اثر لجن فاضلاب و pH و کمصرف و فلزات سنگین

سکینه واثقی، حسین شریعتمداری و مصطفی مبیلی

چکیده

اثر لجن فاضلاب به مدیریت زیادی به خاک باعث افزایش شدن عناصر سنگی در خاک می‌شود. هدف این پژوهش گلخانه‌ای بررسی تأثیر لجن فاضلاب بر قابلیت جذب عناصر کم‌صرف و فلزات سنگین در خاک‌های با pH‌ها 1 و 7 می‌باشد. این پژوهش به صورت آزمایش فاکتوریل در طرح کاملاً تصادفی با سه تکرار انجام شد. نتیجگیری‌ها نشان داد لجن فاضلاب در مقدار مصرف 100، 200 و 300 تن در هکتار، و خاک، شاخص‌های خاک‌های رشته (PH = 7/8), (PH = 5/8), (PH = 4/8), (PH = 3/8) انگوردو را به کاهش گذاشت.

لجن فاضلاب باعث افزایش ممنوع‌دار مقدار قابل استخراج (به روش DTPA آهن، روی، سرپ، کادمیوم و نیکل در هر چهار خاک شد. انلایش سنتی‌سازی با افزایش مقدار لجن بود. مقدار عناصر فلوک در خاک انگوردو به دلیل اسیدی بیشترین، و در این اسفهان به دلیل کلیلی بودن کمترین بود. افزودن لجن فاضلاب به خاک باعث افزایش رشد گیاهی و تثبیت فلزات قابل جذب خاک ویژه pH ویژه خاک بود. با توجه به این که استفاده از لجن فاضلاب به عنوان کرد آلی در خاک، بی خاک‌های اسیدی، ممکن است باعث افزایش قابلیت جذب فلزات سنگین تحت تأثیر سیستم گردد. بنابراین مقدار افزودن لجن فاضلاب به خاک به پیش‌بینی جریان میزان قابل جذب این فلزات در خاک ارزیابی گردید.

واژه‌های کلیدی: لجن فاضلاب، فلزات سنگین، عناصر کم‌صرف، خاک اسیدی، خاک آلکی، pH

1. به ترتیب دانشجوی سابق کارشناسی ارشد، دانشیار و استادیار خاکشناسی، دانشگاه صنعتی اصفهان
2. دانشیار پایگان، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

95
مقدمه

به رغم جنبه‌های مفید لجن فاضلاب به عنوان یک آنتی‌بیوتیک جدید، ویژه جوش‌الدندان و تورمی می‌باشد، اما در هنگام استفاده و افزایش مصرف آن، افزایش قند خون و گلکسی‌ها، افزایش سطح کلسترول و تولید الکلیوریک همراه می‌باشد. در این مقاله، سعی می‌شود تا از طریق جاری جدید به سیستم‌های مصرفی و سیستم‌های انباشت خون آنتی‌بیوتیک جدید لجن فاضلاب را بررسی کنیم.

مواد و روش‌ها

این پژوهش در سال 1379 به صورت گروه‌ای مورد بررسی قرار گرفت. خاک‌های مورد استفاده از تعداد 20 سانتی‌متر برداشت گردیده و مصالح انجام پژوهش انتقال پذیر و در آزمات شیمیایی بررسی گردید. بررسی و یک‌جاگاهی خاک در جدول 1 نشان داده شده است.

لجن فاضلاب مورد استفاده از تیمارهای 48 ساعت به صورت یک آنتی‌بیوتیک جدید لجن فاضلاب را بررسی کرده‌ایم. نتایج نشان داده که لجن فاضلاب می‌تواند در عناصر مصرفی مصرفی و سیستم‌های انباشت خون کاربردی داشته باشد. این نتایج به تغییرات سطح کلسترول و تولید الکلیوریک مرتبط است.

همچنین، لجن فاضلاب می‌تواند در عناصر مصرفی مصرفی و سیستم‌های انباشت خون کاربردی داشته باشد. این نتایج به تغییرات سطح کلسترول و تولید الکلیوریک مرتبط است.
جدول ۱. برخی ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد آزمایش

<table>
<thead>
<tr>
<th>CEC (cmol+/kg)</th>
<th>مواد آلی (٪)</th>
<th>ECe (dS/m)</th>
<th>pH</th>
<th>بافت</th>
<th>رده‌بندی خاک</th>
<th>منطقه نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱/۶</td>
<td>۲/۵</td>
<td>۱/۴</td>
<td>۶/۸</td>
<td>لوم رئیس</td>
<td>Calcic Argiudolls</td>
<td>رسته</td>
</tr>
<tr>
<td>۱۴/۵</td>
<td>۱/۹</td>
<td>۱/۰</td>
<td>۴/۸</td>
<td>لوم رئیس شنی</td>
<td>Typic Hapludults</td>
<td>لگنود</td>
</tr>
<tr>
<td>۱۹/۵</td>
<td>۱/۰</td>
<td>۵/۷</td>
<td>۷/۹</td>
<td>لوم رئیس</td>
<td>Typic Haplud ults</td>
<td>لاهیجان</td>
</tr>
<tr>
<td>۱۳/۴</td>
<td>۳/۰</td>
<td>۷/۰</td>
<td></td>
<td>رسی</td>
<td>Typic Haplargids</td>
<td>اصفهان</td>
</tr>
</tbody>
</table>

عصاره‌گیری شد (۱۴٪). عصاره‌گیری غلظت کل آین عناصر در نمونه‌های خاک فاضلاب به وسیله روش هفتم در استان بیست و اول بهره‌برداری در انجام شد (۲۳). غلظت کل و قابل جذب فلزات اندازه‌گیری شده در نمونه‌های فاضلاب در جدول ۲ آمده است. پس از برداشت نمونه‌های گیری در آن به‌طور ثابت ۲۵ درجه سانتی‌گراد به مدت ۴۸ ساعت خشک شدند. برای تعیین غلظت فلزات، نمونه‌های گیاهی به وسیله استاندارد شده غلظت و استاندارد هم الکتریکی درصد و آب اکسیژن درصد خضم شدند (۳۳). سپس غلظت فلزات مذکور در عصاره‌های حاصل به وسیله دستگاه جاذب اتمی مدل پرکین الممر ۲۰۰۰ در طول موج نور کاه شده برای اندازه‌گیری شد. آنالیز آماری نتایج با استفاده از نرم‌افزار SAS انجام گرفت.

نتایج و بحث
تأثیر لجنس فاضلاب بر قابلیت جذب عناصر در خاک
یکی از یافته‌هایی که در ارزیابی اثر مواردی همچون لجنس فاضلاب بر آلودگی خاک به فلزات سنگین به کار می‌رود، مقدار کل و قابل جذب این عناصر در خاک بس از کاربرد لجنس است. اثر افزودن لنج به خاک به غلظت عناصر کم‌صرف و فلزات سنگین قابل جذب خاک‌های تحت کشت شده در جدول ۳ نشان داده شده است. به طور کلی، کاربرد لنج فاضلاب در همه خاک‌ها غلظت قابل جذب عناصر کم‌صرف و فلزات سنگین را افزایش داد؛ البته این تأثیر در خاک‌ها برای عناصر

لگنود، لاهیجان و اصفهان در مورد گیاه در بررسی شده بود. گیاه درخت به عنوان یک گیاه زراعی مهم که تاکنون کوددهی فرآوران است، برای این آزمایش انتخاب گردید.

این آزمایش به صورت فاکتوریل در چهار نوبت طرح کاملاً تصادفی در سه نکته انجام گرفت. لجن فاضلاب در مقایسه دو گیاه، جدایا گیاه به هر سه خاک افزوده و داخل گیاه‌ها هنگام (با ترکیب سه کیلوگرم خاک) ریخته شد. داخل هر گل‌دانه ۱۰ بر گذشت شد و پس از استقرار گیاهان، شمار بونه با چهار عدد نکته گردید. در طول دوره رشد گیاه، عملیات آبیاری و کاهش غلظت‌های هرز با دست انگام گرفت. آب‌های گل‌دانه‌ها در ۲-۴ روز یک بار به طور یکنواخت انجام شد. هر هفته یک بار نیز گل‌دانه‌ها کاملاً جا به جا شدند تا نگاه‌های در شرایط محیطی (نور و گرمای) یکسان قرار گیرد. در این آزمایش همه نوع کود شیمیایی یا سم آفت‌کش که کار نکرد. چهار هفته پس از کاشت، گیاهان برداشته شدند. و از خاک گل‌دانه‌ها نمونه‌برداری شد. نمونه‌های خاک پس از انتقال به آزمایشگاه خاک، در آب و از اکسیژن مولتی‌پری عبور داده شدند. نمونه‌های خاک در گل‌دانه ها، همراه با نمونه‌های خاک و Diethylen تیز لجن فاضلاب به وسیله محلول DTPA triamin panta acetic acid
جدول 2. بررسی ویژگی‌های لجن فاضلاب مواد استفاده

<table>
<thead>
<tr>
<th>عنصر</th>
<th>غلظت قابل جذب (mg/kg)</th>
<th>غلظت کل (mg/kg)</th>
<th>(dS/m)</th>
<th>EC</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیکل</td>
<td>2/4</td>
<td>6/0/5</td>
<td>13/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کادمیم</td>
<td>0/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سرب</td>
<td>1/8</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کیالت</td>
<td>4/7</td>
<td>37/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>منگنز</td>
<td>0/7</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>روی</td>
<td>9/6/0</td>
<td>1/0/14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آهن</td>
<td>8/9/7</td>
<td>11/9/10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. اثر تیمارهای لجن فاضلاب بر غلظت فلزات (میلی گرم در کیلو گرم) قابل عصاره‌گیری از خاک‌های تحت کشت ذرت

<table>
<thead>
<tr>
<th>غلظت (t/ha)</th>
<th>کیالت</th>
<th>نیکل</th>
<th>کادمیم</th>
<th>سرب</th>
<th>منگنز</th>
<th>روی</th>
<th>آهن</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>18/5/4</td>
<td>2/0/5</td>
<td>2/0/5</td>
<td>2/0/5</td>
<td>2/0/5</td>
<td>2/0/5</td>
<td>2/0/5</td>
</tr>
<tr>
<td>رشت</td>
<td>22/0/4</td>
<td>3/7/6</td>
<td>3/7/6</td>
<td>3/7/6</td>
<td>3/7/6</td>
<td>3/7/6</td>
<td>3/7/6</td>
</tr>
<tr>
<td>لنگرود</td>
<td>34/2/4</td>
<td>9/1/2</td>
<td>9/1/2</td>
<td>9/1/2</td>
<td>9/1/2</td>
<td>9/1/2</td>
<td>9/1/2</td>
</tr>
<tr>
<td>لاهیجان</td>
<td>36/0/4</td>
<td>5/0/5</td>
<td>5/0/5</td>
<td>5/0/5</td>
<td>5/0/5</td>
<td>5/0/5</td>
<td>5/0/5</td>
</tr>
</tbody>
</table>

1. عصاره‌گیری شده با DTPA
2. در هر خاک و در هر سطح، اعداد که دارای حروف بی‌خوان هستند، در سطح احتمالی پیچ درصد فاقد تفاوت معنی‌دار می‌باشند.
گزارش کردن که افرودون لجن فاضلاب به خاک، روی یافل
جدب خاک‌ها را افزایش داده است. این افزایش نیز باعث
افزایش محصولات در اثر افزودن لجن به خاک شدید
هم‌چنین کاهش pH خاک در اثر تجزیه مواد آلی باعث
افزودن لجن و نیز تغییر کلیات‌های رنگی به وسیله ترکیبات
آتی اضافه شده، در افزایش میزان تلویح خاک متأثر
خواهد بود (13).

مقایسه گروهی pH خاک‌های تحت کشت (جدول 4) نشان می‌دهد
مقدار pH سبز بالاتر حاصل نمودار مانند 6.7/8 و در
مقدار pH بررسی 3 مقدار روی روزسربه روز کاهش
که به عنوان معیار اصلی می‌توان به pH خاک‌های
باشد. چراکه افزایش pH خاک به باعث افزایش pH
باید که به عنوان معیار اصلی می‌توان به pH خاک‌های
به سبز بالاتر حاصل نمودار مانند 6.7/8 و در
مقدار pH بررسی 3 مقدار روی روزسربه روز کاهش
که به عنوان معیار اصلی می‌توان به pH خاک‌های

سی: مقدار مثلث جدب در هر چهار خاک تحت کشت
درخت، مناسب با مقدار لجن فاضلاب به طور معنی‌دار افزایش
پایا (جدول 3). مقدار مثلث جدب در هر چهار خاک تحت
نگردیده ۱/۵۰/۴ و ۱/۸۷/۸ میلی‌گرم در هر پیست می‌باشد.

مقدار روی قابل جذب در هر چهار خاک تحت
کشت ۳/۴۲/۷ میلی‌گرم در هر پیست می‌باشد.

مقدار روی قابل جذب در هر چهار خاک تحت
کشت ۳/۴۲/۷ میلی‌گرم در هر پیست می‌باشد.

مقدار مثلث جدب در هر چهار خاک تحت
کشت، مناسب با مقدار لجن فاضلاب به طور معنی‌دار افزایش
پایا (جدول 3). مقدار مثلث جدب در هر چهار خاک تحت
نگردیده ۱/۵۰/۴ و ۱/۸۷/۸ میلی‌گرم در هر پیست می‌باشد.

مقدار مثلث جدب در هر چهار خاک تحت
کشت، مناسب با مقدار لجن فاضلاب به طور معنی‌دار افزایش
پایا (جدول 3). مقدار مثلث جدب در هر چهار خاک تحت
نگردیده ۱/۵۰/۴ و ۱/۸۷/۸ میلی‌گرم در هر پیست می‌باشد.

مقدار مثلث جدب در هر چهار خاک تحت
کشت، مناسب با مقدار لجن فاضلاب به طور معنی‌دار افزایش
پایا (جدول 3). مقدار مثلث جدب در هر چهار خاک تحت
نگردیده ۱/۵۰/۴ و ۱/۸۷/۸ میلی‌گرم در هر پیست می‌باشد.

مقدار مثلث جدب در هر چهار خاک تحت
کشت، مناسب با مقدار لجن فاضلاب به طور معنی‌دار افزایش
پایا (جدول 3). مقدار مثلث جدب در هر چهار خاک تحت
نگردیده ۱/۵۰/۴ و ۱/۸۷/۸ میلی‌گرم در هر پیست می‌باشد.

مقدار مثلث جدب در هر چهار خاک تحت
کشت، مناسب با مقدار لجن فاضلاب به طور معنی‌دار افزایش
پایا (جدول 3). مقدار مثلث جدب در هر چهار خاک تحت
نگردیده ۱/۵۰/۴ و ۱/۸۷/۸ میلی‌گرم در هر پیست می‌باشد.

مقدار مثلث جدب در هر چهار خاک تحت
کشت، مناسب با مقدار لجن فاضلاب به طور معنی‌دار افزایش
پایا (جدول 3). مقدار مثلث جدب در هر چهار خاک تحت
نگردیده ۱/۵۰/۴ و ۱/۸۷/۸ میلی‌گرم در هر پیست می‌باشد.
جدول 4: تحلیل مقایسه گروهی میانگین غلظت فلزات (میلی گرم در کیلو گرم) قابل عصرگیری از خاک‌ها

<table>
<thead>
<tr>
<th>موارد مقایسه</th>
<th>آهن</th>
<th>روی</th>
<th>مس</th>
<th>سنگز</th>
<th>سرب</th>
<th>کادمیم</th>
<th>نیکل</th>
<th>کالس</th>
</tr>
</thead>
<tbody>
<tr>
<td>خاک</td>
<td>4/3</td>
<td>6/7b</td>
<td>5/7b</td>
<td>2/77b</td>
<td>7/77b</td>
<td>5/87b</td>
<td>4/77b</td>
<td>2/77b</td>
</tr>
<tr>
<td>لاجن</td>
<td>4/3</td>
<td>6/7b</td>
<td>5/7b</td>
<td>2/77b</td>
<td>7/77b</td>
<td>5/87b</td>
<td>4/77b</td>
<td>2/77b</td>
</tr>
</tbody>
</table>

*، ** : مقایسه گروهی (جدول 4) نشان می‌دهد که مقدار مس قابل جذب در خاک‌های مختلف متفاوت است، و افزایش مقدار آن در خاک‌ها مناسب با کاهش خاک‌های بوده و خاک‌های یا pH کمتر (لگردود و لاوهیجان) از مقدار من قابل جذب بیشتری pH برخوردارند. به گونه‌ای که افزایش است که کم‌سازی مس بیشتر در خاک‌های آهنی و با pH زیاد دیده می‌شود (4) و pH اسستیت (20) گزارش کرد که رسوب مس به صورت هیدروسیلاک و هیدروفسیکا به محلول به کمک‌های آ invisی با افزایش pH افزایش می‌یابد. نمایش این افزایش pH عنصر در pH نسبت به pH افزایش شده است، زیرا گزارش شده است pH خاک است و شیب در pH حلالیت منفی محلول به ازای هر یک واحد کاهش حذف صد برابر افزایش می‌یابد (4). نمایش این افزایش pH نسبتاً زیاد، کاربرد لجن فعالی از طریق افزایش قابلیت منفی خاک می‌تواند بسیار مفید باشد. بنابراین لازم به ذکر است که تمام خاک‌های استفاده شده در این پژوهش دارای مقدار گذی سخت کلی منفی قابل جذب گیاه می‌باشند. سرب: مقدار قابل جذب در خاک‌های تحت کشت ذرت در

*، ** : مقایسه گروهی (جدول 4) نشان می‌دهد که مقدار مس قابل جذب در خاک‌های مختلف متفاوت است، و افزایش مقدار آن در خاک‌ها مناسب با کاهش خاک‌های بوده و خاک‌های یا pH کمتر (لگردود و لاوهیجان) از مقدار من قابل جذب بیشتری pH برخوردارند. به گونه‌ای که افزایش است که کم‌سازی مس بیشتر در خاک‌های آهنی و با pH زیاد دیده می‌شود (4) و pH اسستیت (20) گزارش کرد که رسوب مس به صورت هیدروسیلاک و هیدروفسیکا به محلول به کمک‌های آ invisی با افزایش pH افزایش می‌یابد. نمایش این افزایش pH عنصر در pH نسبت به pH افزایش شده است، زیرا گزارش شده است pH خاک است و شیب در pH حلالیت منفی محلول به ازای هر یک واحد کاهش حذف صد برابر افزایش می‌یابد (4). نمایش این افزایش pH نسبتاً زیاد، کاربرد لجن فعالی از طریق افزایش قابلیت منفی خاک می‌تواند بسیار مفید باشد. بنابراین لازم به ذکر است که تمام خاک‌های استفاده شده در این پژوهش دارای مقدار گذی سخت کلی منفی قابل جذب گیاه می‌باشند. سرب: مقدار قابل جذب در خاک‌های تحت کشت ذرت در

*، ** : مقایسه گروهی (جدول 4) نشان می‌دهد که مقدار مس قابل جذب در خاک‌های مختلف متفاوت است، و افزایش مقدار آن در خاک‌ها مناسب با کاهش خاک‌های بوده و خاک‌های یا pH کمتر (لگردود و لاوهیجان) از مقدار من قابل جذب بیشتری pH برخوردارند. به گونه‌ای که افزایش است که کم‌سازی مس بیشتر در خاک‌های آهنی و با pH زیاد دیده می‌شود (4) و pH اسستیت (20) گزارش کرد که رسوب مس به صورت هیدروسیلاک و هیدروفسیکا به محلول به کمک‌های آ invisی با افزایش pH افزایش می‌یابد. نمایش این افزایش pH عنصر در pH نسبت به pH افزایش شده است، زیرا گزارش شده است pH خاک است و شیب در pH حلالیت منفی محلول به ازای هر یک واحد کاهش حذف صد برابر افزایش می‌یابد (4). نمایش این افزایش pH نسبتاً زیاد، کاربرد لجن فعالی از طریق افزایش قابلیت منفی خاک می‌تواند بسیار مفید باشد. بنابراین لازم به ذکر است که تمام خاک‌های استفاده شده در این پژوهش دارای مقدار گذی سخت کلی منفی قابل جذب گیاه می‌باشند. سرب: مقدار قابل جذب در خاک‌های تحت کشت ذرت در
با افراشی قمدار لجن فعالیت‌های افرادی که خواهان داد (جدول 3) افراشی سرب قابل جذب در خاک‌های مازوتی و لاش‌بان بین مقادیر مختلف لجن فعالیت‌هایهای میان در داد. به طور معمول فعالیت‌های بین حساسیت لجن و شاهد معمولی در. در این‌جایی بین همه تیمارهای لجن فعالیت‌های افرادی خواهان داد، شاهد معنی‌دار در. در خاک رشت، تیمارهای 100 و 200 تن لجن در هکتار نسبت به شاهد افزایش معنی‌دار داشت. این لگریا و همکاران (1) نشان داده که افزایش میزان لجن فعالیت‌های باعث افزایش معنی‌داری در شدت جذب لجن در خاک داشته است.

مقایسه گروهی خاک‌ها (جدول 4) نشان داد که هزینه لجن قابل جذب در خاک‌های مازوتی و لاش‌بان آشفته کاست شد. خاک‌های شاهد شاهد معنی‌داری در. در این‌جایی بین حساسیت لجن و شاهد معنی‌دار داشت. این لگریا و همکاران (1) نشان داده که افزایش میزان لجن فعالیت‌های باعث افزایش معنی‌داری در شدت جذب لجن در خاک داشته است.

کادیم: افزودن لجن فعالیت‌های باعث افزایش میزان ممکن می‌باشد. افتادن لجن در تیمارهای لجن فعالیت‌های میان در داد. به طور معمول لجن و افزایش معنی‌دار داشت. تأثیر کم لجن فعالیت‌های باعث می‌گردد. افزایش میزان ممکن می‌باشد. به لحاظ میزان لجن در. مقایسه گروهی خاک‌ها (جدول 4) نشان داد که هزینه لجن قابل جذب در خاک‌های مازوتی و لاش‌بان می‌باشد. خاک‌های شاهد شاهد معنی‌داری در. در این‌جایی بین حساسیت لجن و شاهد معنی‌دار داشت. این لگریا و همکاران (1) نشان داده که افزایش میزان لجن فعالیت‌های باعث افزایش معنی‌داری در شدت جذب لجن در خاک داشته است.
مقدار ماده آلی و مقدار رس خاک می‌شانه آهن و منگنز است.

تأثیر تیمارهای مختلف بر غلظت فلاتز در گیاه درخت همان گونه که پیش گفته شد، افزودن لجن فاضلاب باعث افزایش غلظت قابل عصاره‌گیری فلاتز در خاک‌های مختلف به‌ویژه خاک‌های اسیدی شد. نتایج این مورد که مقدار جذب و ایجاد فلاتز در خاک نیز با تغییر تیمار مقدار لجن فاضلاب در خاک افزایش یافته. جدول 5 غلظت فلاتز در اندام هوایی درخت را نشان می‌دهد. در بیشتر موارد افزایش مقدار لجن فاضلاب باعث افزایش غلظت بیشتر فلاتز در هر چهار خاک شد. افزایش غلظت در برابر تمام فلزات بیج کادمیم، سرب و روی در خاک رشت و سرب در خاک لگروس، در سطح نجف درصد معنی‌دار بود.

مقایسه کروحی خاک‌ها نشان می‌دهد که مقدار جذب بیشتر فلاتز در اندام هوایی درخت در خاک‌های اسیدی لگروس بیشتر است. و در خاک‌های اسیدی سلز این نتایج در حالت غلظت برابر با یک گروه غلظت تمام فلاتز در اندام هوایی، حتی در خاک‌های اسیدی لگروس و لاهیجان، زیر حد سطحی برای این فلاتز بود (18).

تأثیر تیمارهای مختلف بر رشد گیاه درخت وزن خشک اندام هوایی درخت با افزایش مقدار لجن فاضلاب در خاک‌های افزایش پایه است (جدول 2). افزایش وزن خشک اندام هوایی درخت خاک‌های رست و اسیدان مناسب با افزایش میزان لجن. وزن خشک اندام هوایی در خاک‌ها به ترتیب از 0/59 تا 0/43 گرم در گلدان تیمار شاهد به مقادیر 0/60 تا 0/40 گرم در گلدان تیمار 200 تن در گلدان تیمار شاهد به مقادیر 0/68 تا 0/88 گرم در گلدان تیمار 200 تن در است. همچنین افزایش وزن خشک اندام هوایی درخت در خاک‌های لگروس و لاهیجان به ترتیب از مقادیر 87/26 تا 7/42 گرم در گلدان تیمار شاهد به مقادیر 0/78 تا 0/08 گرم در گلدان تیمار 200 تن در است.

نتیجه‌گیری

از آن‌رو، به دلیل غلظت قابل جذب عصاره‌گیری فلاتز‌های افزایش پایه، لجن و کلیه قابل عصاره‌گیری DTPA با گروه مکذو در خاک‌های اسیدی (لگروس و لاهیجان) به دلیل خاک‌های اسیدی و غیر اسیدی (رشت و اسیدان) بود.

یافته‌ها این پژوهش نشان می‌دهد کاربرد لجن فاضلاب در خاک‌های آهکی از نظر آلودگی فلاتزات و سلکس خطر کم‌تری دارد.

دیده نشد.
جدول ۵. تیمارهای لجن فاشلاب بر غلظت فلوئور (میلی گرم در کیلوگرم) در اندام هاوايی گیاه درخت در خاک‌های مختلف

<table>
<thead>
<tr>
<th>خاک</th>
<th>لجن فاشلاب (t/ha)</th>
<th>کادمیم</th>
<th>نیکل</th>
<th>کربن</th>
<th>سرب</th>
<th>کالریت</th>
<th>مس</th>
<th>مکزی</th>
<th>روی</th>
<th>آهن</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>3.0*</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>شاهد</td>
<td>3.0*</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>شاهد</td>
<td>3.0*</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>شاهد</td>
<td>3.0*</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>شاهد</td>
<td>3.0*</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

جدول ۶. تیمارهای لجن فاشلاب بر وزن خشک (گرم) گیاه درخت در خاک‌های مختلف

<table>
<thead>
<tr>
<th>خاک</th>
<th>لجن فاشلاب (t/ha)</th>
<th>وزن خشک (گرم)</th>
<th>وزن خشک اندام هوايی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>3.0*</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

1. در هر خاک و در هر ستون، اعدادی که دارای حروف مشابه هستند، در سطح احتمال پنجم درصد فاقد قابل توجهی می‌باشند.
ساسگاری

این پژوهش از طریق طرح ملی پژوهشی با کد M12 با حمایت شورای تحقیقات علمی کشور به شماره ثبت 1151 انجام گرفته است. که به دین و سیله تنش و قدردانی می‌شود.

دارد، ضمن این که در رفع کمبود شماری از عناصر کم‌صرف خاک هم‌جنس آهن، روز و مس می‌تواند مؤثر باشد. ابتدای توجه به آثار مثبت این فلزات در خاک، پیشنهاد می‌شود در هر منطقه راه‌های افزایش فلزات سنگین به این ماده بررسی و با کاهش رود این فلزات در فاصله‌های شهری، ارزش کودی لجن فلزات افزایش یابد.

متن مورد استفاده

1. افیونی م.، ی، رضایی واد و ب. خیامی‌خالی. 1376. اثر لجن فلزات بر عملکرد کشاورزی و جذب فلزات سنگین به وسیله کاهو و استناد

2. خیامی‌خالی، ب. 1376. اثر استفاده از لجن فلزات به عنوان کود در آبیاری و انتقال عناصر سنگین در خاک و کیفیت گیاه‌خواری خاک‌ها

3. عرفان‌پور، م. 1376. اثر تبادل‌های لجن فلزات بر ترشح خصوصیات خاک و جذب و تراکم عناصر سنگین به وسیله استناد و گروه فرگنگی. پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشگاه صنعتی اصفهان

4. مجله ج. 1367. شیمی خاک (ترجمه). مرکز نشر دانشگاهی، نهوان

