انتقال زندهای VAP و OF2 به چندندرنده با کمک آگروباکتریوم ریزوزنر برای بررسی مقاومت به نماند

پیمان نوروزی ۱، دکتر کاوه محمدی ۲، محمد علی ملی‌یزدی ۳، بهمن یزدی صمیمی ۴

چکیده

زندهای VAP و OF2 (نوعی اکسکلاته اکسیداز) و کمک نشانگر مولکولی AFLP و سیستم در هیریدی در تأثیر باکتریای همسانه شده‌اند. برای آزمون کلیات این زندها در ایجاد مقاومت سلول از نگهداری جدا سازی، درون T-DNA تغییر پایه در پایین‌دست پرموت جایی CaMV35S در پایین‌دست پرموت جایی CaMV35S نیز بدون T-DNA ناسیون در ایجاد مقاومت به نماند، قرار گرفت. این Hox سیستم از جهاد ناپایداری با چندندرنده در CaMV35S قبل از تغییر کننده، آن چندندرنده به آگروباکتریوم ریزوزنر می‌پردازد;

1. اهدای اصلاح نیازهای، مؤسّسه تحقیقات آمار و تحقیق، تهران
2. مؤسّسه تحقیقات آمار و تحقیق، دانشگاه کرمان
3. دانشگاه شهید چمران
4. دانشگاه شهید چمران

واژه‌های کلیدی: چندندرنده، آگروباکتریوم ریزوزنر، نماند، سیستم، پیام‌رسانی نشانگر مولکولی

111
مقده
نامه‌های بیماریهای گیاهی هم به سه بخش شده‌اند: از گیاهان زراعی آسیاب می‌باشد، که هنرهای جیران آن سیب‌زمینی از 14 نامه‌ای (Globodera) گل‌خودرو، (Meloidogyne) ایندیکس، که موارد مختلفی گیاه‌های آنان از این نامه‌ها (Heterodera) ساختارهای تغذیه‌ای ویژه جذب می‌کنند (13).

حدود 29 گونه نامه از 16 جنس می‌توانند انگل چند‌قند باشند. کاهش عملکرد چند‌قند زیر اثر نامه‌ها حدود 10 درصد برآورد شده، که همان می‌باشد (Heterodera schachtii).

چند هزار نامه سیستیمی به چهار مرحله ای زیر تقسیم می‌شود. لازم این نامه به ریشه گیاه می‌بایست کرد. درون استانه‌های شکل نشان‌دهنده تغذیه‌ای خیال اختصاصی به نام سیستیم‌های (Sycinetum) می‌دهد. سیستیم‌های از سلول‌های بی‌شماری نشان‌دهنده است که پروتئین‌ها آنها به یک‌نوع مصالح. نامه‌ها می‌توانند بر یک گونه موجود در سلول‌های تغذیه کننده اثر می‌گذارند و تشکیل ساختار سیستیم‌های فعال کنند. سیستیم زدن‌گی نامه از همین نامه‌ها ماده یک از تشکیل نرم درون یک سیستیم به پایان می‌رسد. این نامه‌ها نیز 10 سال قبل چند نسخه خود را در حال مقایسه می‌کنند (13). علاوه بر آن، نامه‌ها معمولاً کاهش رشد، تغییر در مورفولوژی ریشه و چرب‌کش شدن گیاه‌ها است (9).

کنترل نامه‌های استفاده از ناواز اینهای و کاربرد
نامه‌کنش‌ها نیز مهم‌ترین ناحیه استفاده از ابزار اصلاح شده قرار می‌دهند. استفاده از ابزار اصلاح شده می‌باید به نامه‌ای است. اصلاح واریته‌های میوه در برنامه‌های اصلاح نات (9).

زمینه مقاومت سبب و اکثریت گیاه‌های موضعی یا سیستیمیک

می‌شنند. برای مثال، یک‌نقطه فوق حساسیت (response) متوجه به نکته زدن وضعیت سریع، افزایش فعالیت گیاه‌کش‌های و روس لیپوکسی می‌گردد. تیپ‌های گیاه‌ها که نامه‌ای گیاهی گیاه‌ها می‌باشد، و نیز به عنوان قندی از مقدار نظر (مانند چند‌قند) همراهی به نوع آنزیمی جدید برای استفاده در اصلاح مقاومت به نامه‌ای وجود دارد (9).

با استفاده از نشان‌دهنده مولکولی چندین گونه نامه به می‌باشد (Globodera) در سپیگلیتین، که نامه‌ای نامه و روشی (restroichiography) در زن‌های یکی و Hero زن‌هایی از خریان‌دار و شریان فرنگی با تغییر مسئول آجود می‌باشد (Meloidogyne spp) در سوپا (Meloidogyne) نامه سیستیمی به نامه‌ای کن (Heterodera glycines) اجود نامه‌ای کن در گونه‌های زراعی جنس Beta یافته‌ای به نامه‌ای کن (9). نامه‌ای زن‌هایی از گونه‌های و شناسی جنس به بدن لایه‌ای صاحب وارد شده (10). میزان نامه در چند‌قند به سبب یک سری زن در سپیگلیتین امکان (Signal transduction pathway) رسی‌سیری، این نامه به می‌باشد. این نامه به تریل شده و محصول نهایی آنزیمی، که تکونی ناشناخته است، متوجه به ایجاد مقاومت می‌گردد.

با کم‌کم نشان‌دهنده مولکولی و یا دیگر روش‌ها، شماری از یکی قندی سالی و همسان شدندان (13). برخی از این یک‌نقطه با تلاقی های بین گونه و تولید لایه‌ای جا به جایی به چند‌قند ارائه می‌یافتند (12 و 13). گیاهان به دست امداد مقاوم به نامه‌ای هستند. ولی خصوصیات زراعی خوبی ندارند. بنا براین، برای حذف اثر گونه‌های مجاور،
پس از اکثر فورورزه‌های مخصوص آنزیمی پلاسمیدها در ذهن آغاز یک یک درصد از پاری‌آوری TAE (11) به واسطه ۷۰ ترکیب، به استفاده از سپاگلاس Band prep kit (Amersham Pharmacia Biotech) تحلیل‌های کیستی والاس مورد نظر تفکیک شده، با استفاده از DNA جهاد از DNA و خالص شدن. این تحلیل‌ها به عنوان از فناوری‌های تقلیل و نقال کردن نوین شونده یا کار می‌رود.

(Linear vector)

تهیه ناقل‌های کلر

پلاسمید pbin121 با آنزیم EcoRI و P12194 به روش معمول با اغلقت کامل آنزیمی و حجم کلی ۵۰ میکرولیتر در دمای ۷۰ گرم در صورت صدا. از یک ساعت، چهار میکرولیتر از مخلوط واکنش آنزیم برداشت و به ترتیب تاپید کننده آزمایشی، در زل یک یک درصد آغاز خلاصه شده. درای ۲۲ کیلو‌گرام از سطح زل و چهار میکرولیتر از سپاگلاس خاص گرده. برای pbin121 غلظت دن زمان اکتشاف کردن ترکیب شیمی.

هضم آنزیمی پلاسمیدهای pGEMT easy

برای جدای سازی زن‌های پلاسمید از pGEMT easy به واسطه EcoRI و XbaI با استفاده از آنزیم EcoRI از pGEMT easy از آنزیمی Roche غلظت در س استفاده شده. برای روش فناوری آنزیمی EcoRI از ۲۰ میکرولیتر حجم کلی واحد آنزیمی با نسخه ۱۵ واکنش و نیز هضم در دقیقه به جای یک ساعت استفاده شد. درای برای XbaI به روش معمول با غلظت کامل آنزیم و زمان هضم یک ساعت انجام گرفت. درای و اکتشاف آنزیمی

با استفاده از آنزیمی پلاسمیدها در ذهن آغاز یک یک درصد از پاری‌آوری TAE (11) به واسطه ۷۰ ترکیب، به استفاده از سپاگلاس Band prep kit (Amersham Pharmacia Biotech) تحلیل‌های کیستی والاس مورد نظر تفکیک شده، با استفاده از DNA جهاد از DNA و خالص شدن. این تحلیل‌ها به عنوان از فناوری‌های تقلیل و نقال کردن نوین شونده یا کار می‌رود.

(Linear vector)

تهیه ناقل‌های کلر

پلاسمید pbin121 با آنزیم EcoRI و P12194 به روش معمول با اغلقت کامل آنزیمی و حجم کلی ۵۰ میکرولیتر در دمای ۷۰ گرم در صورت صدا. از یک ساعت، چهار میکرولیتر از مخلوط واکنش آنزیم برداشت و به ترتیب تاپید کننده آزمایشی، در زل یک یک درصد آغاز خلاصه شده. درای ۲۲ کیلو‌گرام از سطح زل و چهار میکرولیتر از سپاگلاس خاص گرده. برای pbin121 غلظت دن زمان اکتشاف کردن ترکیب شیمی.

هضم آنزیمی پلاسمیدهای pGEMT easy

برای جدای سازی زن‌های پلاسمید از pGEMT easy به واسطه EcoRI و XbaI با استفاده از آنزیم EcoRI از pGEMT easy از آنزیمی Roche غلظت در س استفاده شده. برای روش فناوری آنزیمی EcoRI از ۲۰ میکرولیتر حجم کلی واحد آنزیمی با نسخه ۱۵ واکنش و نیز هضم در دقیقه به جای یک ساعت استفاده شد. درای برای XbaI به روش معمول با غلظت کامل آنزیم و زمان هضم یک ساعت انجام گرفت. درای و اکتشاف آنزیمی

با استفاده از آنزیمی پلاسمیدها در ذهن آغاز یک یک درصد از پاری‌آوری TAE (11) به واسطه ۷۰ ترکیب، به استفاده از سپاگلاس Band prep kit (Amersham Pharmacia Biotech) تحلیل‌های کیستی والاس مورد نظر تفکیک شده، با استفاده از DNA جهاد از DNA و خالص شدن. این تحلیل‌ها به عنوان از فناوری‌های تقلیل و نقال کردن نوین شونده یا کار می‌رود.

(Linear vector)

تهیه ناقل‌های کلر

پلاسمید pbin121 با آنزیم EcoRI و P12194 به روش معمول با اغلقت کامل آنزیمی و حجم کلی ۵۰ میکرولیتر در دمای ۷۰ گرم در صورت صدا. از یک ساعت، چهار میکرولیتر از مخلوط واکنش آنزیم برداشت و به ترتیب تاپید کننده آزمایشی، در زل یک یک درصد آغاز خلاصه شده. درای ۲۲ کیلو‌گرام از سطح زل و چهار میکرولیتر از سپاگلاس خاص گرده. برای pbin121 غلظت دن زمان اکتشاف کردن ترکیب شیمی.

هضم آنزیمی پلاسمیدهای pGEMT easy

برای جدای سازی زن‌های پلاسمید از pGEMT easy به واسطه EcoRI و XbaI با استفاده از آنزیم EcoRI از pGEMT easy از آنزیمی Roche غلظت در س استفاده شده. برای روش فناوری آنزیمی EcoRI از ۲۰ میکرولیتر حجم کلی واحد آنزیمی با نسخه ۱۵ واکنش و نیز هضم در دقیقه به جای یک ساعت استفاده شد. درای برای XbaI به روش معمول با غلظت کامل آنزیم و زمان هضم یک ساعت انجام گرفت. درای و اکتشاف آنزیمی
کشت نک کلوسی و استخراج پلاسمیدی DNA
از هرش کشت باکتری حذف ۲۰–۵۰ نکلوسی بردانست و در ۳۷°C مایع مایع LB حاوی ۵۰ میلی‌گرم در لیتر کامپانزین به دلیل مصرف چیدنی نکلوسی داشته و با اکثریت رشد یافته برای استخراج پلاسمیدی به وسیله لیزر قلب‌داری (Alkaline lysis) استفاده شد.

اضافه نامزدی پلاسمیدی استخراج شده برای تایید حضور زن OF2 با VAP در ناقل‌های پلاسمیدی و pAM194 آزمون با pB121 و XbaI و با EcoRI آزمیز کامل بیشتر به نوع ناقل استفاده شد و نمونه‌ها دارای زنها OF2 و VAP تا انتهای گردید.

آزمون PCR برای پلاسمیدی نورتکب
برای تایید جهت هم‌سنجی (Sense) زنها OF2 و pVAP در مجاورت پروموتر در این صورت ذهن پر جریمه و بیان می‌باشد. آزمون PCR روی پلاسمیدی دارای زنها فقور (Primers) انجام گرفت. برای این منظور از جفت اُگَزاقرخاهی متفاوتی که در ناحیه پروموتر و درون زنها مورد نظر وجود داشتن استفاده شد که مشخصات آنها به شرح زیر است:

شناخت PCR شامل ۴۹ برای ۴۰ دی‌اف‌هی، سپس ۵۳ سیکل یک دی‌دیو ۵۵ درجه سانتی‌گراد، سپس ۱۰ دقیقه ۴۰ درجه سانتی‌گراد و سپس ۲۰ دقیقه ۴۲ درجه سانتی‌گراد بود.

اتصال (Ligation) (Znهاي VAP و OF2) درون ناقل خفیف به وسیله VAP با ۵۰ نانوگرم زنها DNA خالص شده OF2 و pAM194 و VAP تا ۵۰ نانوگرم DNA خالص شده خاک خشک (Ligase) مخلوط و در دمای ۱۶°C برای ۱۵ دقیقه نگه‌داری شد.

E.coli تهیه سولوژی پذیرنده از برای این کشت شانه باکتری به شیب ۱۰۰ در یک میکروتیکل (۰.۵ میلی‌متر) تعداد ۲۰۰۰ و در دقت ۹۰ دقیقه برای دو ساعت انجام شد. تا ناOD550 به حدود ۰.۵ رسید. سپس سولوژیتی پذیرنده در ۳۵۰۰ در یک میکروتیکل به‌طور ۴۰ دقیقه در ۴۴ سانتی‌گراد و سپس در ۱۰ دقیقه به مدت ۱۰ دقیقه در ۹۴ سانتی‌گراد می‌باشد. سپس ۲۰ دقیقه روی پذیرنده و در این مرحله سولوژیتی حالت پذیرنده و ادامه دریافت پلاسمیدی خارجی گردیدند.

ترازخی سولوژیتی پذیرنده با محصولات اتصال
در این مرحله، ۱ میکروتیکل از هر یک از محصولات اتصال زنها VAP و OF2 به طور جداگانه به ۱۵۰ میکروتیکل سولوژی پذیرنده باکتری افزوده شد و به مدت ۲۰ دقیقه روی پذیرنده گردید. سپس با استفاده از روش شوک حرارتی (۱۱.۱). انتقال محصولات اتصال به درون باکتری انجام گرفت. باکتری‌ها روی محیط کشت حاشیه LB حاوی ۵۰ میلی‌گرم در لیتر کامپانزین پخش، و محیط کشت از اینکوباژ ۳۷°C برای یک شب به منظور تنشکل کلوسی نگه‌داری شدند.

۲۱۴
نتایج و بحث

پگمت انسیم پلاسمیدهای EcoRI موجب تلفیق دوگانه به‌کار رفته، به‌طوری‌که در یک سطح محسوس تلفیقی گردید (11). در این مطالعه، سلول‌های آگروپلاستیک که در مجاورت کلیسیک آن وجود داشتند، به کار رفتند. در این مطالعه، سلول‌های آگروپلاستیک که در مجاورت کلیسیک آن وجود داشتند، به کار رفتند.

تفهیم بانه گیاهی با آگروپلاستیک ریزوژن و تولید سبزه‌های موهین

در این مطالعه، سلول‌های آگروپلاستیک ریزوژن سبزه‌های موهین، از سلول‌های آگروپلاستیک pBinOF2 و pAMOF2، در مجاورت با DNA و VAP در روش pAMVAP را در ترکیب محسوب کردند. سپس، سلول‌های آگروپلاستیک ریزوژن و سبزه‌های موهین در مقابل و برای مدت دو روز تحت انجام شد و در این دوره، امکانات تناسلی زن از پاکتیک به سلول‌های گیاهی فراهم گردید.

PCR و انجام GUS فعالیت آنزیم

برای تایید حضور زن‌های OF2 و VAP در مجتمعات GUS، مورد سنجش فعالیت آنزیم GUS، مورد سنجش GUS
با به اعتراض pBin121 با ρ BinOF2 (ترکیب زن OF2) ρBinOF2 گنگ‌آمیزی ریشه‌های مولیون حساس از ترازیخی با با محصول ρAMVAP و ρAMOF2. نشان داد که به ترتیب 33 و 35 درصد از ریشه‌های مولیون ترازیخی هستند، و حامل ρBinOF2 به ناقل‌های دوگانه مذکور T-DNA می‌باشند (جدول 1)، و رنگ آبی را در محل‌های مختلف ریشه‌های مولیون حساس در مجاورت ρBinOF2 که در ρAMOF2 پرورش‌کننده گردید.

نتایج PCR پلاسمیدیهای نوترکیب

روش PCR روی پروتوکل ORF (Open reading frame) مبتنی بر ρAMOF2 و ρAMVAP. باید گزارش داده شود که برای (pAM194) در مورد هضم آنزیمی ρAMOF2 به غلظت کامل آنزیمی (E. coli ۱ جدول 1 و شکل ۵).
جدول ۱. نتایج رنگ‌آمیزی PCR و آزمون GUS برای ریشه‌های مویین حاصل از ترکیب دیبرگ جنگل‌فرنگ با آگروباکتریوم ریزوئرز pAMVAP و pBinOF2.

<table>
<thead>
<tr>
<th>شمار جداسکت</th>
<th>تام پلاسمید</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAMOF2</td>
<td>۲۸۰</td>
</tr>
<tr>
<td>pBinOF2</td>
<td>۲۸۰</td>
</tr>
<tr>
<td>pAMVAP</td>
<td>۲۸۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شمار جداسکت</th>
<th>تام پلاسمید</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳</td>
<td>NA</td>
</tr>
<tr>
<td>۹۵</td>
<td>NA</td>
</tr>
<tr>
<td>۲۸۰</td>
<td>pAMOF2</td>
</tr>
<tr>
<td>۲۸۰</td>
<td>pBinOF2</td>
</tr>
<tr>
<td>۲۸۰</td>
<td>pAMVAP</td>
</tr>
</tbody>
</table>

نمودار ۱

شکل ۱. نتایج PCR و آزمون پلاسمید ترکیب ۲ pAM-FLoxF2R در محیط هرکوم سی و انتخاب pAMOF2 توسط CaMV35S در محیط هرکوم OF2

DNA size (base pair)

+ ۱۰۱۸
+ ۵۰۶

RIEHEHAYE MOYININ TRARIXEHTA | ۱۰۱۸

AMVAP و OF2 در مقاله با شاهد مفهومی، ریشه‌های مویین مربوط به VAP و OF2 حاصل بر اساس روش سیستمی تشکیل شده به اوجود یابد، درصد ترکیب و تولید پدیش‌های صفتی در سن ۱۵ تولید شده، مشخص شد که زن OF2 در محیط هرکوم گیاهی نسبت به زن OF2, Hs, i-th. در نتیجه تولید pAMOF2 در محیط هرکوم, CaMV35S و تولیدی قرار گرفت که پلمپی چند فرد حساس به نامانه و یا سری‌ای چند

Monotelosomic (حمل زن مقاومت به نامانه را با یک فرد سایر مقاومت به نامانه حاصل را در محیط ۳۰۰۰۰ نهاد داده و پس از چهار هفته، М ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹ ۱۰ ۱۱ ۱۲ ۱۳ ۱۴ ۱۵ ۱۶ ۱۷ M

TYPICAL DNA LADDER (IBK) DNA ADHOMAN

<table>
<thead>
<tr>
<th>NA</th>
<th>۳۳</th>
<th>۶۵</th>
<th>۲۸۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td>NA</td>
<td>۵۰</td>
<td>۲۸۰</td>
</tr>
<tr>
<td>NA</td>
<td>۲۸</td>
<td>۳۵</td>
<td>۲۸۰</td>
</tr>
</tbody>
</table>

بطیعی از نامانه به سیستم کامل یا نامانه کردن. در مورد اثر زن OF2 بر این نامانه به نظر می‌رسد که
شکل ۲. نتایج PCR چهار نمونه پلاسمید نوترکیب ۲ با آغازگرهای مختلف برای تایید همسو pBinOF2

در مجاورت پرومتر

HspPprom

پرداخت

(1KB ladder) DNA

برای نمونه‌های PCR مطابق

pBinOF2 با آغازگرهای 1832DK1, FLOxR

5R13, 1832DK1 با آغازگرهای pBinOF2

FLOxR, FLovR با آغازگرهای pBinOF2

برای نمونه‌های PCR مطابق

pBinOF2 با آغازگرهای 5R13, 1832DK1

PCR جهت واریز DNA اکن و PCR بی‌تاریخ

با آغازگرهای با کار رفته برای تایید در ستونهای ۱-۴

شکل ۳. نتایج PCR در نمونه پلاسمید نوترکیب CaMV35S با آغازگرهای مختلف برای تایید همسو بودن pAMVAP با آغازگرهای مختلف pAM-FLVAP

(1KB ladder) DNA

پرداخت

(واریز اکن) (واریز اکن)

برای نمونه‌های PCR مطابق

pAMVAP با آغازگرهای 35S, FLVAP

F2BVAP, FLVAP با آغازگرهای CaMVAP

برای نمونه‌های PCR مطابق

CaMVAP با آغازگرهای (واریز اکن)

(واریز اکن) (واریز اکن)

برای نمونه‌های PCR مطابق

CaMVAP با آغازگرهای CaMVAP

برای کار رفته برای تایید در ستونهای ۱-۴

پرامیت
شکل 4. ریشه‌های مویین تراریخته حامل زن GUS با پروموترب CaMV35S پس از نگهداری زن GUS را نشان می‌دهند.

جدول 2. نتایج شمارش سیست‌های نامانه رودی ریشه‌های مویین چندتراکم تراریخته AMOFL2. پس از 10 روز از آغاز تلاقی با لاکرونتاماد

<table>
<thead>
<tr>
<th>شمار ریشه‌های مویین تراریخته مستقل</th>
<th>میانگین شمار سیست‌های نامانه روی لاکرونتاماد مویین</th>
<th>درصد سیست‌های تلاقی شده به لاکرونتاماد مویین</th>
<th>Q (شانه‌نامی)</th>
<th>F اصلی (شانه‌نامی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/57</td>
<td>7/7</td>
<td>5</td>
<td>0.057</td>
<td>0.047</td>
</tr>
<tr>
<td>1/77</td>
<td>6/7</td>
<td>1</td>
<td>0.013</td>
<td>0.018</td>
</tr>
<tr>
<td>2/07</td>
<td>6/3</td>
<td>1</td>
<td>0.013</td>
<td>0.018</td>
</tr>
<tr>
<td>2/10</td>
<td>6/3</td>
<td>1</td>
<td>0.013</td>
<td>0.018</td>
</tr>
<tr>
<td>1/10</td>
<td>6/3</td>
<td>1</td>
<td>0.013</td>
<td>0.018</td>
</tr>
<tr>
<td>0/77</td>
<td>6/3</td>
<td>1</td>
<td>0.013</td>
<td>0.018</td>
</tr>
<tr>
<td>0/47</td>
<td>6/3</td>
<td>1</td>
<td>0.013</td>
<td>0.018</td>
</tr>
<tr>
<td>0/77</td>
<td>6/3</td>
<td>1</td>
<td>0.013</td>
<td>0.018</td>
</tr>
<tr>
<td>0/6</td>
<td>5/7</td>
<td>0.053</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>1/90</td>
<td>5/7</td>
<td>0.053</td>
<td>0.055</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۳ نتایج شمارش سیست‌های نمادند روز ریشه‌های مولی گنجاندن تراکم‌شده BinOF2 پس از ۱۰ روز از آغاز تلخی با لاور نمادن

<table>
<thead>
<tr>
<th>درصد سیست‌های تشکیل شده به</th>
<th>میانگین شمار سیست‌های نمادند روز</th>
<th>شمار ریشه‌های مولی تراکم‌شده مستقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>ال‌اپهای تلخی شده</td>
<td>OF2 (شاید متغیر)</td>
<td></td>
</tr>
<tr>
<td>۲/۵۷</td>
<td>۷/۷</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۷۶</td>
<td>۴</td>
<td>۱۹</td>
</tr>
<tr>
<td>۱/۱۷</td>
<td>۳/۵</td>
<td>۱۳</td>
</tr>
<tr>
<td>۱/۷</td>
<td>۵</td>
<td>۲۹</td>
</tr>
<tr>
<td>۰/۶۳</td>
<td>۱/۵</td>
<td>۳۱</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۵</td>
<td>۳۲</td>
</tr>
<tr>
<td>۰/۱۷۶</td>
<td>۲/۰</td>
<td>۳۳</td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۰/۵</td>
<td>۳۹</td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۰/۵</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

جدول ۴ نتایج شمارش سیست‌های نمادند روز ریشه‌های مولی گنجاندن تراکم‌شده AMVAP پس از ۱۰ روز از آغاز تلخی با لاور نمادن

<table>
<thead>
<tr>
<th>درصد سیست‌های تشکیل شده به</th>
<th>میانگین شمار سیست‌های نمادند روز</th>
<th>شمار ریشه‌های مولی تراکم‌شده مستقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>ال‌اپهای تلخی شده</td>
<td>VAP (شاید متغیر)</td>
<td></td>
</tr>
<tr>
<td>۲/۵۷</td>
<td>۷/۷</td>
<td>۸</td>
</tr>
<tr>
<td>۰/۷۶</td>
<td>۴/۰</td>
<td>۱۴</td>
</tr>
<tr>
<td>۱/۷</td>
<td>۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۷/۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>۰/۲۳</td>
<td>۱/۷</td>
<td>۲۶</td>
</tr>
<tr>
<td>۰/۷۲</td>
<td>۷</td>
<td>۲۷</td>
</tr>
<tr>
<td>۰/۳</td>
<td>۹</td>
<td>۲۸</td>
</tr>
<tr>
<td>۰/۱۷۶</td>
<td>۰/۵</td>
<td>۳۰</td>
</tr>
<tr>
<td>۰/۴</td>
<td>۷/۲</td>
<td>۴۴</td>
</tr>
<tr>
<td>۲</td>
<td>۶</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

سیست‌های تشکیل شده روز ریشه‌ها شرمندند. ایشان دریافتند که در لاین منشی‌های میکرو مفاوم نه یک درصد لاور باید سیست‌های تبدیل شده بودند. در حالی که این میزان در واریته حساس گنجاندن در حدود ۸-۱۵ درصد بود.
هدف از بهبودی سلسله مقاومت به نماند. این محققان، مطالعه‌ای آزمایشگاهی را کرده‌اند که در هر مرحله از این محققان به همان روش گیاه می‌باشد. در این مطالعه، سیستم‌های مختلفی اطلال و زنده مادر و انسان هر سه گیاه میان وارد کرد. انسان زنده انسان از نسبت به کمک مهارکننده‌های آنزیمی که مانند انجام فرایندهای فیزیولوژیک نماند شوند. با تکنیکی که به مولکول‌های پیامرسان متصل شوند، یا آنزیم‌هایی که به موزکرک و میوه نماند در نظر گرفته شده و یا عناصری که به سبب اختلال در ساختارهای نگهداری و زیرین نماند در کنترل کننده می‌باشد، می‌توان VAP 2 و OF1 از گیاه می‌باشد. در این مطالعه، سیستم‌های مختلفی از این گیاه میان وارد کرده و سپس با استفاده از گیاه میان وارد کرده و سپس با استفاده از مقایسه نتایج بررسی‌های حاضر با نتایج آزمایش‌های فوک نشان می‌دهد که در بعضی از رشته‌های موبیک تاریخچه، نحوه و میزان بیان 2 و OF2 به گونه‌ای است که منجر به مقاومت کامل در برای ارورهای نماند سیستم چند فرد است. همچنین، دیده می‌شود که درصد سیستم‌های تشکیل شده در این مقاله که در عملکرد سیستم‌هایی متفاوت برای هر یک از زنده وارد شده متفاوت از یکدیگر هستند. یکی از دلایل احتمالی این تنو یا اثر مقایه مکانی (Position effect) در ژن وارد شده در گیاه مربوط است.

منابع مورد استفاده