاده شده است. نتایج تجزیه بی‌بی‌گی‌های این خاک در جدول ۱ آورده شده است. پس از عبور خاک از یک کیلوگرم خاک در هر گلدان قرار داده شد. سپس بر اساس نتایج تجزیه خاک، ۱۰۰ میلی‌گرم نیترات از منبع اوره و ۵۰ میلی‌گرم پاتاسیم از منبع سلول‌های کلسیم بطور بکسیان به هر یک از گلدان‌ها اضافه شد. با چنین به این باور، فسفر بوده و کود فسفری توصیه شد. همچنین به نیاز‌های گلدان‌ها (۱۵ گلدان) ۳/۵ میلی‌گرم رون در کیلوگرم از منبع سلول‌های رون هر متر بزرگ گلدان، رشته تیکه‌ای (Triticum cv. Roushan) در داخل هر گلدان کاشته شد. آب آب‌هایی گلدان‌ها ۱/۵ گلدان و ۵ روش مورد نظر و در نظر گرفته شد. نتایج و درصد ارتباط کازیا داده شد.
جدول 1. برخی ویژگی‌های خاک قبل از آزمایش

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7.8</td>
</tr>
</tbody>
</table>

قابلیت هیدرولیک، دمای زمین بر متر

عصاره اشاع

کربنات کلسیم معادل

درصد

سیلت

درصد

فلزات

سیر فصل قبل استفاده

میلی گرم در کیلو گرم

پتاسیم قبل استفاده

میلی گرم در کیلو گرم

روی بال عصاره گیری

میلی گرم در کیلو گرم

EDTA

کادمیم قبل عصاره گیری

EDTA

با

میلی گرم در کیلو گرم

روظا: 1. كه نظر میرسد روی، ضمن کاهش اثرات زیان‌آور و غلظت بالایی نمک، میزان تحلیل به شوری گیاه را افزایش داده است.

افراشی غلظت کلسیم سدیم را می‌باشد افزایش معنی‌دار (در سطح 5 درصد) غلظت کادمیم در اندازه‌های هواپیمایی گیاه، مناسب با سطح شوری کلسیم سدیم کرید. (جدول 2). افزایش غلظت کادمیم گیاه در تیمار 120 میلی‌مولار نیتروس سدیم معنی‌دار (در سطح 5 درصد) نبود.

پرستاری: به طور معنی‌داری (در سطح 5 درصد) می‌باشد در افزایش سدیم به کاهش معنی‌دار (در سطح 5 درصد) در اندازه‌های هواپیمایی گیاه گردن (جدول 2) کاهش غلظت روی در گیاه، مناسب با غلظت کلسیم سدیم در آب آبیاری بو. همچنین تأثیر نیتروس سدیم بر غلظت روی در اندازه‌های هواپیمایی کاهش معنی‌دار نبود.

مصرف سولفات روی سبب کاهش غلظت کادمیم و افزایش روی در اندازه‌های هواپیمایی گردن (جدول 2). در واقع با به کار گیری روی اثر شوری در افزایش جذب کادمیم و کاهش جذب روی به وسیله گیاه کاهش یافته.

افراشی شوری سبب افزایش غلظت سدیم در گیاه شده، و
جدول ۲۴. اثر متقابل شوری آب آبیاری و روی مصرفی بر غلظت کادمیم و روی اندازه‌های هواپیم‌گذم

<table>
<thead>
<tr>
<th>سطح شوری</th>
<th>گاز (mg kg⁻¹)</th>
<th>کادمیم (mM)</th>
<th>کسری (mM)</th>
<th>گاز (mg kg⁻¹)</th>
<th>کادمیم (mM)</th>
<th>کسری (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون روى</td>
<td>صفر</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>صفر</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>۲۰/۲۵</td>
<td>۰/۲۵</td>
<td>۰/۳۵</td>
<td>۰/۳۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
</tr>
<tr>
<td>۳۰/۲۵</td>
<td>۰/۳۵</td>
<td>۰/۴۵</td>
<td>۰/۴۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
</tr>
<tr>
<td>۴۰/۲۵</td>
<td>۰/۴۵</td>
<td>۰/۵۵</td>
<td>۰/۵۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
</tr>
<tr>
<td>۵۰/۲۵</td>
<td>۰/۵۵</td>
<td>۰/۶۵</td>
<td>۰/۶۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
</tr>
</tbody>
</table>

** در هر سر، مقادیر های دارای جدول حروف یکسان از لحاظ آماری در سطح

درصد فاقد اختلاف معنی‌دار هستند.

تأثیر معنی‌داری بر غلظت گیاه نداشت. بنابراین احتمال می‌رود که کلرید سدیم بر قابلیت استفاده کادمیم و انتقالش شدن از گیاه به دلیل تنش کمپلس‌ها کار و کادمیم (CdCl₂)۲۰ درصد مولکول شاخ یافته. بنابراین ساز و کار باید پویا کادمیم تثبیت شده در سطح ذرات شاخ به وسیله سدیم در افزایش غلظت کادمیم محلول شاخ به تأثیر است. (۸۵). همچنین برخی محققین (CdCl₂)۲۰ کربنات کادمیم گیاه نبوده و سبب نمی‌شود که لازم از کربنات کادمیم در گیاه شد (جدول ۲۴). افزایش غلظت کادمیم در گیاه می‌تواند ناشی از افزایش محلول شاخ کادمیم در سیستم را کاهش می‌دهد یا حتی کاهش شده است. (۸۵ و ۱۹). همچنین نتایج ارائه شده در جدول ۲ نشان می‌دهد که تیمار ۱۴۰ میلی‌متر نیترات سدیم، تأثیر معنی‌داری دارد در افزایش غلظت کادمیم گیاه نداشته. می‌توان نتیجه گرفت نشان امروزی، شوری ناشی از کلرید سدیم آب آبیاری، با افزایش غلظت کادمیم محلول شاخ گیاه نبوده و سبب کادمیم از گیاه ناکام بر اساس روشی داد. در حالی که نتیجه ۱۴۰ میلی‌متر نیترات سدیم،
جدول ۴ اثر متابولیک شوری آب آبیاری و روش مصرفی بر غلظت گونه‌های مختلف کادمیم عصاره اشغال خاک

<table>
<thead>
<tr>
<th>شیمیایی نامه</th>
<th>غلظت (mM)</th>
<th>غلظت (mgL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdCl₂</td>
<td>CdCl⁺</td>
<td>Cd²⁺</td>
</tr>
<tr>
<td>۱/۱ D</td>
<td>۱/۹ D</td>
<td>۸/۱ B</td>
</tr>
<tr>
<td>۱/۳ C</td>
<td>۱/۲/۲ C</td>
<td>۱۰/۵ B</td>
</tr>
<tr>
<td>۱/۰/۲ C</td>
<td>۱۰/۴ A</td>
<td>۹/۴ B</td>
</tr>
<tr>
<td>۱/۰/۵ A</td>
<td>۵/۰/۵ A</td>
<td>۱۲/۸ B</td>
</tr>
<tr>
<td>۱/۱ D</td>
<td>۱/۵ D</td>
<td>۷/۸ B</td>
</tr>
<tr>
<td>۱/۳ C</td>
<td>۱/۲/۲ C</td>
<td>۱۰/۵ B</td>
</tr>
<tr>
<td>۱/۰/۵ A</td>
<td>۱۰/۴ A</td>
<td>۹/۴ B</td>
</tr>
<tr>
<td>۱/۰/۵ C</td>
<td>۵/۰/۵ A</td>
<td>۱۲/۸ B</td>
</tr>
</tbody>
</table>

دی ۴ در هر سه نمونه یاده در دارای جریان یکان از حالت آماده در سطح ۴ درصد قادف اختلاف معمای دار هستند.

طلغت کادمیم کل محلول خاک بوده که با استفاده از دستگاه جذب انتقال عمیق اندازه‌گیری شده است.

طلغت گونه‌های متنوع کادمیم

می‌باید در مجموع می‌توان گفت بیان کردن باعث افزایش پروپژ و قابلیت جذب کادمیم خاک، برخی از پژوهشگران نیز افزایش غلظت کادمیم در گیاه را مستقل از اثر اسپری بکر گزارش کرده‌اند (۱۸ و ۱۹)

افزایش وزن ماده خشک گندم در اثر مصرف سولفات روي، تیتان احتمال این است که افزایش غلظت کادمیم در گیاه را باعث افزایش ناهنجاری‌های میان و مقدار زیادی کودهای فسفات با ناکامی کادمیم (پیوند به این مدل است) یافته شده است.

مانند شیبانی و افرادی (۱۸) نشان دادند انباشت افزایش غلاظت کادمیم در گیاه تعدادی از گیاهان به‌ویژه گیاهان افزایش کودهای گازی در برابر شوری ۲۳ (۸) گزارش کرده‌اند.

یکی از عوامل گردیده‌های فیزیکی و شیمیایی روي بکر گیاه، رابطه مثبتی موجود بین این دو عامل (۹) با مصرف سولفات روي، ضمن کاهش جذب، می‌تواند کیفیت گذایی گندم، عامل‌کره دانه نیز افزایش

منابع مورد استفاده

۱. یعقوبی، ۱۳۷۸. میوه‌ی‌بر نتایج حاصل از کاربرد کودهای فسفات بر کادمیم خاک و گیاه و بررسی میزان کادمیم در کودهای وارداتی. مؤسسه تحقیقات خاک و آب، نشریه ۷۰، تهران، ایران.

۲. یعقوبی، غ. و. و. م. ملکوتی. ۱۳۷۹. اثرات روي و کادمیم بر غلاظت عناصر و ترکیب شیمیایی دانه گندم. کیهان آب و خاک، ویژه نامه کشاورزی پایدار، مؤسسه تحقیقات خاک و آب، نشریه ۷۰، (۹۸): ۴۳-۵۰.
3. خوش گفتاری، ج، م. ر. بیلانی و ز. خادمی. 1380. تأثیر مصرف سولفات روزی بر رشد و عملکرد گندم در اراضی شهر بایر اصلاح شده. هفتمین کنگره علوم خاک و شهر کرد.
4. خوش گفتاری، ج، م. ر. بیلانی و ز. خادمی. 1381. تعییدی معدنی سبزیجات و محصولات باغی در شرایط شهر وارد کشاورزی.
5. ملکوتی، م. ج. 1377. رابطه بین مصرف کودهای فسفات و افزایش تولیدات کشاورزی در کشور. نشریه فنی، 1. نشریه علمی پژوهشی مؤسسه تحقیقات خاک و آب، تهران.