ارزیابی بازده کاربرد آب در بینج زاره‌ها تحت شبکه‌های آبی‌باری گیلان و فومنات

چکیده

هدف از این تحقیق تعمیم پایگاه کاربرد آب و پرورش یا به‌ویژه برندهای آب و تعمیم هوامل‌های مکان‌بردار آب در فرآیند آب‌سازی آن می‌باشد. در این تحقیق مزارع بینج با توجه به قابلیت‌های انتخاب شدن بنا به استفاده از اندازه‌گیری‌های صحراپی، بازده کاربرد آب در شالیزارهای استان گیلان، که تحت پوشش شبکه‌های آبی‌باری مدیریت و سنتی در سه منطقه فوم، رشت – مرکزی و لاومیجان می‌باشد، برآورد گردید. در موارد انتخاب علاوه بر تعمیم پایگاه کاربرد آب در طول فصل آبی‌باری، تأثیر انتخاب مزرعه، دبی و مدیریت آبی‌باری در بینج مالکن تأثیر قوی مورد توجه قرار گرفت. مزارع تحت پرورش در بارای خاک سنگین بود و میزان تفوش عمقی کمتر از بخصوص در روز انتخاب‌گیری مالکن از مالکن تعیین می‌شد. برای تخمین در حالی بدون استفاده از رواناب و با استفاده محاسبه محاسبه از رواناب بررسی گردید.

در حالت متوسط بازده کاربرد آب در مناطق فومی، رشت و لاومیجان به ترتیب 0.51/0.49 درصد و مقادیر حداکثر آنها به ترتیب 0.51/0.52 درصد و حداقل مقادیر آنها به ترتیب 0.49/0.47 درصد و حداکثر کاربرد آب در مناطق هم‌افزایی به ترتیب 0.73/0.74 درصد و حداقل کاربرد آب در مناطق خطی به ترتیب 0.30/0.27 درصد به دست آمد. در حالت دوره و رش دنی بازاررض (از نواحی کاری تا وابسته) مقدار آب آبی‌باری متوسط برای منطقه 130 میلیمتر نسبت به ترتیب 0.30/0.31 درصد برآورد شد. در طول دوره دوره و رش دنی بازاررض (از نواحی کاری تا وابسته) مقدار آب آبی‌باری متوسط برای منطقه 130 میلیمتر نسبت به ترتیب 0.30/0.31 درصد برآورد شد. در حالت متوسط بازده کاربرد آب در مناطق فومی، رشت و لاومیجان به ترتیب 0.51/0.49 درصد و مقادیر حداکثر آنها به ترتیب 0.51/0.52 درصد و حداقل مقادیر آنها به ترتیب 0.49/0.47 درصد و حداکثر کاربرد آب در مناطق فومی به ترتیب 0.73/0.74 درصد و حداقل کاربرد آب در مناطق خطی به ترتیب 0.30/0.27 درصد به دست آمد. در حالت دوره و رش دنی بازاررض (از نواحی کاری تا وابسته) مقدار آب آبی‌باری متوسط برای منطقه 130 میلیمتر نسبت به ترتیب 0.30/0.31 درصد برآورد شد.

نتایج

واژه‌کلیدی - بازده کاربرد آب، گیلان، ارزیابی شبکه آبی‌باری، بینج

مقدمه

کاهش تلفات آب و افزایش بازده کاربرد آب در مناطق رسوبی به حساب می‌آید. فراهم آوردن امکانات اندازه‌گیری بازده کاربرد آب در مناطق رسوبی به طور کلی بررسی در اندازه‌گیری سطح زیرکشت که منجر به تولید محصول بی‌شتر می‌شود. مورد تحقیق این تحقیق به ترتیب استادان و دانشجویان سایبان کارشناسی پزشک آبی‌باری دانشکده کشاورزی دانشگاه تهران.
جدول 1 - حدود بازده کاربرد آب در شبکه‌های آبیاری

<table>
<thead>
<tr>
<th>بازده کاربرد آب</th>
<th>شبکه آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشت و صنعت هفت تپه</td>
<td>کشت و صنعت کارون</td>
</tr>
<tr>
<td>کشت و صنعت مغان</td>
<td>کشت و صنعت شهید رجبی و شهید بهشتی</td>
</tr>
<tr>
<td>کشت و صنعت</td>
<td>دشت قزوین</td>
</tr>
<tr>
<td>کشت و صنعت</td>
<td>دشت خوزستان</td>
</tr>
<tr>
<td>کشت و صنعت</td>
<td>دشت ازدکان بیرج و کوماشاشان</td>
</tr>
<tr>
<td>کشت و صنعت</td>
<td>دشت مازندران</td>
</tr>
<tr>
<td>کشت و صنعت</td>
<td>دشت سنندج</td>
</tr>
</tbody>
</table>

توصیه‌گری در مورد مقدار بازده مصرف آب است که با استفاده از محاسبات به کارگرفته شود. چون موقعیت پایه‌ای در مورد این موضوع وجود ندارد، روش عمومی این است که مقدار بازده‌ای آبیاری مردد استنتاج و یا تخیم زده می‌شود. پسیبی است بازدهی که به‌دنی تریب به‌دست می‌آید مناسب شرایط منطقه طرح در وضعیت آن‌های نمی‌باشد.

مواد و روش‌ها

بازده کاربرد آب در سال 1376 در شبکه‌های آبیاری سه منطقه فومین، لاحیجان و مرکزی رشت انتخاب گردید. آب آبیاری این مناطق به‌ترتیب توسط کانال‌های اصلی فومین، با نرخ مکانیکی در 32 متر مکعب در ثانیه (که توسط تولید آب‌های سد اندرز و تاکید تغذیه می‌شود). کاتال سمت راست سد اندرز سه سطغی با نرخ مکانیکی 72 متر مکعب در ثانية و کاتال سمت چپ سد اندرز سطغی با نرخ مکانیکی 114 متر مکعب در ثانیه تأمین می‌شود. شکل 1 پلان مزایا منتسب به شبکه آبیاری فومین را نشان می‌دهد.
شکل 1- پلان مزارع متنخب در شبکه آبیاری فومات
شکل 2 - روند بازده کاربرد آب در سالانه‌های منتهب در روزهای اندازه‌گیری در طول فصل آبیاری، در منطقه نومن

بعد از نصب قلم برایاسی مکانیسم‌های و بعد از تثبیت ارتفاع آب در محل قلمی صورت گرفت، این اندازه‌گیری به‌مدت یک ساعت و در فواصل متواضع و دقیقه قیمت‌گذاری‌ها بود. سپس از داده‌ها به دست آمد در طول روز میانگین گرفته شد و ارتفاع متوسط آب و رودخانه‌ای وجودی تعیین و دیگر درودی و عاملی گردیده استفاده از فرمول مربوط به تیپ قلمی مورد استفاده که قبلاً و استنجی شده بود، محاسبه گردید.

واریانس‌های برند مثبت کلید در مناطق تحت مطالعه از نوع خز و بگ تایید که طول دوست که آنها در این مناطق بین 160 تا 15 رو به‌طور میانگین 98 تا 160 رو می‌باشد.

نتایج مربوط به تجزیه شیمیایی خاک و کیفیت آب آبیایی مزارع نیز به وسیله استخراج مصالح اندازه‌گیری گردید. (جدول 4).

به منظور تعبیر مساحت مزارع اندازه‌گیری از کهکشان، نشته بردازی شد که جدول 2 مشخصات کلی مزارع منتهب واشنگت می‌دهد.
<table>
<thead>
<tr>
<th>شاخص</th>
<th>درصد</th>
<th>%</th>
<th>ppm</th>
<th>%</th>
<th>%</th>
<th>pH</th>
<th>اشاعه</th>
<th>عضوه</th>
<th>عمق</th>
<th>هدایت</th>
<th>فاصله کشاورز</th>
<th>محل نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>پاش واقع</td>
<td>درصد</td>
<td>%</td>
<td>درصد</td>
<td>%</td>
<td>درصد</td>
<td>%</td>
<td>پاسیم</td>
<td>گریز</td>
<td>انرژی</td>
<td>عرض</td>
<td>جزب</td>
<td>عمیق</td>
</tr>
<tr>
<td>رس سیلیکا</td>
<td>6</td>
<td>44</td>
<td>48</td>
<td>195</td>
<td>7/13</td>
<td>7/3</td>
<td>3/08</td>
<td>85</td>
<td>60</td>
<td>F&lt;sub&gt;1&lt;/sub&gt;</td>
<td>داداچ زاده - فون</td>
<td></td>
</tr>
<tr>
<td>رس سیلیکا</td>
<td>4</td>
<td>48</td>
<td>48</td>
<td>195</td>
<td>7/3</td>
<td>7/9</td>
<td>1/08</td>
<td>78</td>
<td>60</td>
<td>F&lt;sub&gt;2&lt;/sub&gt;</td>
<td>پور جواد خواه</td>
<td>فون</td>
</tr>
<tr>
<td>لوم رسی سیلیکا</td>
<td>18</td>
<td>50</td>
<td>63</td>
<td>1/08</td>
<td>5/4</td>
<td>1/79</td>
<td>1/41</td>
<td>64</td>
<td>60</td>
<td>P&lt;sub&gt;1&lt;/sub&gt;</td>
<td>پازار جمعه</td>
<td></td>
</tr>
<tr>
<td>لوم رسی سیلیکا</td>
<td>20</td>
<td>42</td>
<td>44</td>
<td>1/08</td>
<td>5/09</td>
<td>5/12</td>
<td>1/75</td>
<td>57</td>
<td>60</td>
<td>GG</td>
<td>اکبر زاده</td>
<td>منطقه مرکزی</td>
</tr>
<tr>
<td>رس سیلیکا</td>
<td>4</td>
<td>50</td>
<td>42</td>
<td>1/08</td>
<td>8/9</td>
<td>1/12</td>
<td>1/49</td>
<td>64</td>
<td>60</td>
<td>D&lt;sub&gt;1&lt;/sub&gt;</td>
<td>علی نظری</td>
<td>لاهجاحان</td>
</tr>
<tr>
<td>لوم رس</td>
<td>22</td>
<td>40</td>
<td>38</td>
<td>1/08</td>
<td>9/6</td>
<td>1/79</td>
<td>2/16</td>
<td>69</td>
<td>60</td>
<td>D&lt;sub&gt;2&lt;/sub&gt;</td>
<td>پور عزیز</td>
<td>لاهجاحان</td>
</tr>
<tr>
<td>رس سیلیکا</td>
<td>8</td>
<td>40</td>
<td>42</td>
<td>1/08</td>
<td>5/4</td>
<td>0/55</td>
<td>0/62</td>
<td>63</td>
<td>60</td>
<td>GN&lt;sub&gt;1&lt;/sub&gt;</td>
<td>حسینی - نورود</td>
<td></td>
</tr>
<tr>
<td>لوم رسی سیلیکا</td>
<td>18</td>
<td>36</td>
<td>40</td>
<td>1/08</td>
<td>1/0</td>
<td>3/24</td>
<td>2/58</td>
<td>63</td>
<td>60</td>
<td>GN&lt;sub&gt;2&lt;/sub&gt;</td>
<td>حج آقا</td>
<td>نورود</td>
</tr>
</tbody>
</table>
جدول 4- مشخصات مزارع انتخابی برف

<table>
<thead>
<tr>
<th>رده</th>
<th>تعداد روزهای تفویضی‌پذیری (آبیاری)</th>
<th>مساحت (مترمربع)</th>
<th>مربعه (مترکعب)</th>
<th>نام منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7/68</td>
<td>176.10</td>
<td>6.78</td>
<td>مرکزی (نورود)</td>
</tr>
<tr>
<td>7</td>
<td>7/22</td>
<td>51.20</td>
<td>3.74</td>
<td>مرکزی (نورود)</td>
</tr>
<tr>
<td>6</td>
<td>7/24</td>
<td>60.20</td>
<td>3.92</td>
<td>لامیجان</td>
</tr>
<tr>
<td>5</td>
<td>6/45</td>
<td>178.65</td>
<td>7.14</td>
<td>لامیجان</td>
</tr>
<tr>
<td>4</td>
<td>6/75</td>
<td>217.50</td>
<td>8.62</td>
<td>مرمی (نورود)</td>
</tr>
<tr>
<td>3</td>
<td>6/75</td>
<td>59.80</td>
<td>3.57</td>
<td>فومن</td>
</tr>
<tr>
<td>2</td>
<td>6/75</td>
<td>209.80</td>
<td>8.51</td>
<td>فومن</td>
</tr>
<tr>
<td>1</td>
<td>6/75</td>
<td>111.60</td>
<td>4.53</td>
<td>فومن</td>
</tr>
</tbody>
</table>

در انتخاب واحدهای زراعی سعی در گردیدکه آنان از اطراف به جاده یا پشته‌های دائمی یا عوارض محصور بودند که مسئله نشست جانی آب از اطراف به واحدهای مورد انتخابی یا بالعکس وجود نداشت باشد تا واحد زراعی انتخابی به صورت یک واحد کنترل شده مورد استفاده قرار گیرد. در پن سطح معرفی

بازده کاربرد آب در مزرعه به شرح زیر توصیف گردید.


نحوه بحث

تغییرات بازده کاربرد آب در طول فصل آبیاری، در همه مزارع شالیزاری ممکن است در مناطق تحت مطالعه تابع یک روند بخصوص به گونه‌ای به صورت نمایانگر این تغییرات در مزارع انتخابی منطقه فومن می‌باشد. روند تغییرات نشان می‌دهد که در اولین و اواخر فصل آبیاری با توجه به نیاز آبی کم برف، به تنظیم دی‌های ویژه توجه چندانی نشد. اما، این پیشنهادی که در روزهای فصل اولیه، بعد توجه به نیاز آبی گیاه به طور یکسان وارد کردن بیش و این موضوع باعث کاهش بازدهی

تحت دوم - با استفاده مجدد از رواناب

\[ Ea = \frac{Din - Dp}{Din} \times 100 \]

که در آنها:

\[ Ea \] مقدار آب مصرفی چهت تبخیر و تعرق گیاه برف

\[ Din \] مقدار آب داده شده به مزرعه

\[ Dp \] مزارع مطالعه رواناب مزرعه بالا دست به عنوان آب آپاری

حالات اول - بدون استفاده از رواناب

\[ Ea = \frac{Din - (Dout + Dp)}{Din} \times 100 \]
آزمایش‌های نفوذ تیژی در نشان داد (جدول ۴) که مقدار نفوذ
تیژی در این خاکها بیشتر به این‌که در روز
بوده است.

مقدار حداکثر و متوسط نفوذ‌های کاربرد آب برای
سه منطقه مزبور در حلول‌های (І) و (II) که آب خروجی از مزارع به عنوان لق‌های حمایت و استفاده مجدد از آن یگرگد در
جدول ۵ آورده شده است. استفاده مجدد از روانب برای آب‌های
بازده کاربرد را حدود ۲۵ تا ۳۵ درصد نفوذ می‌دهد. این
چنین وضعیت در مناطق مورد مطالعه حاکم بود.

انحراف معیار میانگین نمونه‌های مکانی و شاخه می‌باشد. در ۷۰ درصد آورده شده است. خاک‌های معیار میانگین
(І) в یک دنده منطقه از شاخه معیار میانگین مختلف و
می‌باشد. کوه بودند مقدار ۱۶ در نکته کار دوم
یک امواجی که هم‌زدیک می‌باشند، ثانیاً در مجموع تغییر
ه‌یک از آن‌ها به طور متوسط کوه بودند در نتیجه هر یک
از آن‌ها نخست خویر یک

به طور کلی در منطقه (F) که دلیل پوشش کالاناها
درجه ۱ و ۲ آب مورد نیاز گیاه در طول دوره رشد در اختیار
برنگ قارود گیاه و از جمله حداقل صورت می‌گرفت و
همچنین بی‌سیب‌های محلی بر خلاف توزیع آب از (II) و (І)
آب‌های نظارت داشتند، لذا مقدار لق‌های آب کم و بازده
آب‌های نسبتاً بالا به دلیل (شکل ۳) ضعیف شکل مزارع در این
منطقه منظم نیست. تنها این منطقه دیگر بود و آب
برقی به صورت یک‌جا به توزیع می‌گردد.

شکه (F) در منطقه (D) نیز همان منطقه نمای‌کننده
آب‌های مدرن بوده و در نهایت از (II) و (І)
توسط دریچه‌های محلی که اکثراً به توزیع آب‌های
کنترل می‌شد، و از نظر (II) شکه، ضعیف‌خواه
کالاناها درجه ۲ (قارود) با دقت کامل می‌شد.

مدیریت آب‌های در مزارع منطقه (D) نسبت به
فومین (F) ضعیف‌تر و همانطور که (II) شکاک‌ها

مخصوصاً در اول و در اواخر دوره رشد است. رنگ افزایش
بازده در اواخر دوره رشد نسبت به اول و در اواخر دوره رشد بیشتر است.

سه نوع از چهاردندان (پن‌مانند) به یک دسته بیشتر می‌باشد.

گیاه و میزان نفوذ خمیّی، اندازه‌گیری می‌رود که بازده‌های
برآورده فیزیولوژی، از دیدگاه آپ، را در راستای می‌گرفت.
تعداد فیزیولوژی، از دیدگاه این آپ. به این‌که در زمین
تولید نسبت به روز، کلی که درست که در این آپ.
هم‌بسته از این آپ. به فرآیند که در این آپ.
کلیک بازده آب‌های در شب
نسبت به روز، کلی که درست که در این آپ.
شکل ۲- متوسط بازده کاربرد آب در شالیزرهای انتخابی شیب‌های آبیاری گیلان و نومنات (F و G، D)

جدول ۵- مقدار بازده کاربرد آب در حالت‌های I و II بر حسب درصد

<table>
<thead>
<tr>
<th></th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>GG₁</th>
<th>GN₁</th>
<th>GN₂</th>
<th>D₁</th>
<th>D₂</th>
<th>نام مرجعه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۶۴/۲</td>
<td>۸۴/۳</td>
<td>۴۹/۰</td>
<td>۵۱/۲</td>
<td>۵۰/۷</td>
<td>۵۰/۳</td>
<td>۵۱/۷</td>
<td>۴۹/۸</td>
<td>(حداکثر) Ea</td>
</tr>
<tr>
<td></td>
<td>۵۰/۹</td>
<td>۵۰/۰</td>
<td>۴۴/۲</td>
<td>۴۸/۱</td>
<td>۴۷/۵</td>
<td>۴۶/۲</td>
<td>۴۸/۸</td>
<td>۴۷/۵</td>
<td>(حداقل) Ea</td>
</tr>
<tr>
<td></td>
<td>۵۰/۷</td>
<td>۵۰/۳</td>
<td>۴۹/۵</td>
<td>۴۹/۱</td>
<td>۴۸/۴</td>
<td>۴۸/۵</td>
<td>۵۰/۳</td>
<td>۴۸/۵</td>
<td>(میانگین) Ea</td>
</tr>
<tr>
<td></td>
<td>۵۱/۲</td>
<td>۴۹/۰</td>
<td>۴۹/۰</td>
<td>۴۹/۰</td>
<td>۴۹/۰</td>
<td>۴۹/۰</td>
<td>۴۹/۰</td>
<td>۴۹/۰</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>مقدار میانگین پرای حالت I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۷۸/۵</td>
<td>۷۵/۹</td>
<td>۷۵/۴</td>
<td>۷۵/۵</td>
<td>۷۶/۵</td>
<td>۷۵/۵</td>
<td>۷۶/۵</td>
<td>۷۵/۵</td>
<td>۷۶/۵</td>
</tr>
<tr>
<td></td>
<td>۷۲/۵</td>
<td>۷۴/۲</td>
<td>۷۸/۰</td>
<td>۷۷/۶</td>
<td>۷۸/۳</td>
<td>۷۷/۷</td>
<td>۷۸/۴</td>
<td>۷۸/۰</td>
<td>۷۹/۹</td>
</tr>
<tr>
<td></td>
<td>۷۳/۸</td>
<td>۷۵/۵</td>
<td>۷۶/۰</td>
<td>۷۶/۸</td>
<td>۷۷/۰</td>
<td>۷۷/۸</td>
<td>۷۸/۸</td>
<td>۷۸/۸</td>
<td>۷۴/۰</td>
</tr>
<tr>
<td></td>
<td>۷۳/۴</td>
<td>۷۲/۹</td>
<td>۷۳/۲</td>
<td>۷۳/۹</td>
<td>۷۴/۰</td>
<td>۷۴/۰</td>
<td>۷۴/۰</td>
<td>۷۴/۰</td>
<td>۷۴/۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>مقدار میانگین پرای حالت II</th>
</tr>
</thead>
</table>


جدول 6 - مقادیر $\delta x$ بازده کاربرد آب در حالت‌های I و II در شالیزارهای انتخابی گیلان و فرمانات

<table>
<thead>
<tr>
<th>$\mu$</th>
<th>N</th>
<th>$\delta x(%)$</th>
<th>$xF$</th>
<th>$xG$</th>
<th>$xF%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>49/95</td>
<td>3</td>
<td>0/96</td>
<td>51/2</td>
<td>49/0</td>
<td>49/4</td>
</tr>
<tr>
<td>73/11</td>
<td>3</td>
<td>0/46</td>
<td>73/4</td>
<td>77/3</td>
<td>72/2</td>
</tr>
</tbody>
</table>

حالت I

حالت II

- متوسط بازده‌های تعیین‌شده در مناطق تحت پرسی در طول فصل آبیاری (18 تا 20 عده)
- اعداد مناطق تحت مطالعه در شیبکه آبیاری
- میانگین متوسط بازده‌ها در شیبکه‌های آبیاری گیلان و فرمانات

شکل 2 - مقایسه متوسط بازده کاربرد آب در شالیزارهای انتخابی، در شیبکه‌های آبیاری گیلان و فرمانات نشان می‌دهد.

عملیات کاشت، داشت و پرداشت برنج در مقایسه با منطقه فومن کمتر بوده، همچنین شکل نگاه داره‌های نامناسب و با ترکیب نه، چنین خود تهیه شده‌بود. این عوامل در پایین ترودن بازده در منطقه مؤثر می‌بایست.

در منطقه رشت - مکرر (G) بازده کاربرد آب حدود یک درصد بین تر از در منطقه دیگر است. این کاهش نسبتاً ناجی است. احتمالاً به خاطر اندام‌های گیری بر می‌گردد. در این بخش هنگامی که آب به سر مزارع می‌رسد، به دلیل عدم وجود دریچه‌های آبیگیر، کشت‌های برخوری مقدار آب ورودی به مزارع صورت نمی‌گرفت، ولی در بخش مدن شیبکه این منطقه، به دلیل کنترل توزین شرکت سهامی آب منطقه‌ای، بازده افزایش یافته است.
جدول 7- مقدار بازده کاربرد آب در فصل آبیاری برنج در گیلان

<table>
<thead>
<tr>
<th>مورد</th>
<th>مرداد</th>
<th>خرداد</th>
<th>محله</th>
</tr>
</thead>
<tbody>
<tr>
<td>حال</td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
<tr>
<td>7/1/28</td>
<td>51/10</td>
<td>47/39</td>
<td>51/9</td>
</tr>
<tr>
<td>7/23</td>
<td>48/7</td>
<td>53/8</td>
<td>49/8</td>
</tr>
<tr>
<td>7/2/3</td>
<td>49/4</td>
<td>72/8</td>
<td>50/2</td>
</tr>
<tr>
<td>7/2/9</td>
<td>49/7</td>
<td>73/3</td>
<td>50/5</td>
</tr>
</tbody>
</table>

شیراز-مرکزی

لاهیجان

گیلان

جدول 8- نسبت پایاب (TWR) در برنج زراعی در گیلان در حالت I

<table>
<thead>
<tr>
<th>نام منطقه</th>
<th>فورم</th>
<th>رشته-مرکزی</th>
<th>لاهیجان</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁</td>
<td>F₂</td>
<td>F₃</td>
<td>GG₁</td>
</tr>
<tr>
<td>0/628</td>
<td>0/288</td>
<td>0/323</td>
<td>0/295</td>
</tr>
<tr>
<td>0/230</td>
<td>0/317</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اجمله: TWR

جدول 9- مقدار تبخیر و تعرق برنج پیتام و خش (2، 3 و 4)

<table>
<thead>
<tr>
<th>برنج پیتام</th>
<th>برنج خش</th>
<th>مقدار TWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>تبخیر و تعرق از گیاه با میلیمتر</td>
<td>570/9</td>
<td>547/0</td>
</tr>
<tr>
<td>شناسی</td>
<td>547/0</td>
<td>557/5</td>
</tr>
<tr>
<td>ROH</td>
<td>557/5</td>
<td>567/5</td>
</tr>
<tr>
<td>کرنش</td>
<td>567/5</td>
<td>557/5</td>
</tr>
</tbody>
</table>

با استفاده از برنامه Cropwat

نتیجه گیری

مقدار متوسط تبخیر و تعرق برنج از 0 میلیمتر مشخص نمی‌شود.

طول دوره رشد برنج، که از رابطه [تفاوت میلیمتر / آب خروجی] آب ورودی به دست آمده برابر 0/64 می‌باشد. این مقدار با تاکید به دست آمده از روش کرنشی کنترل شده در بخش تحقیقات خاک و آب مسسه تحقیقات برنج رشت تا حدودی هم‌خوانی دارد (جدول 9).

سیاسگزاری

بخش از هزینهای این طرح توسط دانشگاه تهران و پخشی دیگر به وسیله شهری تحقیقات آب وزارت نیرو تأمین شده است که بدلیل کمیتی مقداری می‌شود.
منابع مورد استفاده

1- آب برین، ۱۳۷۳. ارزیابی میزان آب مورد نیاز زراعت برنج در دشت‌های غرب مازندران. مجموعه مقالات هفتمین کمیته ملی آب‌یاری و زهکشی ایران، کمیته ملی آب‌یاری و زهکشی ایران، ۸۸ صفحه.
2- ریاضی، م. و. ش. عاملی نوری. ۱۳۷۲. راهنمای برنامه کامپیوتری Cropwat. معاونت امور زیرین‌سازی وزارت کشاورزی.
3- فرخی، ع. و. ت. رضوی پور. ۱۳۷۲. تعیین تبخیر و تعرق پتانسیل برای گیاه برنج، واریته‌های بینام و خزر به روش لاپیسمتری. گزارش پژوهشی مؤسسه تحقیقات خاک و آب. کنترل شده. گزارش پژوهشی مؤسسه تحقیقات خاک و آب.
4- فرخی، ع. و. ت. رضوی پور. ۱۳۷۳. بررسی میزان تبخیر و تعرق پتانسیل در گیاه برنج، واریته‌های بینام و خزر به روش کرتپی. ۵- فاطمی، م. ر. و. شکراللهی. ۱۳۷۲. ارزیابی آب‌یاری در شبکه‌های آب‌یاری دز، مجموعه مقالات سیمینار کمیته ملی آب‌یاری و زهکشی ایران، کمیته ملی آب‌یاری و زهکشی ایران.
6- غزل، ع. ۱۳۷۳. تحقیقات در زمینه آب‌یاری و زهکشی خوزستان. مطالعه منشأ شده. ۷- مهاب قدس. ۱۳۷۴. بررسی راندمان‌های آب‌یاری در شبکه‌های شمال کشور. پروست شمار (II).
8- میرزا القاسمی، ه. ۱۳۷۳. ارزیابی بازده آب‌یاری در تعدادی از شبکه‌های استان ایران. مجموعه مقالات هفتمین سیمینار کمیته ملی آب‌یاری و زهکشی ایران. صفحه ۱۷.