اثر لجین فاضلاب و pH خاک بر قابلیت جذب عناصر کم‌صرف و فلزات سنگین

سکینه واثقی، مجید افیوی، حسین شریعتداری و مصطفی میلی

چکیده

افزودن لجین فاضلاب به مقدار زیاد به خاک باعث افزایش ضدعفونی شدن عناصر سنگین در خاک می‌شود. هدف این پژوهش گلخانه‌ای بررسی تأثیر لجین فاضلاب بر قابلیت جذب عناصر کم‌صرف و فلزات سنگین در خاک‌های با pH پایین و تثبیت آن‌ها بر سطح به صورت آزمایش فاکتوریل در چهار نمونه کلیه نوع خاک‌ها و تعداد صندوق‌های تکرار اندازه‌گیری شد. نتایج نشان داد که لجین فاضلاب در مقدار صفر، ۱۰۰ و ۲۰۰ تن در هکتار، و خاک شامل خاک‌های رست (pH = ۸/۵)، لاجیجان (pH = ۶/۸)، انگورد (pH = ۶/۸) و اصفهان (pH = ۷/۹) به ترتیب كاهش گیاهی درخت Zea mays تأثیر گذاشت.

لجن فاضلاب باعث افزایش محتوی مقدار دلیل گرفتار استخراج (به روش DTPA آهن، روی، مس، سرب، کادمیوم و نیکل در هر چهار خاک شد. این افزایش ممکن است با افزایش مقدار لجن بود. مقدار اندازه‌گیری لجین در خاک انگورد به دلیل اسیدی بودن بیشترین و در خاک اصفهان به دلیل سبزی شدن کمترین بود. افزودن لجین فاضلاب به خاک باعث افزایش رشد گیاه و نیز افزایش مقدار جذب فلزات در این گیاه خاک شد. با توجه به این که استفاده از لجن فاضلاب به عنوان کیوری در خاک، به ویژه خاک‌های اسیدی، ممکن است باعث افزایش قابلیت جذب فلزات سنگین حتی تا حد سطح‌گرد کرده، بنابراین مقدار افزودن لجین فاضلاب به خاک به‌پایه بر اساس مقدار افزایش میزان قابل جذب این فلزات در خاک ارزیابی گردید.

واژه‌های کلیدی: لجین فاضلاب، فلزات سنگین، عناصر کم‌صرف، خاک آسیب‌دیده، خاک آمکشی، ذرت

1. به ترتیب دانشجوی سابق کارشناسی ارشد، دانشیار و استادیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار پایگانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

95
مقدمه
به رغم جنبه‌های مفید لجن فعال‌ساز یا غلظت‌ها، به عنوان کرد آنی، به دلیل وجود مقادیر نسبی از زیاد فعال‌ساز لجن کاربرد آن در کشاورزی ممکن است مشکل‌ساز باشد. و باعث ایجاد شدن بیش از حد فعال‌ساز لجن مانند سرب، کادمیوم، مس و روی در جدا کردن آلودگی خاک به این عناصر موجب ورود آنها به زنجیره گذاری از طریق جذب به وسیله گیاه و ایجاد سمیت می‌گردد (12 و 17). اگرچه برخی از فعال‌ساز‌های مورد استفاده در لجن فعال‌ساز بررسی کرده‌اند، عقیده دارند که سمتی از فعال‌ساز می‌تواند نتیجه استفاده از مقادیر زیاد لجن فعال‌ساز باشد، ولی زیاد بودن pH خاک حداکثر ممکن است بروز سمیت جلوگیری کند (15).

ابتدا سه ذیل عناصر غایبی در خاک‌های کشاورزی باید در سطحی به‌مانند که سمیت و احتیاط خطر برای مصرف کننده نداشته باشد. به همین‌طور، قابلیت دسترسی و حرکت فعال‌سازان در خاک‌های آلوده باید کنترل گردد. در این زمینه باید به pH اثر خاک توجه خاص کرد.

هدف از اجرای این پژوهش بررسی تأثیر کاربرد لجن فعال‌ساز بر قابلیت‌های جدا سرب در عناصر کم‌صرف و فعال‌سازان به وسیله گیاه در خاک‌های سبیلی و آهکی بود.

مواد و روش‌ها
این پژوهش در سال 1379 به صورت گلخانه‌ای در دانشکده دانشگاه صنعتی اصفهان انجام گرفت. خاک‌های مورد استفاده از اصفهان، رشت، لنگرود و لاهیجان در گیلان انتخاب شد. نمونه‌های خاک از عمق صفر تا 30 سانتی‌متر برداشت شد و به محل انجام پژوهش انتقال پایه برخی برداشت و به محل انجام پژوهش انتقال پایه برخی ویژگی‌های خاک‌ها در جدول 1 نشان داده شده است.

لجن فعال‌ساز مورد استفاده از 30 نمونه خاک شاهینشهر اصفهان تهیه شد که از نوع هیدروکسید و مواد اکسایه‌برنده فعال‌ساز پی‌کسیوم بود. از کاربرد لجن فعال‌ساز با استفاده از تیمارهای صفر با شاهد، 50، 100 و 200 لن در هکتار در خاک‌های روست

(1) گزارش کردن که افزودن لجن فعال‌ساز به خاک باعث افزایش ممکنی غلظت‌ها و عصاره‌های آن می‌شود. به وسیله EDTA در خاک و افزایش جذب این فعال‌ساز در گیاه‌های است. برخی و جکوبس (2) لجن شهری درای فعال‌ساز باید با غلظت‌های زیاد شامل کادمیوم، مس، سرب، تیتانیوم 80 تا 100 درصد به مقدار ۲۰۰۰ می‌تواند. سرب به‌طوری که کار برده و افزایش مقدار قابل جذب این فعال‌ساز را در خاک مشاهده کرده.

خیابانی (3) در پژوهشی با توجه به کاهش خاک که افزایش مقدار قابل جذب این فعال‌ساز را در خاک مشاهده کرده.

(4) این پژوهش با توجه به کاهش خاک که افزایش مقدار قابل جذب این فعال‌ساز را در خاک مشاهده کرده.
جدول ۱. برخی ویژگی‌های فیزیکی و شیمیایی گیاه‌های مورد آزمایش

<table>
<thead>
<tr>
<th>CEC (cmol./kg)</th>
<th>مقدار آن (%)</th>
<th>CEc (dS/m)</th>
<th>pH</th>
<th>گیاه</th>
<th>منطقه نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱/۶</td>
<td>۶/۵</td>
<td>۷/۸</td>
<td></td>
<td>لوم رسمی</td>
<td>Calcic Argiudolls</td>
</tr>
<tr>
<td>۱۴/۵</td>
<td>۰/۸</td>
<td>۴/۸</td>
<td></td>
<td>لوم رسمی شنی</td>
<td>نگرود</td>
</tr>
<tr>
<td>۱۹/۵</td>
<td>۱/۰</td>
<td>۵/۷</td>
<td></td>
<td>لوم رسمی</td>
<td>Typic Hapludults</td>
</tr>
<tr>
<td>۱۳/۴</td>
<td>۰/۸</td>
<td>۷/۸</td>
<td></td>
<td>رشته</td>
<td>لاهیجان</td>
</tr>
</tbody>
</table>

نص نتایج و بحث

تأثیر لجن فاسپلاس بر قابلیت جذب عناصر در خاک

یکی از شاخص‌هایی که در ارزیابی نکاتی مربوط به نوع فاسپلاس بر آن‌ها به خاک می‌رسد، مقدار کل و قابل جذب این عناصر در خاک پس از کاربرد لجن است. اثر افزودن لجن به خاک بر غلظت عنصر کم‌صرف و فلزات سنگین قابل جذب خاک‌های تحت تأثیر شدیدتر در جدول ۴ نشان داده شده است. به طور کلی، کاربرد لجن فاسپلاس در همه خاک‌ها غلظت قابل جذب این عناصر کم‌صرف و فلزات سنگین را افزایش داد; البته این تأثیر در خاک‌های برای عناصر لگرود، لاهیجان و اصفهان در مورد گیاه درخت بررسی شده است. گیاه درخت به عنوان یک گیاه زراعی مهم، که تا نیازمند کوددهی درآمده است، برای این آزمایش انتخاب گردید.

این آزمایش به صورت فاکتوریل در جداراپور طرح کاملاً تصادفی در دو تکرار انجام گردید. لجن فاسپلاس در مقایسه دریک شد، چگالی به هر سری خاک افزوده، و داخل گلدانهای پلاستیکی (با ظرفیت تقریباً سه کیلوگرم خاک) ریخته شد. داخل هر گلدان 10 بذر درخت کشت شد و پس از استقرار گیاهان شمار بونه به چهار عدد تنک گردید. در طول دوره رشد گیاه، عملیات آبیاری و وریخ غلظت‌های هرز با دست انجام گرفت. آبیاری گلدان‌ها نزدیک ۴-۴ روز یکبار به طور یک‌نواخت انجام شد. هر هفته یک پار نیو گلدان‌ها کامل‌اکنده به جا گذاشته تا تمام گیاهان در شرایط معقیدی (تور و گرم) یکسان قرار گیرند. این آزمایش همچنین نوع کود شیمیایی یا سم آنتی‌پاک که کار نکرد.

چهار هفته پس از کاشت، گیاهان برداشت‌شده، و از خاک گلدان‌ها نمونه‌برداری شد. نمونه‌های خاک پس از اندازه‌گیری به آزمایشگاه‌ها رسانده بودند. بین بررسی‌ها، نمونه‌های خاک در گل‌نامه و هدایت‌نامه‌های مربوط به آنها در عصاره اشک آزادگری شد. شکل قابل جذب فلزات (Available) شامل تیکل، کدامیمی، سرب کالت، مس، روی، آلیاژ در نمونه‌های خاک، و Diethylen تیز لجن فاسپلاس به وسیله محلول با DTPA ۲۰۰/۵۰۰/۱۰۰۰ CaCl۲ در دارایی ۲۰۰۳ triamin panta acetic acid
جدول ۲، برخی ویژگی‌های لجن فاضلاب مورد استفاده

| غلظت قابل جذب (mg/kg) | غلظت کل (mg/kg) | عصاره
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۴</td>
<td>۶/۰۵</td>
<td>نیکل</td>
</tr>
<tr>
<td>۲/۷</td>
<td>۳/۴</td>
<td>کادمیم</td>
</tr>
<tr>
<td>۱۸/۰</td>
<td>۱۶/۰</td>
<td>سرب</td>
</tr>
<tr>
<td>۹/۸</td>
<td>۱۲</td>
<td>کلائی</td>
</tr>
<tr>
<td>۴/۷</td>
<td>۳/۷۵</td>
<td>مغنیز</td>
</tr>
<tr>
<td>۵/۷</td>
<td>۴/۵</td>
<td>مس</td>
</tr>
<tr>
<td>۹۹/۰</td>
<td>۱۰/۹۰</td>
<td>روی</td>
</tr>
<tr>
<td>۸۹/۷</td>
<td>۱۱/۹۰</td>
<td>آهن</td>
</tr>
<tr>
<td>(dS/m)</td>
<td>۱۳/۵</td>
<td>EC</td>
</tr>
<tr>
<td>۷/۵</td>
<td></td>
<td>pH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTPA عصاره‌گیری شده با</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

جدول ۳ اثر تیمارهای لجن فاضلاب بر غلظت فلزات (میلی‌گرم در کیلوگرم) قابل عصاره‌گیری از خاک‌های تحت کشت ذرت

<table>
<thead>
<tr>
<th>عصاره</th>
<th>لجن فاضلاب (t/ha)</th>
<th>غلظت منگنز (mg/kg)</th>
<th>غلظت سرب (mg/kg)</th>
<th>غلظت کادمیم (mg/kg)</th>
<th>غلظت نیکل (mg/kg)</th>
<th>غلظت کل (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰</td>
<td>۱۲/۰۰</td>
<td>۴/۵۵</td>
<td>۲/۴۵</td>
<td>۲/۸۰</td>
<td>۵/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۵/۰۰</td>
<td>۵/۵۰</td>
<td>۳/۳۰</td>
<td>۲/۸۰</td>
<td>۵/۵۰</td>
<td></td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۱۵/۰۰</td>
<td>۳/۵۰</td>
<td>۲/۴۰</td>
<td>۱/۵۰</td>
<td>۳/۵۰</td>
<td></td>
</tr>
<tr>
<td>۳۰۰</td>
<td>۱۵/۰۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td></td>
</tr>
<tr>
<td>۴۰۰</td>
<td>۱۵/۰۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td></td>
</tr>
<tr>
<td>۵۰۰</td>
<td>۱۵/۰۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td></td>
</tr>
<tr>
<td>۶۰۰</td>
<td>۱۵/۰۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td></td>
</tr>
<tr>
<td>۷۰۰</td>
<td>۱۵/۰۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
<td></td>
</tr>
</tbody>
</table>

۱ دیاً دامادی را در هر ستون، اعدادی که دارای جریان‌های دارای خاصیت‌های مشترک. در سطح احتمال ۰/۱ درصد، فاکتور معنی‌دار می‌باشد.
گزارش کردن که افزودن لجن فاضلاب به خاک، روی قابل جذب خاک‌ها را افزایش داده است. این افزایش نیز باعث به دلیل افزایش متوقف، روت در اثر افزودن لجن به خاک پاشند، می‌تواند، کاهش pH خاک از اثر تجزیه مواد آلی حاصل از افزودن لجن و نیز تشکیل کلاته‌های روی و سریع ترکبندی آن اضافه شده، در افزایش میزان روز محلول خاک مؤثر خواهد بود (۱۳).

مقایسه گروهی pH خاک تحت کشت (جدول ۴) نشان می‌دهد که به عنوان میانگین معمول می‌توان به pH بررسی گل‌بیابی و همبستگی (۱۱) دان که در خاک‌های آهکی روزی صورت گرفته روی رسوب کرده و از دسترس گیاه خارج می‌شود. به همین دلیل، کمبود روز قابل جذب نیز یکی دیگر از مشکلات تغذیه گیاه در خاک‌های اصفهان است، و به نظر می‌رسد کاربرد لجن باقی‌مانده تا حد زیادی در رفع این کمبود مؤثر خواهد بود.

در مقاله مس مبدع جذب در هر چهار خاک تحت کشت مورد ذخیره، مانند با مقدار لجن فاضلاب به طور معمول افزایش یافته (جدول ۳). مقدار مس قابل جذب در خاک‌های رشت و لنگرود به ترتیب از مقادیر ۲۵۴/۷۸ و ۲۷۸/۸ میلی‌گرم در کیلوگرم در تیمار مانند به ۹/۱۱ و ۱۲/۴ میلی‌گرم در کیلوگرم در تیمار لاهیجان و اصفهان از ۱۹۳/۱۴ و ۱۱۴/۱ میلی‌گرم در کیلوگرم در تیمار مانند به ۱۰۸/۱۴ و ۱۴۳/۸ میلی‌گرم در کیلوگرم در تیمار ۲۰۰ تن لجن در هکتار افزایش یافته، و نیز در خاک‌های لاهیجان و اصفهان از ۱۹۳/۱۴ و ۱۱۴/۱ میلی‌گرم در کیلوگرم در تیمار مانند به ۱۰۸/۱۴ و ۱۴۳/۸ میلی‌گرم در کیلوگرم در تیمار ۲۰۰ تن لجن در هکتار رضید. این افزایش در خاک‌های لارگرد، لاهیجان و اصفهان در تیمارهای ۵۰۰ و ۳۰۰ تن لجن در هکتاژ و در خاک رشت در تیمارهای ۱۰۰ و ۲۰۰ تن لجن در هکتاژ نسبت به شاهد معنی‌دار نیست. این نتایج نشان می‌دهد لجن فاضلاب روی قابل جذب روی تامین اهداف مورد نظر گیاهان از همکاری، به ویژه در خاک‌های آهکی منطقه اصفهان به شمار می‌رود.

مقدار pH کافی قابل جذب برای رشد گیاه بود.

مقدار pH قابل جذب خاک‌های مختلف معنی‌دار است. بیشترین مقدار pH بعد از خاک لنگرود و کمترین مقدار pH در خاک اصفهان. که در خاک‌های مرود آزمایش به ترتیب دارای pH بودند. به دست آمد. لیندنزی (۱۳) گزارش کرد که به ازای هر واحد کاهش pH خاک، حلالیت pH خاک به‌طور کلی به‌طور سیستم‌های و کامپرس می‌یابد. نشان می‌دهد که به ازای هر واحد کاهش pH خاک می‌باید. افزودن لجن به کاشت خاک مقدار افزایش قابل جذب آهک خاک مؤثر بود. افزودن قابل جذب خاک که در مقایسه با داده‌های مورد رصد، به‌طور قابل توجه توجه آهی در لجن (جدول ۲) باعث افزایش pH زیر قابل جذب خاک در اثر کاربرد این ماده شد. روی لجن فاضلاب باعث افزایش معنی‌دار غلظت روز قابل جذب در خاک‌های شاهد (جدول ۲). مقدار روز قابل جذب در خاک‌های رشت و لنگرود به ترتیب از مقادیر ۱۸۰/۷۸ و ۲۷۸/۸ میلی‌گرم در کیلوگرم در تیمار مشابه به ۹/۲۵ و ۹/۱۸ میلی‌گرم در کیلوگرم در تیمار مانند در هکتار افزایش یافته، که این افزایش در هر چهار خاک بین همه تیمارهای لجن معنی‌دار گردید. در خاک‌های لاهیجان و اصفهان مقدار روی قابل جذب به ترتیب از مقادیر ۸/۷۵ و ۱۰/۵۳ میلی‌گرم در کیلوگرم در تیمار مشابه به ۸/۷۵ و ۸/۷۱ میلی‌گرم در کیلوگرم در تیمار مانند در هکتار افزایش یافته، که این افزایش در هر چهار خاک بین همه تیمارهای لجن معنی‌دار گردید. در خاک‌های لاهیجان و اصفهان مقدار روی قابل جذب به ترتیب از مقادیر ۴/۸۵ و ۴/۷۵ میلی‌گرم در کیلوگرم در تیمار مشابه به ۴/۸۵ و ۴/۷۱ میلی‌گرم در کیلوگرم در تیمار مانند در هکتار افزایش یافته، که این افزایش در هر چهار خاک بین همه تیمارهای لجن معنی‌دار گردید.
جدول 4: نتایج مقایسه گروهی میانگین خلوط فلفل (بیلی گرم در کیلو گرم) قابل عصاره‌گیری از خاک‌ها

<table>
<thead>
<tr>
<th>موارد مقایسه</th>
<th>آهن</th>
<th>روی</th>
<th>مس</th>
<th>سنگز</th>
<th>سرب</th>
<th>کادمیوم</th>
<th>تیتانیوم</th>
<th>کالس</th>
<th>نیکل</th>
<th>رشت</th>
<th>لنگورده</th>
<th>لاجیمان</th>
<th>اصفهان</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک</td>
<td></td>
</tr>
<tr>
<td>0 / 12</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4 / 4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24 / 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
ات لیج فاضلاب و pH خاک بر پایگاه چسب‌های کمصرف و فلزات متغیر

با آفیش آموزش لجن فاضلاب (افراشی) نشان داد (جدول 3). افزایش سرب قبل جدبد در خاک‌های نگرو و لاهمیان بین مقدار مختلف لجن فاضلاب و سه‌شان معنی دارد. مقدار سرب قبل جذب در خاک‌های رشته و اصفهان نیز روند آفیشی داشت. این آفیش در خاک اصفهان بین همه تیمار‌های لجن فاضلاب و سه‌شان معنی دارد. در خاک رشت، تیمار‌های 100 و 200 تن لجن در هر کتاب نسبت به شاهم‌آفیش معنی دار نشان دادند. این‌ها و همکاران (11) نیز گزارش کردند که آفیش‌های میزان لجن فاضلاب باعث افزایش معنی‌دار دیگری جذب سرب در خاک شده است.

مقایسه گروهی خاکهای (جدول 4) نشان می‌دهد که مقدار نیکل قبل جذب خاک نگرو نسبت به خاک‌های اصفهان تفاوت بین پیشینه این سنجش‌ها و اصفهان افزایش معنی‌دار نشان دادند. کلی‌بند جذب فلزات سنجش به استفاده از pH و نوع رس سنجش در ندارد، ولی این خاک‌های افزایش معنی‌داری نسبت به خاک‌های رشت و اصفهان داشتند. این بدلانت آن به اختلاف pH رشت و اصفهان نشان دادند. که دلیل آن به اختلاف خاک‌ها به عنوان مثال کنترل کننده فلزات سرب قبل جذب خاک مربوط است (18). در سرب پیک از مهم‌ترین عنصر‌های آلودگی کننده محیط زیست است. و سیب‌یار یا پاوه‌هاندان معنی‌داری که قلبی‌بودن خاکی می‌توانند به لرزه زیادی از بروز سمنتی آن جلوگیری کند (20) و (21).

کادمیم: افزودن لجن فاضلاب باعث آفیش آموزش کمک‌کرده جذب خاکهای دیده شود. این آفیشی که الجا در خاک‌های نگرو در تیمار‌های لجن فاضلاب نسبت به شاهد معنی‌دار بود.

مقایسه گروهی خاکهای (جدول 4) نشان می‌دهد که خاک‌های نگرو و لاهمیان تفاوت معنی‌دار در غلظت کادمیم قبل جذب نداشتند. ولی این خاک‌های نسبت به خاک‌های رشت و اصفهان روند کادمیم قبل جذب بیشتری هستند. جان و همکاران (9) را عامل مؤثر در جذب کادمیم نامی از pH را می‌دانند. به لجن فاضلاب در گیاه دانستند. و نیز گزارش کردن آهن دهی
مقدار ماده آلی و مقدار رس خاک مشاهده آهن و منگنز است.

تأثیر تیمارهای مختلف بر غلظت فلاتر در گیاه‌های

هنگام کوتاه‌کردن گیاه شد، افزودن لجن فاضلاب باعث
افزایش غلظت گلاب عصاره‌کنی فلاتر در خاک‌های مختلف،
به ویژه خاک‌های آسیدی شد. نتایج نشان می‌دهد که مقدار
بیشتر گیاه‌ها در هزاران میلی‌گرم در لجن در خاک‌های
فاصله در گیاهان فیتیک. جدول 5 غلظت فلاتر در اندام
هوایی در تهیه می‌رود. در بیشتر موارد افزایش مقدار لجن
فاصله باعث افزایش غلظت بیشتر فلاتر در هزاران خاک
شد. افزایش غلظت فلاتر در تهیه فلاتر در بیشتر کامیون، سرب و
روی در خاک رشت، و سرب در خاک نگرود. در سطح یک
درصد معنی‌دار بود.

مقایسه کربوهای مختلف در خاک‌های نماد 18. 1.

تأثیر تیمارهای مختلف بر رشد گیاه‌های

وزن خشک اتفاق اتفاق به باعث افزایش مقدار لجن فاضلاب در
خاک‌ها افزایش یافته است (جدول 2). افزایش وزن خشک
اناژه هوایی در گیاه‌ها و افزایش مقدار لجن فاضلاب
باند (جدول 18) نشان می‌دهد. در افزایش وزن خشک
خاک‌های آسیدی شد. نتایج نشان می‌دهد که مقدار
بیشتر گیاه‌ها در هزاران میلی‌گرم در لجن در خاک‌های
فاصله در گیاهان فیتیک. جدول 5 غلظت فلاتر در اندام
هوایی در تهیه می‌رود. در بیشتر موارد افزایش مقدار لجن
فاصله باعث افزایش غلظت بیشتر فلاتر در هزاران خاک
شد. افزایش غلظت فلاتر در تهیه فلاتر در بیشتر کامیون، سرب و
روی در خاک رشت، و سرب در خاک نگرود. در سطح یک
درصد معنی‌دار بود.

مقایسه کربوهای مختلف در خاک‌های نماد 18. 1.

تأثیر تیمارهای مختلف بر رشد گیاه‌های

 وزن خشک اتفاق اتفاق به باعث افزایش مقدار لجن فاضلاب در
خاک‌ها افزایش یافته است (جدول 2). افزایش وزن خشک
اماژه هوایی در گیاه‌ها و افزایش مقدار لجن فاضلاب
باند (جدول 18) نشان می‌دهد. در افزایش وزن خشک
خاک‌های آسیدی شد. نتایج نشان می‌دهد که مقدار
بیشتر گیاه‌ها در هزاران میلی‌گرم در لجن در خاک‌های
فاصله در گیاهان فیتیک. جدول 5 غلظت فلاتر در اندام
هوایی در تهیه می‌رود. در بیشتر موارد افزایش مقدار لجن
فاصله باعث افزایش غلظت بیشتر فلاتر در هزاران خاک
شد. افزایش غلظت فلاتر در تهیه فلاتر در بیشتر کامیون، سرب و
روی در خاک رشت، و سرب در خاک نگرود. در سطح یک
درصد معنی‌دار بود.

نتیجه‌گیری

ازدیدن لجن فاضلاب به خاک باعث افزایش معنی‌دار غلظت
آهن، روی، سنگر، سرب، نیکل و کلاین قابل عصاره‌گیری
DTPA با وسعت قابل جذب عصاره‌کنی کم مصرف و فلاتر
سنتگین مربوط در خاک‌های آسیدی (نگرود و لاهیجان) به دلیل
قابلیت زیاد فلاتر در این خاک‌ها بیشتر از خاک‌های غیر
آسیدی (رشت و اصفهان) بود.

یافته‌های این پژوهش نشان می‌دهد کاربرد لجن فاضلاب
در خاک‌های آسیدی از نظر آلودگی فلاتر سنتگین خطر کمتری
جدول 6. اثر تیمارهای لجن فاضلاب بر وزن خشک (گرم) گیاه درخت در خاک‌های مختلف

<table>
<thead>
<tr>
<th>خاک</th>
<th>لجن فاضلاب (t/ha)</th>
<th>وزن خشک (گرم) گیاه درخت</th>
<th>وزن خشک اندام هواپیما (t/ha)</th>
<th>مس</th>
<th>سرب</th>
<th>کادمیوم</th>
<th>نیکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>5/09</td>
<td>5/09</td>
<td>7/86</td>
<td>7/99</td>
<td>9/76</td>
<td>1/06</td>
<td>5/09</td>
</tr>
<tr>
<td>رشت</td>
<td>5/09</td>
<td>5/09</td>
<td>7/86</td>
<td>7/99</td>
<td>9/76</td>
<td>1/06</td>
<td>5/09</td>
</tr>
<tr>
<td>لنگرود</td>
<td>5/09</td>
<td>5/09</td>
<td>7/86</td>
<td>7/99</td>
<td>9/76</td>
<td>1/06</td>
<td>5/09</td>
</tr>
<tr>
<td>لاهیجان</td>
<td>5/09</td>
<td>5/09</td>
<td>7/86</td>
<td>7/99</td>
<td>9/76</td>
<td>1/06</td>
<td>5/09</td>
</tr>
<tr>
<td>اصفهان</td>
<td>5/09</td>
<td>5/09</td>
<td>7/86</td>
<td>7/99</td>
<td>9/76</td>
<td>1/06</td>
<td>5/09</td>
</tr>
</tbody>
</table>

1. در هر خاک و در هر سالون، اعدادی که دارای عواید درون هستند، در سطح احتمال پنج درصدی تفاوت معنی‌دار می‌باشد.
سیاسگرایی این پژوهش از طریق طرح ملی پژوهشی با کد M12، با حمایت شورای تحقیقات علمی کشور به شماره ثبت 1145 انجام گرفته است. که بسیار وسیله نشکر و قدردانی می‌شود.

منابع مورد استفاده

1. افروینی، م.، ی. رضاپور، نژاد و. ب. خیامی‌آفرین. 1377. اثر لجن فعال‌کننده بر عملکرد و جذب فلزات سنگین به وسیله کاهو و استحنا. علوم کشاورزی و منابع طبیعی 1: 19-20.

2. خیامی‌آفرین، ب. 1376. اثر استفاده از لجن فعال‌کننده به عنوان کود در آیزی و ایجاد انباشت عناصر سنگین در خاک و کیفیت. پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.

3. عرفانی‌نیازی، م. 1376. اثر تیمارهای لجن فعال‌کننده بر برخی خصوصیات خاک و جذب و تراکم عنصر سنگین به وسیله استحنا و کاهش ورود انل فلزات سنگین به پتولوی وارصاد. مدرک نشر دانشگاه تهران.

4. مجله، ج. 1376. شیمی خاک (ترجمه). مرکز نشر دانشگاهی، تهران.

اثر لیگن فاضلات و pH خاک بر قابلیت جذب عناصر کم، مصرف و فازات سنگین