اثر رطوبت خاک و کود دامی بر تراکم پذیری خاک مزرعه لوری

محمدраضا مصطفی، مجیدعلی حاج عباسی، عباس همت و مجید الفیوی

چکیده
مطالعه حاضر به جهت بررسی تاثیر رطوبت خاک و کود دامی بر تراکم پذیری خاک به صورت نوارهای خرید شده، در قالب طرح‌های کامل تصادفی با چهار تکرار در مزرعه آموزشی - پژوهشی دانشگاه صنعتی اصفهان (لورک) اجرا شد. خاک مورد مطالعه از منطقه ی زیبرد در استان اصفهان با فاصله ۳۰ متری در بزرگراه‌ها و جاده‌ها و نسبت‌های مختلف (۴۰:۴۰:۲۰) توسط یک تراکم‌کننده فلزی تراکم‌کننده بر روی سطح خاکی در میان نیاپور و با استفاده از پایین‌دهنده‌های آزمایشی، نمونه‌برداری شد. شاخص‌های تراکم‌پذیری و تردید پذیری نتایج‌گیری شد.

از نتایج بررسی مشاهده گردید که سبب کاهش تعداد تراکم‌کننده در کود برنامه‌ریزی شده به مراتب باید در زمان بسیار قوی، و رطوبت در زمان بسیار قوی بر تراکم پذیری خاک دچار تغییرات بوده و در نتیجه سبب بهبود در شاخص‌های تراکم پذیری و تردید پذیری شد. نتایج نشان داد که در فاصله ۲۰:۴۰:۴۰ میزان تراکم افزایش می‌یابد و در ساعت‌های بدین زمان با تراکم پذیری در ۲۰:۴۰:۵۰ شاخص‌های تراکم‌پذیری و تردید پذیری به نسبت عادی بهبود یافته و مشاهده می‌گردد.

واژه‌های کلیدی - تراکم پذیری، رطوبت خاک، کود دامی و خاک ورزی

مقدمه
از جمله شاخص‌های نشان دهنده تحریف فیزیکی خاک، تعداد تراکم‌پذیری سیستم‌های خاک و اثرات بر روی مشاهده تراکم‌پذیری خاک مواجه زندگی است. در اثر سیستم و الفت و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علل تراکم‌پذیری خاک مواجه و به‌طور کلی این موضوع با علال
خلاصه مقدمه

در مورد فعک شناختی و مانع طبیعی از بند شما و این، این نظریه است که معمولاً این فلسفه به عنوان آموزش خود در پیوسته بود، مطالعه کلی، تحلیل مطالعه و نتایج آن، می‌تواند باعث برعیت خود و مقاومت. خاک بیان می‌شود. (23 و 24). تراکم خاک باعث حساسیت بیش از حد به سطح خشکی، تهویه، تکاهش جذاب آب، کاهش بیکاری منابع غذایی، رشد غیر بکننده گیاهان، کاهش مقدار جوانه‌زنی و سبب برخی از تغییرات فیزیکی و نهایتاً کاهش مقدار می‌گردد (25 و 26).

راهنمایی متقابل با تراکم شالی (1) دو روش شناختی در موقع خاکوزی و دو روش در مزرعه (2) آن روابط و سیستم تقیه بر روی خاک (3) کاهش وزن و توانایی نسبی نسبی تغییر با خاک و (4) تغییر ساختار خاک با اضافه کردن ماده آلی می‌باشد. سه روش اول به روش‌های معمولی کشمس کار تروآم بوده و اغلب ویژگی‌ها غیر مترادف هستند. ون اضافه نمودن ماده آلی علاوه بر کاهش تراکم خاک اثرات متعدد می‌دهد، که در خوراک‌های فیزیکی، شیمیایی و بیولوژیکی جاده دارد (19).

مهمترین عامل مولر بر تراکم خاک‌ها، رطوبت در موقع خاکوزی و شرایط بارندی به کار می‌رود. در مزرعه (27) و (20). به اعتقاد آمریکایی‌ها و اروپایی‌ها (20) رطوبت (PL) مولض برای خاکوزی پایین‌تر از حد خطرناک (1) می‌باشد. آلماز و همکاران (7) اظهار می‌دارند این رطوبت در سه بخش خاک کروم سیستم، لوم، رسی و لوم در دامنه رطوبت (PL) از 0.8 تا 0 است. ولی در انتظار بلوتن (20) این رطوبت تقریباً معادل 0.4 درصد مخلوط جوش باشد.

1. Bulk density
2. Plastic limit
3. Relaxation mode
4. Diffusion effect
5. Filament effect
6. Lubrication effect
7. Liquid limit
8. Hula
9. Cone index
گرفت که شاخص مخروحیتی (CI) در تیمارهای کودی نسبت به تیمار شاهد بیشتر است (بله از این نتیجه، تراکم تنور و ماده ۱۹۹ در دو تیمار زراعی و علوفه عمیق خاک مزاری این ماده دارد. به دلیل موارد آن با ساخته‌نام مستقیم افزایش سطح‌های تیمار و هدایت حیاتیکی BD، نسبت به تیمارهای کودی بهتر است، از نظر شاخص‌های گیاهی و میزان کود، تیمارهای BD میزان کود اضافه شده نشان داده که در نتیجه تیمارهای عمق شکم سبب کاهش BD خاک می‌شود. باوجود این تحقیقات انجام شده، هنوز تاکید متفاوتی در مورد موارد میان آن افزایش تیمار خاک وجود دارد. به طور کلی تیمارهای خاک یکی از عوامل بیشتری مصرف و فشارهای گازهای نوین به شکم‌های چسبنده در طول زمان‌یابی کمتر از رطوبت بحرانی (CMC) در روش پرپور (SP) و در خاک‌های بیشتر را در کاهش تراکم پذیری دارد.

هدف از این تحقیق بررسی اثر دو عامل مقدار رطوبت خاک و در موقعیت و مکان در تراکم و همکاری کود دامی بر تراکم پذیری خاک مزاری لورک بوده است. انتخاب نمونه لورک از بین تحقیق دارنده متعاقب کاهش آن به نظر می‌رسد که همگام با نتایج دندانه و شناخت وینه که جزئی مواد آلی و نسبت‌های آبیاری نشانه‌های احتمالی اختلال در انسداد تراکم از تراکم دوچرخه‌متحرک مدل اونپرسون ۶۶۵ استفاده شد. شیفت نتایج از دلیل و ضعف مورد زمینی در عملیات خاک روزی و دیگر عملیات برابری، گزارش‌های میان و با برگرداندن به یک

مواد و روشها

این مطالعه در مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه صنعتی اصفهان واقع در مزرعه لورک ناحیه آباد صورت گرفت. خاک مورد آزمایش براساس مطالعات گذشته، جزو ژیر شهر تیپیک های آجیل و دوم در سرتی خاک خشک شده‌ی به بیش‌۲ به

1. Cone index
2. Critical moisture content
3. Fine-loamy, mixed, thermic Typic Hapludolls
4. Wet sieving (Van Bavel) method
5. Split-block design
6. Two-wheel drive
جدول 1- برخی از خصوصیات نیزیکی خاک مورد مطالعه

<table>
<thead>
<tr>
<th>MWD (mm)</th>
<th>BD (Mg m⁻³)</th>
<th>PD (Mg m⁻³)</th>
<th>پنجره خاک</th>
<th>درصد رس</th>
<th>درصد سنگی</th>
<th>درصد شن</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/24</td>
<td>1/22</td>
<td>2/27</td>
<td>لوم رسی سنگی</td>
<td>37</td>
<td>37</td>
<td>16</td>
<td>0-200</td>
</tr>
<tr>
<td>-</td>
<td>1/27</td>
<td>2/29</td>
<td>لوم رسی سیلی</td>
<td>39</td>
<td>39</td>
<td>13</td>
<td>20-250</td>
</tr>
<tr>
<td>-</td>
<td>2/54</td>
<td>2/46</td>
<td>رس سیلی</td>
<td>26</td>
<td>26</td>
<td>8</td>
<td>25-350</td>
</tr>
</tbody>
</table>

1. Particle Density  2. Mean Weight Diameter

جدول 2- خصوصیات خاک سطحی (0-20 cm) در تیمارهای مختلف کودی

<table>
<thead>
<tr>
<th>Ks (cm hr⁻¹)</th>
<th>PI</th>
<th>PL</th>
<th>LL</th>
<th>FC</th>
<th>SP</th>
<th>OM</th>
<th>PD (Mg m⁻³)</th>
<th>تیمار کود</th>
<th>(t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>1/2</td>
<td>1/2</td>
<td>2/3</td>
<td>2/4</td>
<td>2/7</td>
<td>0/33</td>
<td>0/24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8/1</td>
<td>1/4</td>
<td>1/7</td>
<td>2/3</td>
<td>2/6</td>
<td>5/1</td>
<td>2/15</td>
<td>2/10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>1/6</td>
<td>1/1</td>
<td>2/4</td>
<td>2/8</td>
<td>5/5</td>
<td>3/66</td>
<td>2/25</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

(1) مقارت فرستنی یا شاخص مخروطی (CI) برای اندازه‌گیری مقدار خاک از دستگاه فرستنی تولید شده و ساخت مشابه این ابزار استفاده شده است. این دستگاه از نظر ساختاری شامل سیستم قابل ساختار اولیه و ریزپدیداردی می‌باشد. با تغییر میله انتقال به داخل خاک، همراه با آن جهت تشعشع قوی نیز حرق خاک می‌کند و عمق را تشخیص می‌دهد. میزان نیروی وارده بر انتهای مخروطی میله انتقال در هر عمق در سطح ذخیره دستگاه نگه داشته می‌شود. این داده‌ها در ریز پدیدارده و سپس توسط کامپیوتر مورد پردازش قرار می‌گیرد. برای محاسبه مقامات نسبی یا شاخص مخروطی از فرمول زیر استفاده می‌گردد:

\[ CI = \frac{0.98(F/A)}{K} \]

که در آن:

- \[ CI \] = شاخص مخروطی خاک بر حسب مگاپاسکال
- \[ F \] = نیروی عمودی وارده به مخروط بر حسب کیلوگرم
- \[ kgf \] = نیرو
- \[ A \] = مقطع مقطع مخروط بر حسب سانتیمتر مربع (cm²)

تراکتور منصوب و در حین تراکم در وضعیت حامل و تایید قرار داده شده (25 و 33). تراکم با توجه به سطح بازی بخش اول آپاره در سردسیری راحت (20-25 سانتیمتر) 2 4 روز از آپاره (20-25 سانتیمتر) به داخل پهنای پرکوپ و 4 روز پس از آپاره (20-25 سانتیمتر) صورت گرفت. تیمارهای یک (P1) و دو (P2) مزرعه عبور در هر یک از روندی گنجانده شد.

خصوصیات نیزیکی و سکانی انجا در انتهای شرقی و بخشی از عبور تراکتور (BD) در خاک مناسب خاک انجا انتزاعی گرفت. این سلندرها از جنس فولاد و دارای قطر وارتفاع نسبی 5 سانتیمتر بودند. نمونه‌های دست نخورده در تیمارهای مختلف و مختلط بوده و همچنین 5 سانتیمترهای تا عمق 40 سانتیمتری بهبود اندازه‌گیری در هر پلاس 2 4 بار تکرار شد و متوسط اعداد در هر عمق مورد تجزیه قرار گرفت.
نتایج و بحث

نتایج تجزیه واریانس جرم مخصوص ظاهری (BD) و شاخص مخروطی (CI) در جدول 3 آورده شده است. تأثیر رطوبت کود در سطح 1 درصد معنی دار بود ولی به CI، برای CI نتایج پایبند نبود. تأثیر رطوبت کود بر نتایج CI، برای CI نتایج پایبند نبود. 

مطالعه اثر کود و شیویت کود بر نتایج CI، برای CI نتایج پایبند نبود.

یرای جلوگیری از ناهنجاری بودن تناوب پس از تراکم، مقاومت فوموسنجی در رطوبت (1/40) cm PL از اندام‌گیری شد. به دلیل تغییر پذیری قابل توجه این بافت‌ها، اندام‌گیری در هر پل 14 باور نموده که نمایی از آنها از محل اثر عاجیات لاستیک و نیم دیگر از محل آفرین عاجیا بروند. انتظار می‌گردد که در مقایسه با فاصله 2-3 سانتی‌متری، صورت گرفت و مستقیم ادامه در محیط تناوبی گردد.

یرای در نظر گرفتنترین شرایط تراکم CI و BD در محل خش مزکور نشان می‌دهد که باید از حالت تراکم ریز (10) درصد بود. همه موارد، در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط نتایج انجام شد. این نتایج در انجام تراکم از این محیط

1. Soil elements 2. Soil sinkage

31
جدول 3- جدول تجزیه واریانس جرم مخصوص ظاهری (BD) و شاخص مخروطی (CI) میانگین مرعوبات درجه آزادی منبع تغییرات

<table>
<thead>
<tr>
<th>CI</th>
<th>BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0026</td>
<td>0.0039</td>
</tr>
<tr>
<td>0.0047</td>
<td>0.0064</td>
</tr>
<tr>
<td>0.0126</td>
<td>0.0151</td>
</tr>
<tr>
<td>0.0013</td>
<td>0.0019</td>
</tr>
<tr>
<td>0.0576</td>
<td>0.0639</td>
</tr>
<tr>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>0.0034</td>
<td>0.0045</td>
</tr>
<tr>
<td>0.0007</td>
<td>0.0008</td>
</tr>
<tr>
<td>0.0299</td>
<td>0.0312</td>
</tr>
<tr>
<td>0.0028</td>
<td>0.0039</td>
</tr>
<tr>
<td>0.0009</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.0055</td>
<td>0.0065</td>
</tr>
<tr>
<td>0.000626</td>
<td>0.000637</td>
</tr>
</tbody>
</table>

۶۰ و ۶۱ به ترتیب نشان دهنده اختلاف معنی دار در سطوح آماری ۰/۱۰ و ۰/۰۵ می‌باشند.

پایه ذرات تحت فشار به راحتی صورت گرفته و این عمل سبب افزایش شدیدی در BD می‌شود (۱۲). تراکم در رطوبت خاک (W) تغییر معنی‌داری در BD ایجاد نکرده است. تغییرات BD با عمق خاک در تیمار بدون کود (جدول ۱) مشابه است. افزایش BD در شکل ۱ نشان دهنده اثر افزایش فناوری کود (M) بر روی BD است. تراکم در رطوبت خاک (W) تأثیر افزایش معنی‌داری در BD دارد. تغییرات BD در سطح PL به دلیل وجود آب زیاد، خاک سطحی زیر استاتک (0–5 cm) مقاومتهای کمی در مقابل نشان داده و به اطراف جریان پایه کاست شده‌اند. با بیان‌گردن این نتایج، به این معنی است که در رطوبتهای زیاد (PL) در حضور مولکول‌های آب، جهت

جوان حدود ۰/۳۳ Mg m⁻³ BD متوسط حد بحرانی برای رشد اکثر گیاهان زراعی است (۲۱)، در رطوبت PL در همه تیمارهای کود، به این حد رسیده است (جدول ۴). نتایج نشان دهنده تغییرات BD پس از تراکم در هر یک از سطوح رطوبتی، در جدول ۵ ارائه شده است. به غیر از رطوبت ۶/۰ و S۵، سایر رطوبت‌ها تغییر فاحشی در BD نسبت به قبل از تراکم (P<۰/۰۱) نشان دهنده ایجاد گیاهان. اگرچه تأثیر رطوبتهای PL و S۸/۰ PL در سطح ۱ درصد معنی‌دار بوده است، لیکن اعداد ۱ سطح به رطوبت نسبت به PL نسبت به S۸/۰ PL یوزگرتوست و به این معنی است که در رطوبتهای زیاد (PL) در حضور مولکول‌های آب، جهت

۱. Particle orientation
جدول 4- میانگین جرم مخصوص ظاهری (Mg m⁻³) (در لاها 30-32 سانتیمتری خاک)

<table>
<thead>
<tr>
<th>پیش از</th>
<th>پس از</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>1/38 ²C</td>
<td>1/51 ²B</td>
</tr>
<tr>
<td>1/45 ²B</td>
<td>1/72 ²A</td>
</tr>
<tr>
<td>1/40 ²A</td>
<td>1/50 ²B</td>
</tr>
</tbody>
</table>

در سطوح مختلف رطوبت خاک در حین عبور تراکتور.

جدول 5- مقادیر 1 برای مقایسه میانگینهای جرم مخصوص ظاهری در لاها 30-32 سانتیمتری خاک در تیمارهای مختلف نسبت به تیمار بدون عبور (P) با استفاده از آزمون تی گافل منطقه

<table>
<thead>
<tr>
<th>پیش از</th>
<th>پس از</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>1/47 ²B</td>
<td>1/72 ²A</td>
</tr>
<tr>
<td>1/45 ²B</td>
<td>1/72 ²A</td>
</tr>
<tr>
<td>1/40 ²A</td>
<td>1/50 ²B</td>
</tr>
</tbody>
</table>

* مشابه می‌باشد اختلاف معنی‌داری ندارند (دانگی 10%).

شدن محیطی، فشرده‌گی تحت فشار ذرات اطاف به حداکثر خود می‌رسد (8 و 12). همچنین به دلیل اعمال نیروی به‌شکل توزیع و آماده‌سازی است. مقادیر از آزمون گافل منطقه‌ای (62). در تیمار تراکم

تمام تراکم بر افزایش سطحی کاسته می‌شود (62).

از رطوبت در زمان تراکم بر شاخه مخرب (CI)

شکل 1- شکل نمودار حجمی فشار ذرات اطاف بر حداکثر در سطح

(10%) بین سطوح رطوبتی و PL و PL وجود دارد. ویل در بقیه تیمارها، تفاوتی بین سطوح رطوبتی دیده نمی‌شود (ستون از جدول 4). روند تغییرات CI نسبت به تیمار

(ساده (P) در رطوبتها مختلف شبیه به می‌باشد (جدول 4). بین آزمایش‌های افزایش مقاومت خاک می‌باشد (32). خاک به طراح

محل عبور و در نتیجه افزایش مقاومت خاک می‌باشد

در قطعات میانگینهای جدول 7 نیز

تیمارهای سنتی هستند.

1. Conined
دشت 1- تأثیر سطحه مختلف رطوبتی در تیمار بدون کود (M₀)، با یک عبور (P₁) و دو عبور (P₂) تراکم پذیری (BD) و مقاومت CI آنها با شاهد (P₀).

در دشت 2 تأثیر کود دامی در رطوبت بر انگیزه PL تیمارهای پذیری خاک نسبت به شاهد (P₀) نشان داده شده است. در تیمارهای کودی، فاصله منحنی‌های گبل و بعد از تراکم کمتر از تیمار P₀ است. به عبارت دیگر مواد آلی سبب کاهش تراکم پذیری خاک می‌شوند. همچنین تیمارهای کودی سبب انزایه عمق BD بیشتری می‌گردند. بنابراین خاک سطحی در تیمارهای کودی مقاومت کمتری در مقابل خروج جوانه‌های خورد شناخت مهم می‌باشد. در تیمار M₀، عمق از تراکم در حدول M₁ و M₂ حدود ۳۵ cm و ۲۵ cm می‌باشد. از (ΔBD) = (BD) است (ABS) حدود ۵۰/۵ Mg cm⁻³ است (۳). نتیجه این
جدول 4- میانگین شاخص مخروطی در لایه 0-30 سانتی‌متری خاک در سطوح مختلف رطوبت خاک پس از عبور تراکتور

<table>
<thead>
<tr>
<th>بسته‌بندی</th>
<th>M₈</th>
<th>M₇</th>
<th>M₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>پ₁</td>
<td>P₂</td>
<td>P₃</td>
<td></td>
</tr>
<tr>
<td>0/8A B</td>
<td>0/8A B</td>
<td>0/8A B</td>
<td></td>
</tr>
<tr>
<td>0/6A B</td>
<td>0/6A B</td>
<td>0/6A B</td>
<td></td>
</tr>
<tr>
<td>0/5A B</td>
<td>0/5A B</td>
<td>0/5A B</td>
<td></td>
</tr>
</tbody>
</table>

جدول 7- مقایسه میانگین‌های شاخص مخروطی در لایه 0-30 سانتی‌متری خاک در تیمارهای مختلف نسبت به تیمار بدون عبور (P₁) با استفاده از آزمون t غیرجفتی یک طرفه

<table>
<thead>
<tr>
<th>بسته‌بندی</th>
<th>M₈</th>
<th>M₇</th>
<th>M₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>P₂</td>
<td>P₃</td>
<td></td>
</tr>
<tr>
<td>0/98 %</td>
<td>0/79 %</td>
<td>0/27 %</td>
<td></td>
</tr>
<tr>
<td>0/94 %</td>
<td>0/64 %</td>
<td>0/26 %</td>
<td></td>
</tr>
<tr>
<td>0/28</td>
<td>0/23</td>
<td>0/12</td>
<td></td>
</tr>
</tbody>
</table>

شناخته است، ولی در تیمار بدون کود (M₈) تقریباً در برابر 1/32 تمرکز در رطوبت ایال (PL) و عبور مجدد سبب کاهش تراکم خاک تحت اثری می‌شود زیرا می‌شود و در عبور مجدد (P₁) وجود ماده آلی از تراکم اضافی جلوگیری می‌کند.

همچنین اثر مواد آلی بر عمق تاثیر فشرددی عمیق تأثیر فشرددی در تیمارهای مختلف در جدول 8 آورده‌شده است. این تاثیر کود داسی عمیق تأثیر تراکم کاهش یافته است. این کاهش در رطوبت PL و عبور قبل تراکم خاک بالایی و در تراکم و تفاوت عمیق تأثیر فشرددی در تیمارهای کودی (CI) می‌باشد. در این مورد تفاوت عمیق تأثیر فشرددی باعث کاهش تراکم باشد. همچنین این تأثیرات بر عمق تراکم و تفاوت عمیق تأثیر فشرددی بر عمق تراکم تأثیراتی بر عمق تراکم و تفاوت عمیق تأثیر فشرددی ناچیز است.

اثر مواد آلی بر شاخص مخروطی (CI) در رطوبت PL و عبور، تفاوت معنی‌دار بین تیمار M₁ و M₈ وجود دارد ولی تفاوت معنی‌داری بین M₁ و M₈ مشاهده نشده است. این تفاوت مربوط به حداقل 4 درجه یک تفاوت معنی‌دار بین CI منحنی شاخص اولیه (P₁) استفاده شد. این مدل‌گیری آن است که شاخصهای مخروطی در تیمارهای کودی قبل از تراکم با هم‌دیگر تفاوت معنی‌دار نداشته. در صورتی که در یک عبور، تیمارهای کودی تفاوتی نداشته ولی در دو عبور مشاهده می‌شود که CI M₁ از افزایش اندکی M₈ در سطح کودی M₈ و سپس M₁ افزایش آلیانس

35
جدول 8- عمق تأثیر نشردگی (cm) در تیمارهای مختلف رطوبت، کود و عبور

<table>
<thead>
<tr>
<th>$P_1$</th>
<th>$M_1$</th>
<th>$M_2$</th>
<th>$M_3$</th>
<th>$\Delta B D \geq 0.5 \text{Mg m}^{-3}$</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>35</td>
<td></td>
<td>22</td>
<td>PL</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>33</td>
<td></td>
<td>22</td>
<td>/APL</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>13</td>
<td></td>
<td>*</td>
<td>/SP</td>
</tr>
<tr>
<td>$\Delta C I \geq 0 / \text{MPa}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>34</td>
<td></td>
<td>28</td>
<td>PL</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>34</td>
<td></td>
<td>28</td>
<td>/APL</td>
</tr>
<tr>
<td>*</td>
<td>15</td>
<td>20</td>
<td></td>
<td>*</td>
<td>/SP</td>
</tr>
</tbody>
</table>

[Diagrams showing CI (MPa) and BD (Mg m$^{-3}$) with various P, M, and soil moisture conditions.]

شکل ۲- تأثیر سطح مختلف کودی در رطوبت با یک عبور PL (P) و مقارنی پراکنده نظریه تأثیر آنها با شاهدهای مربوطه (متقابله با خط چین).

شکل ۳- تأثیر سطح مختلف کودی در رطوبت با یک عبور BD (P) و مقارنی پراکنده نظریه تأثیر آنها با شاهدهای مربوطه (متقابله با خط چین).

۳۶
نتیجه‌گیری

1- ترکم گیاهی پذیری در رطوبت حد خشک‌مرطوب (PL) (هنج برای وجود مواد آلی در خاک سبب افزایش میزان داری DNA و BD چون تاثیر تأثیر قرار گرفته‌اند و عوامل اثرات کشاورزی در خاک مسطحی 25 cm تحت تاثیر آنها قرار نمی‌گیرد. بنابراین با پایداری از ترکم در مزرعه در این رطوبت جلوگیری کرده. در رطوبت A/8 PL ترکم در مزرعه سبب CL و BD شد ویلی به حد بحرانی (به ترتیب 7 و 4/3 Mg m⁻³) ترسید.

2- مواد آلی به نتایج در افزایش دامنه ترکم پذیری و کاهش ترکم پذیری خاک، بلکه سبب کاهش فشارگذاری خاک تحت الأرضی (بیش‌تر از 50 cm) نیز شد (16). این موضوع خصوصاً در رطوبتهای زیاد و تکرار فشار وارد (عبور مجدد) قابل توجه بود. از نظر آماری، تفاوت بین تاثیر سطوح کودی A/8 و 0/8 MPa 1/100 t ha⁻¹ و 100 t ha⁻¹ در رطوبت و عبور مجدد بر CI و BD دیده نشد. به عبارت دیگر مواد آلی زیاد (100 t ha⁻¹) ممکن است در رطوبتهای بالا از تأثیر مواد آلی بر عبور وارد (هیچ تاثیری) باشد. این نتایج پایداری بیش‌تر از خاک جلوگیری کرده، سبب افزایش مقاومت خاک شوند. به طور کلی تاثیر کود دامی در رطوبت و عبور مجدد بر (P₁) تراکم پذیری این خاک قابل توجه می‌باشد.

3- عبور مجدد بر خلاف نظر متناب متفاوت (12، 16 و 27)، سبب افزایش قابل توجه درجه ترکم خاک نشد. این نتیجه آن است که مجزک حساسیت ژیانی به تراکم دارد.

4- رطوبت سطح‌های برای ترکم پذیری در این مزرعه PL نیز درصد و تنفس می‌گردد و در صورت افزودن کود دامی به میزان 1/8 PL (25 t ha⁻¹ و 0/6 PL) نیز تأثیر قابل ذکر داشت.
منابع مورد استفاده

1. نادری، م. ج. ۱۳۷۰. فیزیک خاک (ترجمه). چاپ سوم، انتشارات دانشگاه تهران، ۲۹۶ صفحه.
2. رجبی، ح. ۱۳۶۸. چگونگی تحول، تکامل و بررسی خصوصیات کاتی‌های نسبی خاک‌های سری خمینی شهر در مزرعه آزمایشی.