آرزیابی در گونه علفی آلورپوس در کاهش شوری خاک و احیای اراضی شور

سیدعلی محمد میرمحمدی میبدی¹، علیرضا امینی² و سیدجمال الدین خواجه‌الدین³

چکیده
در این پژوهش پتاسیل در گونه علفی آلورپوس به شوری به نام‌های جمن شور ساختاری با پرتهای به‌نام‌های (Aeluropus littoralis) و جمن شور (A. lagopoides) پاک‌گردانی یا بوته‌گردانی در کاهش شوری شکاری به شوری به نام‌های جمن، می‌باشد یا. در کاهش شوری که به شوری به نام‌های جمن شور ساختاری با پرتهای به‌نام‌های (Aeluropus littoralis) و جمن شور (A. lagopoides) در چهار خاک به شکستن شده‌اند از روی‌ها، ساختاری به انواع مختلف شوری در سه تکرار در هر سه گلخانه کشت شد. جزئیات دیده‌گرایی کاهش شوری در سه تکرار، مورد استفاده در این پژوهش ابراز شد. نتایج مقایسه شکستگی نشان داد که در گونه مورد بررسی از لحاظ وقوع شکست اندازه‌های بوته‌گردانی، وزن شکست ریشه، سدیم ذخیره‌های کل وزن شکست اندازه‌های نسبت احتراق می‌باشد. در گونه به خوبی، گونه‌های دانشی‌های همان‌گونه که در این کاهش شوری به‌نام‌های (Aeluropus littoralis) و جمن شور (A. lagopoides) گونه‌های مورد بررسی، به نزدیکی سرعت زمانی از روش‌های دیگر ارائهی به خارج از گیاه ترشح شده‌اند. با توجه به تصویب بیشتر از 50 درصد نمک از بیشتر خاک‌ها، انتظار می‌رود در پایان به کاهش و برداشت این گیاهان از طریق چرا با دستی، شوری خاک را کاهش داد.

واژه‌های کلیدی: شوری، آلورپوس، اصلاح خاک‌های شور، هالولیت

1. دانشیار اصلاح تانابات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. پژوهشگر تحقیقات منابع طبیعی استان یزد
3. دانشیار مرتعداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

٢٤١
مقدمه
سطح زیادی از ۹۵۰ میلیون هکتار اراضی شور کرده‌های زیمن در نواحی خلک و نیم‌نشان قرار دارد. هر سال باقی ۱۲۰ میلیون هکتار اراضی افزوده می‌شود. البته گونه‌ی که تغییرات زمینی که به آن گفته شود و آن را در هستند (11). پدیده شدن اثرات افزون بر تابع کردن پوشش گیاهی و کاهش تولید گیاه، عامل مهم تخریب منابع طبیعی (۱۶) و فرآیند بیماری‌ای است (۹).

امروزه سر راکدار عمدی یک شستشوی نمک از سطح خاک و انتقال به ناحیه‌ای پایین‌تر از منطقه ریشه گیاهان (۲) افزایش پاپیری گیاهان در برابر شوری خاک از طریق سد (۲۶) برای روزروزی و در اصلاح و بهبود از خاک‌های شور به راه‌کار سه‌بسته توجه کرده‌اند. دلیل امر احتمال‌آمیز نوکی را رایه‌های چوبی‌ترین و یا شرایط خاص اکوسیستم‌های مناطق شرک حکم است، تا با کمترین دخالت در محیط حداکثر استفاده از این منابع به عمل آید.

استفاده اقتصادی از مجموعه گیاهان مقاوم به شوری در دنیا (حدود ۱۵۰ گونه) مانند کشت و به کارگیری گونه‌های Puccinellia و P. pseudonisa (Leptochloa fusca) کالارگراس (chinonpennis) به عنوان نمونه شیان ذکر است. گیاه آلوروبیس از گونه‌های شوری‌های (هالوپتیس) بومی ایران، کالارگراس (chinonpennis) در هر سال می‌تواند در خاک‌های با هدایت کربنیکی (EC) ۱۷۵ تا ۲۶ میلی‌متر بر سانتی‌متر مس ایجاد کند (۹). این گیاه همانند کالارگراس، هم‌نام خاک را جذب کرده، از میان سبب سولوی خود به سمت بازکردن مهندسی سو را پیشبرد و سرسرانش از طریق برگهای خود، که در افراد تاره‌ها نمکی است (۹). هم‌نام، به زبان از گیاه ترشح می‌کند (۲۶ و ۱۴). چنین سیستم‌ها باعث شده است که به‌ره‌های بیرون از طریق کاست کالارگراس در سطح کردسته و به‌روش آن ارائه گردند. در کاهش اراضی مانندبایه جنگل سند پاکستان (۱۴ و ۱۸) و هند (۳) یافت.
کشت گیاهان در گلخانه

به منظور آماده‌سازی بستر کشت، چهار خاک با شوری‌های مختلف از روی شیشه‌های تطبیق گونه‌های مورد برداشت شد. هر خاک به تعداد گل کنده‌ی کوده‌های بزرگ و پس از همکاری کردن آنها به نسبت وقی وتنی شسته شد. به گرمسیری‌های آب و هوایی و از سل سطح خاک جلوگیری شود. مشخصات تهیه خاک‌ها در جدول 1 آورده شده است.

شماری از بذردهای هریک از این نوید‌ها در گلخانه‌های به قطر 30 سانتی‌متر حاوی خاک کم‌هوست کشت و به‌ناهایی توپید شد. گونه‌های لیموسام و لاجوردیزی بر روی کشت گلدانی کشت گردید. برخی از آنها که از نظر وضعیت کمیابی با هم مشابه بودند و حداقل در دارای 10 سانتی‌متر ارتفاع بودند، انتحاب و به گلدان‌های پلاستیکی حاوی 1200 گرم از خاک‌های شور چهارگانه تاکنون داشته شده. گلدان‌ها در گلخانه پرده‌شده دانشگاه صنعتی اصفهان در پیشرفت در بذرشیب تطبیق می‌باشند. 27 نگه داشته شده، گلدان‌ها در گلخانه پرده‌شده دانشگاه صنعتی اصفهان در پیشرفت در بذرشیب تطبیق می‌باشند. 27

30 درجه سانتی‌گراد قرار داده شده، طی 250 روز با آب مقطع آبی‌ای شدند. زود‌تر خروجی از هر گلدان که در ظروف زیرگلدانی جمع شد مجدداً با آب مقطع به وسیله گلدان مربوطه بازنویی شد. خورشید به عنوان کاهش شوری خاک در اطراف جذب و ترشح املاح به وسیله گیاه، آمکش ترشح شده، توسط

عده‌ی سیمکی روزی برگ‌ها به کمک آب مقطع به درون لیوان نشسته شد.

جهت تحلیل آماری

طرح آزمایش در هر دو برشی جوانمزی و گلخانه‌ای آزمایش

میزان نسبت جوانمزی به شمار کل بذرها محاسبه‌شود. شاخص سرعت جوانمزی از روش جورج (12) و طبق رابطه زیر تعیین شد:

\[
\text{s} = \frac{\text{نرالری}}{\text{نرالر}} + 0.75\text{نرمالی} + 0.5\text{نرمالی} + 0.22\text{نرمالی}_{12}
\]

که در آن \(s \) رابطه سریع، \(n_{12} \) و \(n_{60} \) نرمالی در 13 و 60 روز به ترتیب میزان بذردهای جوان مزی دو در روز‌های 1, 3, 6, 9 و 12 پس از اعمال تیمار شوری‌ها است. تمرینات و زیست‌نیاز برای اجرا‌کردن 14 روز بود. ضریب آلاتوری و زیست‌نیاز تعیین از نسبت وزن خشک ریشه به وزن خشک بخش هواپیما (28) محاسبه شد.

اداره‌گر تغییرات شوری

بس از این پارامتر درون خشک گونه‌ها (روز) میزان غلظت‌های سدیم و پتاسیم ذخیره‌ای در کل وزن خشک اندام هواپیما (عمرکرد ذخیره) و نیز بررسی واحده وزن خشک هواپیما در دو کونه لیتوپیتال و لاگوپودیت تبعیض گردید. کاهش شوری و املاح خاک پس از درخت رشد در نتیجه یا جذب عناصر سدیم، بنیادی در کلسیم و منیزیم توسط گونه‌های مورد بررسی در هر یک از چهار خاک شور و یا ترشح به وسیلهٔ غذای نمکی برگ‌های آن و بر اساس میزان ترشح عناصر از رابطه A-B-C-D محاسبه شد.

در این رابطه A میزان ترشح عناصر B میزان عنصر خاک در پس از دوره رشد و C میزان عنصر در خاک پس از اندام هواپیما و D میزان ذخیره شده در اندام هواپیما و ریشه‌گاه است.

میزان رشد و رونق از کناره گاه‌های اندام هواپیما و رشته‌ها از طریق کاهش یا افزایش سدیم و میزان عناصر سدیم، بلوپسیمیسم آنها تعیین گردید. املاح سطحی هر قسمت کامل‌ای با آب مکث رشته‌های میزان ترشح عناصر اندام‌گری شد. میزان عناصر سدیم و پتاسیم این محلول به وسیله شفاف‌کننده شعله‌ای مدل کورننگ 410 (Corning 410) و عناصر کلسیم و منیزیم با استفاده از دستگاه Perkin Elmer (3030) در حسب بر حسب میلی‌گرم بر لیتر اندام‌گری‌های شد. نمونه‌های گیاهی شسته شده، شکل و آسیب شده، سپس یک گرم از این خشک به طور میانگین متقابل و به صد شست سه درصد در درجه سانتی‌گراد قرار داده شد (17). کانال‌های مدل کلسیم، بلوپسیمیسم، کلسیم و منیزیم به روش ریلی و کنیو (20) تعیین شد.

برای تعیین شوری و عناصر خاک گل‌گان این از از داده‌های رشد، نوست خاک گل‌گان در هوا خشک و سپس کامل‌ای مخلوط گردید. آن گاه نمونه‌ای از خاک همگن شده گل‌گان برداشت و عصاره اسانه‌ای الهام آن به شکل شد. سپس هدایت الکتریکی و میزان عناصر سدیم، بلوپسیمیسم، کلسیم و منیزیم عصاره تعیین شد (20).

تجزیه و تحلیل آماری

243
جدول 1. ویژگی‌های چهار خاک مورد استفاده در کشت گندمی

<table>
<thead>
<tr>
<th>نماد</th>
<th>کلسیم (کیلوگرم میلی‌گرم)</th>
<th>پتاسیم (کیلوگرم میلی‌گرم)</th>
<th>هیدرات الکترینی (کیلوگرم میلی‌گرم)</th>
<th>شماره‌ی خاک</th>
<th>شماره‌ی سرمای (دسی‌هم‌مریتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
<td>42/7</td>
<td>265/7</td>
<td>1388/7</td>
<td>4/5</td>
<td>99/7</td>
</tr>
<tr>
<td>0/7</td>
<td>65/7</td>
<td>315/7</td>
<td>12/5</td>
<td>1/3</td>
<td>7/6</td>
</tr>
<tr>
<td>9/7</td>
<td>375/7</td>
<td>225/7</td>
<td>10593/7</td>
<td>6/7</td>
<td>4/5</td>
</tr>
<tr>
<td>9/7</td>
<td>315/7</td>
<td>1437/7</td>
<td>1988/7</td>
<td>3/9</td>
<td>9/7</td>
</tr>
</tbody>
</table>

afaqorli بدو فاکتور، فاکتور اول در جدول و فاکتور دوم پنج نیاز صفات وزن خشک اندام هوایی و وزن خشک ریشه در سطح احتمال بنج درصد اختلاف معنی‌دار مشاهده شد (جدول 3). به طوری که وزن خشک اندام هوایی و ریشه گونه لیتروپسیس پیشرفت از لاگووپیدز بود.

تفاوت میانگین وزن خشک اندام هوایی در سطوح مختلف، در مقایسه با صفات وزن خشک ریشه و ضربی آئومتری وزن محسوس تر بود، به طوری که از لحاظ آماری، جدول 2 نمایان می‌کند. به طوری که معنی‌دار بود نیاز صفات در سار شوری‌ها اختلاف معنی‌دار از نظر این دو صفت مشاهده نشد. بر اساس تبادل جدول 3، میانگین وزن خشک اندام هوایی گیاهان گونه لیتروپسیس در خاکی با شوری 79.84 دسی‌زیمس بر مر و SAR=49/775 (تیمار شاهد) بود. کاهش نشان داد. همچنین وزن خشک اندام هوایی مزبور را می‌توان آستانه مقاومت گیاه فرقی، طبیعی شاخص درجه‌ای از شوری که بانث کاهش 50 درصد عملکرد گیاه تحت نشان شوری می‌شود یکد. گاه

اثر شوری بر درصد جوانزی و سرعت جوانزی

تیمارهای مختلف نمک باعث ایجاد تفاوت‌های معنی‌دار در سطح یک درصد در شاخص‌های سرعت و درصد جوانزی شدند. از سطح صفر تا 0/7 درصد نمک طعام، کاهش درصد جوانزی برای دو نمونه آئومتری از ابتدا بسیار کم بود. به‌طوری که گونه‌ای که کاهش برابر 2/3 درصد مشاهده شد (شکل 1)، بیشترین میانگین و درصد سرعت جوانزی به ترتیب برابر 94/3 و 0/5 در تیمار آب مقطوع بود.

اثر شوری بر درصد شرایط گلخانه‌ای

تجربیات واریانس صفات میانگین وزن خشک اندام هوایی، وزن خشک ریشه و ضربی آئومتری وزنی نشان داد که در سطح احتمال بک درصد شوری خاک بر صفات مزبور اثر معنی‌دار دارد. در آزمایش گلخانه‌ای، میانگین وزن خشک اندام هوایی، وزن خشک ریشه و ضربی آئومتری وزنی با یافته‌های هدایت الکترینی و SAR به طور معنی‌داری کمتر از شاهد بود (جدول 3).
جدول ۲ مقایسه میانگین‌های وزن خشک اندازه گرفته شده در دو شرایط آزمایشگاهی (گرم در گلدان)

<table>
<thead>
<tr>
<th></th>
<th>وزن خشک اندازه‌گرفته (گرم در گلدان)</th>
<th>وزن خشک اندازه‌گرفته (گرم در گلدان)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین‌های با آزمون چند دامنه در سطح احتمال ۰/۰۵ درصد مقایسه شده‌اند، و در هر رابطه مقایسه دو میانگین، که هر دو یک حرف مشترک داشته‌اند، معنی‌دار نیست.</td>
<td></td>
</tr>
</tbody>
</table>

مقدار جدول ۲

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقدار ۱ مقایسه میانگین درصد و ضریب آلومینی و میانگین‌های که دارای حروف مشترک هستند، بر اساس آزمون چند دامنه دانکن در سطح احتمال ۰/۰۵ درصد اخلاق معنی‌داری ندارند.

شکل ۱ مقایسه میانگین درصد و سرعت جوانان‌نژه در سطوح مختلف نمک طعام

پایان دریچه رشد گونه‌ها نشان داد که همه گونه‌ها باعث کاهش گذاری طبیعی سدیم و ضریب آلومینی می‌شود. در مقایسه با گونه‌ها ذخیره‌دار، نمودهای گونه‌ها همچنین از نظر سایر عوامل، مانند بافت‌های خاکی در واحدهای هوا، نشان دهنده بافت‌های خاکی در واحدهای مایع هستند. در واحدهای هوا، نسبت بافت‌های سدیم ذخیره‌دار در واحد ورن خشک است. در واحدهای هوا، نسبت بافت‌های سدیم ذخیره‌دار در کل وزن خشک رشد گونه‌ها، نسبت بافت‌های سدیم ذخیره‌دار در بود. افزایش میزان این دو عضور در محلول خاک باعث ایجاد یک افزایش سطح مایع و بافت‌های گونه میزان این عناصر در گونه‌ها مایع آزمایش شد. میزان توجه بود. استفاده در فاصله این دو گونه بیشتر از ریشه بود. داده‌ها به دست آمده از گونه‌های تک‌سره‌ای، میزان عناصر سدیم، کلسیم، و میزان محلول تمایل خاک‌ها در
بحث
نتایج آزمایش جوانزی ناشی داد که افزودن غلظت کلید سدیم در محیط جوانزی بذرها گونه‌های لیتورالیس و لاکوپویدز باعث کاهش درصد و رشد جوانزی شد. کاهش درصد جوانزی در افزایش شرایط در بیشتر گیاهان مقاوم به شوری گزارش شده است (35 و 21). شوری‌های تا 12 درصد آن در بسیاری از گیاهان مقاوم به شوری مناطق ساحلی نظیر (Hula crithmoides) و (Daucus carota) اسپرگولاریا (Spergularia rubicola) باعث کاهش درصد جوانزی شده است. بنابراین، جوانزی بستر گونه‌ها در 65 درصد شوری آب دریا به صورت می‌رسد (22). گونه‌های مورود بررسی در این آزمایش همانند دیگر گیاهان مقاوم به شوری (Salicornia herbacea) معروف تیپ‌شکل‌ورنگی (Aster maritima) و بسیار کم‌رشدی (Suaeda maritima) به عنوان گونه سوخت (Aster tofiiol) جوانزی خود را در آب ملت انجام داده‌اند. (28).

بر اساس معاین جهیزی از شوری (5) که بسیار 50 درصد کاهش محصول گیاه تحت نشان شوری نسبت به تیمار شاهد می‌گردد، و با توجه که گیاه 50 درصد میانگین وزن شرکت گیاهان لیتورالیس در شرایط 69 دسی‌زیمنس 1/23 و 70.7 سی‌سی‌سی و رشد شرکت به عنوان آسان می‌باشد مقاوم این گونه سازگار به منطقه رودش دانست، که احتمالاً با یافته بیماری دیگری بیماری زیادی این گونه مرتبط است. نتایج آزمایش‌ها نشان داد که این گونه‌های مورود (88) و گونه‌های مشابه دارای غده تاکی (2 و 32) اثری متابولیکی زیادی را برای ترشح عناصر و ماده‌گرایی در شرایط
جدول ۵. درصد پونه‌های سری، پناسم، کلسیم و نیزیم در ماده خشکی اندام هوابی و ریشه

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>اندام هوابی</td>
<td>ریشه</td>
<td>عصبر</td>
</tr>
<tr>
<td></td>
<td>۱۴/۱۷</td>
<td>۸/۹</td>
<td>سدیم</td>
</tr>
<tr>
<td></td>
<td>۱۱/۴۹ a</td>
<td>۴/۸۱ b</td>
<td>پناسم</td>
</tr>
<tr>
<td></td>
<td>۱/۴۵</td>
<td>۱/۴۳</td>
<td>کلسیم</td>
</tr>
<tr>
<td></td>
<td>۳/۴۹</td>
<td>۳/۴۹</td>
<td>نیزیم</td>
</tr>
</tbody>
</table>

مقایسه میانگین‌های درصد پناسم در اندام هوابی و ریشه در گونه‌های ازونم دانک و در سطح احتمال یک درصد صورت گرفته است.

پیشنهاد می‌شود با توجه به ضرورت بودن عملیات مهندسی و مشکلات کاربردی و مدیریت آن، در این گونه بررسی شده در این پژوهش به خصوص از طرف منطقه جغرافیایی رودک و است. استفاده کرده و طی آزمایشات، به کارگیری این گونه در شرایط عرض رودک و شکل‌گیری شده نتایج مواجهاتی به عرض فراهم گردند.

سیاستگاری

از آفیام دکتر عبدالرضا رضایی، دکتر محمدزاده خواجه‌پور و دکتر احمد ارزانی به خاطر مطالعه پیش‌نویس مقاله و اراسته نظریات ارزنده تشکر و سیاستگرایی می‌شود.

مقدار مورد استفاده

۱. ایرسیجی، ق. ۱۳۷۷. شناسایی و بررسی برخی از گونه‌های اکوفیزیولوژیک آلوپوپوس در مناطق شمالی شرق شرقی شمال گرگان.
۲. پژوهش و سازندگی ۴۱: ۲۱-۲۵.
۳. جغرافی، م. ۱۳۷۳. هنرپیشیگی و شهریوری. مؤسسه تحقیقات جامعه و معاون.
۴. سلسله، ج. ۱۳۷۳. کارکردهای سیراک اصلاح خاک‌های شهر. شمیرانات ۲۰۰۲ و ۱۰۳: ۲۱-۲۵ و ۱۹-۱۴.
۵. کلیف، م. و. و. س. استیومن. ۱۳۷۳. اثرات شهری و تجمع کاتائی در اندام هوابی و ریشه از از اندام هوابی و بیماری ارگن می‌تواند مقاوم و یافته به
۶. شوری. مجله علوم زراعی ایران (۱۴۷۲): ۷۹-۹۱.
۷. کسراوی، ق. ۱۳۷۳. کارکردهای دیاری علی ایل خاک‌های شهر در کشاورزی پایدار. ایراندانشگاهی مشهد.

۲۴۸
ارزیابی در گونه علفی آلوپوس در کاهش شوری خاک و احیای اراضی شور

7. میرمحمدی مبیدی، سعید، ع. ع. امینی حاجی آبادی و ح. خواجه‌الدین. 1381. عوامل مؤثر در استقرار چهار گونه شوری‌سنند در شمال باتلاق گاوخرنی، با استفاده از روش آوردنیاسیون. علوم و فنون کشاورزی و منابع طبیعی ۲۳: ۲۰۰-۳۰۰.

