کنترل و کاهش آب‌شناسی موضعی در پایه‌های پل با مقاطع مستطیلی گرد گوش‌های سیال

با استفاده از شکاف

متنچهر حیدری‌پور، حسین افضلی‌مهر و محسن نادری‌بنی

چکیده

استفاده از شکاف در پایه‌های پلی از روشهای نوین در کنترل آب‌شناسی موضعی است. در این پژوهش، با به‌کارگیری 20 مدل آزمایشگاهی، کنترل آب‌شناسی موضعی در پیک پایه پل در شرایط آب زلال با پررسی شد. مدل‌ها شامل پیک پایه استوانه‌ای بدون شکاف و چهار پایه استوانه‌ای شکافدار بودند. شکاف‌ها و 12 پایه مستطیلی شکافدار م coorden، طول شکاف‌ها با برای عرض (قطر) پایه و در برای آن انتخاب شده و در در مواد شیمیایی نزدیک بستر و نزدیک سطح آب قرار دارند.

نتایج آزمایش‌ها نشان می‌دهد که برای پایه استوانه‌ای، شکاف‌های با قطر عکس قطر پایه و در برای آن در حالت که نزدیک سطح آب قرار گرفته باشند، تأثیری بر آب‌شناسی نمی‌یابند. همچنین، نتایج نشان می‌دهد که برای کلیه مدل‌ها که در این پژوهش تحت شرایط معین آب زلال‌آمیز شدند، حداکثر کاهش آب‌شناسی، به وسیله شکاف‌های با اندازه در برای عرض (قطر)، پایه و مواد شیمیایی نزدیک بستر اتفاق می‌افتد. کاربرای شکاف در کنترل آب‌شناسی موضعی نیز برای پیک پایه مستطیلی یکپارچه گرد پیش‌تر از پیک پایه استوانه‌ای برای عرض پایه مستطیلی یکپارچه گرد است، می‌باشد.

واژه‌های کلیدی: آب‌شناسی موضعی، پایه، شکاف در پایه پل

مقدمه

پیل‌ها مهم‌ترین سازه‌های ارتباطی بوده و تخریب آنها بیشتر در اثر آب‌شناسی موضعی صورت می‌گیرد. که به وسیله میدان جریان موضعی در اطراف پایه‌های پل ایجاد می‌شود (120). به

1. استادیار آموزشی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشجوی سالنگی کارشناسی ارشد آب، دانشکده عمران، دانشگاه صنعتی اصفهان

13
آب‌شستگی معادل به عمقی گفته می‌شود که تحت هر شرایطی،

از نظر زمانی به مقدار بهایی با بهینه خود رسیده باشد.

بالا به زمان دقایق و سایر مدت‌ها در مقالات سایر ادبیات

اشاره دارد. معادله که برای مقاله به دست آمده این است

در کشور ما به دلیل عدم درک صحیح از آب‌شستگی، بیشتر

اطراف یا بی‌خودی بزرگی و تلاش برای جلوگیری از طراحی و

ایجاد یک آب‌شستگی مشابه دیگر مقالات، که دلیل اصلی آن

آب‌شستگی موثر است. این امر، آرایه برای تحمل خسارات

فرامون ناگهانی در سیستم حمل و نقل و غیره است.

بانوان، شناخت یک مدل بهینه میزان آن، و لحاظ کردن

آن در طراحی یکا به مهم‌تر از همه به کار بردن تمرکزات

برای کنترل و کاهش آب‌شستگی موثر است.

میانگین خسارت تخریب یک یا یک مدت اداره فرآیند بزرگراهی

آمریکا تخمین می‌شد، سالانه در حدود پنجاه میلیون دلار است

(8). در اینجا می‌توان درک بکر، که دلیل بزرگی آن

آب‌شستگی موثر است. این امر، آرایه برای تحمل خسارات

فرامون ناگهانی در سیستم حمل و نقل و غیره است.

بانوان، شناخت یک مدل بهینه میزان آن، و لحاظ کردن

آن در طراحی یکا به مهم‌تر از همه به کار بردن تمرکزات

برای کنترل و کاهش آب‌شستگی موثر است.

میانگین خسارت تخریب یک یا یک مدت اداره فرآیند بزرگراهی
کنترل و کاهش آب‌شستگی موضوعی در پایه‌های بل با مقافره مستقیم گرد گوشه با ...
مواد و روش‌ها

تجهیزات آزمایشگاهی

کلیه آزمایشگاه‌های پژوهش‌های آزمایشگاهی این پژوهش در کانال‌های به طول 7 متر و عرض 3.2 متر و ارتفاع 3/4 متر صورت گرفته است. مواد و یکسانی کانال‌های جنگلی گل‌ها به ضخامت 10 میلی‌متر است. کف کانال به‌کار می‌برد که ترتیب که در ادست نه که در ادст
کنترل و کاهش آب‌شستگی موادغذایی در پایه‌های بل با مقاطع مستطیلی‌گر دودی‌گشته‌با...

برای باعث آب‌شستگی نزدیک بستر، شکاف‌های گردو تریکسکی سطح آب و شکاف کوفکی نزدیک سطح آب. شکاف‌ها لاک‌سپری شده و ابعاد شکاف‌ها را در مدل‌های شکاف‌دار نشان می‌دهد.

انتخاب پارامترها و ابعاد مدل

عرض‌های برای تریکسکی انتخاب شده نشانه‌گذاریکننده (که عرض‌هایی به‌شکل یک مدل پایه استون‌اواشبیک به یک مدل مستطیلی پیشنهاد از تریکسکی در این مقاله نشان می‌دهد.) عقب افقی از نظر گرفته شده، بیشترین عرض (قطر) (b) در کلیه خلال 32 امتیار انتخاب شد.

اندازه و یک‌واحدیت ذرات: برای جدیدی از ایجاد به‌دیدگی (Ripple) مانندین اندازه ذرات بین 0.06 میلی‌متر گسترده باشد، در این محاسبات نشان داده شده که طبق نظریه حد تأثیر اندازه ذرات عقب افقی (b) همزمان با یک‌واحدیت (GA6) ذرات به ترتیب به مانندین اندازه ذرات با 50 باشد. به‌طور کلی موادگذایی ذرات با 50 باشد. به‌طور کلی موادگذایی ذرات با 60 باشد.

در روابط استفاده شده یک سیال در شرایط زیر صادق باشد:

\[
\frac{b}{d_50} > 50 \quad \Rightarrow \quad \frac{d_50}{b} < \frac{32 \text{ mm}}{50} = 0.64 \text{ mm}
\]

\[
0.6 \text{ mm} < d_50 < 0.64 \text{ mm}
\]

به‌طور کلی موادگذایی ذرات برای آب‌شستگی موادغذایی لازم است که اندازه عبارت از 0.6 میلی‌متر باشد. اما حریر پرکشی در 0.6 میلی‌متر باشد. اما حریر پرکشی در 0.6 میلی‌متر باشد.

سسوسومات آن در مقاله‌های بین‌المللی چنین شکاف‌دار نشان می‌دهد که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 بستر مورد به‌کار بردن در نظر گرفته شده که شکاف‌ها به یک‌واحدیت دودی‌گشته با 2/4b یعنی 7/4 B
نْبَرْسِی‌های رودکی‌وی (۱۹) شرایط آب‌شناسی‌گی آب زلال در
برقرار شود:

\[d_{50} = 0.61 \text{ mm} \Rightarrow U_{s_c} = 0.0115 + 0.0125(d_{50})^{1.4} \]

\[= 0.017 \text{ m/s}, \quad y_0 = 12 \text{ cm} \Rightarrow U = 0.286 \text{ m/s} \]

‌شکل ۱ نمایی از کانال مورد استفاده در آزمایشگاه

شکل ۲ مدل‌های بدون شکاف

بررسی‌های رودکی‌وی (۱۹) شرایط آب‌شناسی‌گی آب زلال در
برقرار شود. وی به هیچ‌یک از آب‌شناسی‌گی‌های به‌ین با توجه به دی‌هی 11 لیتر بر ثانیه. و با استفاده از معادلات
محلی (۱۵) و محلی و سادرنامه (۱۷) عمق جریان به گونه‌ای در
کنترل و کاهش آب‌شستگی موضوعی در پایه‌های پل با مقاطع مستطیلی گرد گوشه‌با ...
جدول 1. زمان تداخل و عمق آب‌سنگی معادل در انواع مدل‌های شکاف‌دار و بدون شکاف

<table>
<thead>
<tr>
<th>انواع مدل پایه</th>
<th>شکاف بزرگ بالا</th>
<th>شکاف کوچک بالا</th>
<th>شکاف بزرگ پستر</th>
<th>شکاف کوچک پستر</th>
<th>بدون شکاف</th>
</tr>
</thead>
<tbody>
<tr>
<td>استوانه‌ای</td>
<td>5/8</td>
<td>6/3</td>
<td>0/5</td>
<td>6/7</td>
<td>6/3</td>
</tr>
<tr>
<td>مستطیلی 2×9</td>
<td>7/8</td>
<td>1/75</td>
<td>7/75</td>
<td>7/6</td>
<td>7/5</td>
</tr>
<tr>
<td>مستطیلی 3×12</td>
<td>5/9</td>
<td>6/5</td>
<td>6/5</td>
<td>6/5</td>
<td>6/5</td>
</tr>
</tbody>
</table>

نتایج و بحث

تغییرات زمان آب‌سنگی

1. پایه استوانه‌ای

شکل 4 تغییرات زمان عمق آب‌سنگی موجودی را در پایه استوانه‌ای نشان می‌دهد. همان‌گونه که این شکل مشخص است، منحنی شکاف بزرگ بستر با فاصله نسبتاً بزرگ از منحنی‌های دیگر قرار دارد. در این شکل، نتایج به دست آمده از بررسی‌های مولیو و Čich (19) به منظور مقایسه آن‌ها شده است. بررسی نتایج نشان می‌دهد که منحنی مولیو و Čich با منحنی پایه بدون شکاف تقریباً به هم منطبقاند. در این حالت شکاف‌های کوچک بستر، کوچک بیانی بستر و بزرگ بالایی بستر تا به سایر کمی در عمق آب‌سنگی داشته، و منحنی‌های این شکاف‌ها با منحنی پایه بدون شکاف سایر نرخ‌های هم‌حساس. همان‌گونه که هر شکل نشان می‌دهد، بیشینه عمق آب‌سنگی در پایه بدون شکاف، و برابر 8/5 است.

2. پایه مستطیلی

شکل 5 تغییرات زمان عمق آب‌سنگی موجودی را در اطراف پایه مستطیلی 3×12 نشان می‌دهد. این شکل بیان می‌کند که عمق شکاف بزرگ بستر، عمدتاً در خوری در کاهش عمق آب‌سنگی دارد، و رونده این کاهش با گذشت زمان پیشرفت دارد. شکاف‌های کوچک بزرگ بستر، بزرگ بالایی و کوچک بالا نیز در ردهای بعدی کاهش قرار دارند. مشابه در زمان 8/500 است.
شکل 5. تغییرات عمق آب‌شستگی نسبت به زمان در پایه مستطیلی "..."\[21\]
شکل 6. تغییرات عمق آب شستگی نسبت به زمان در پایه مستطیلی

شکل ٧. تغییرات عمق آب شستگی به زمان در پایه مستطیلی
کنترل و کاهش آب‌سنگی موضعی در پایه‌های بلی با مقاطع مستطیلی گرد گوشبا

را تایید می‌کنید.

1. پایه‌استوانه

شکل ۸ نتایج مربوط به تاثیر کاهش عمق آب‌سنگی موجود و وسیله شکاف‌های در پایه‌استوانه در زمان‌های مختلف نشان می‌دهد. همان‌گونه که در شکل دیده می‌شود، عملکرد شکاف در کاهش آب‌سنگی در سه‌اینده بهتر بوده و به وسیله بدن زمان نهایی کاهش پایان کرده است. برای نتایج، شکاف برگ پسر به وجد و اوردن کاهش در حدود ۶ تا ۱۲ درصد در عملکرد بهترین عملکرد را داشته است. شکافهای دیگر داشته است. پس از شکاف برگ پسر، شکاف برگ بالا شکاف کوچک بستن در طول شکاف باعث افزایش نرخ آب از طرف شکاف باعث کاهش عمق نرخ جریان و سرنگونی باد باعث افزایش نرخ آب در کاهش عمق آب‌سنگی می‌شود.

ولی نتایج بیاب و همکران (۴) روی پایه‌های استوانه‌ای به قطر ۸ سانتی‌متر نشان می‌دهد که شکاف‌های با عرض بایر یک چهارم قطر یا وارد و یا ارتفاع بیانه بین ۵ تا ۲۵ برابر قطر پایه کاهش در حدود ۶ درصد در حداکثر آب‌سنگی را به وجود اورده‌اند. همچنین، پیوسته‌های چیبو (۷) به دره بردی از شکاف در پایه‌های استوانه‌ای نشان داد که به کار بردن شکاف و بایر یک چهارم قطر پایه، ۳۰ درصد کاهش در آب‌سنگی پایه استوانه‌ای به وجود اورده است. کوارنار و همکران (۱۴) نیز شکاف‌های با طول مختلف به‌طور متفاوت باعث کاهش در عمق آب‌سنگی پایه‌های استوانه‌ای به کار بردن.
شکل 8 درصد کاهش عمق آب شستگی بالایست. به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت، 2 ساعت و زمان نهایی (تعادلی) در پایه استوانهای برندگان باقی می‌ماند.

شکل 9 درصد کاهش عمق آب شستگی بالایست. به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت، 2 ساعت و زمان نهایی (تعادلی) در پایه مستطیلی برندگان باقی می‌ماند.
شکل 10. درصد کاهش عمق آب شستگی بالادست، به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت، 2 ساعت و زمان نهایی (تعادلی) در پایه مستطیلی 3/09

شکل 11. درصد کاهش عمق آب شستگی بالادست، به ترتیب از چپ به راست در زمان‌های 10 دقیقه، 30 دقیقه، 1 ساعت، 2 ساعت و زمان نهایی (تعادلی) در پایه مستطیلی 3/09

25
4. پایه مستطیلی 3×12

شکل 11 نتایج مربوط به درصد کاهش عمق آبشستگی موضعی را در پایه مستطیلی 3×12 در زمان‌های مختلف نشان می‌دهد. این شکل پیان می‌دارد که در این پایه نیز با کاهش زمان، عملکرد شکاف‌ها رونده کاهشی داشته است. در این پایه شکاف بزرگ بستر کاهشی بین 8 تا 18 درصد، شکاف کوچک بستر کاهشی بین 10 تا 15 درصد، شکاف بزرگ بالا کاهشی بین 5 تا 12 درصد، و شکاف کوچک بالا کاهشی بین 3 تا 8 درصد در عملکرد گذر موضعی گرد کوشه بوده است. این نتایج نشان می‌دهد که، با تغییر ترتیب کاهش عمق آبشستگی که کاهش گردد، از شکاف‌های آبشستگی بستر در کاهش عمق آبشستگی کم‌گردد. از این پایه نیز درای دارای پیش‌بینی مناسبی به پایه 3×9 بهبود، که ممکن است به خاطر طول زیاد این پایه نسبت به پایه 3×9 باشد.

نتیجه‌گیری

در پژوهش بحث کارایی شکاف در کاهش عمق آبشستگی در اطراف پایه استوانه‌ای و پایه‌های مستطیلی گرد کوشه در شرایط آبشستگی آب زلال بررسی شده است. شکاف‌ها در دور موضعی گذر موضعی گرد کوشه بوده است. اثر تغییر ترتیب کاهش عمق آبشستگی با تغییر ترتیب کاهش عمق آبشستگی در نتایج مشاهده شکاف‌های نزدیک بستر می‌شود. باعث کاهش عملکرد گذر موضعی گرد کوشه شدند. شکاف‌های نزدیک بستر تأثیر بیشتری داشته‌اند. در این پایه نیز تغییر طول شکاف‌ها در هر دو موضعی، عملکرد آنها افزایش یافته است. همچنین، شکاف‌ها در پایه‌های مستطیلی نسبت به پایه استوانه‌ای عملکرد بستری بیشتر داشته‌اند. در تمام مراحلی با کاهش طول شکاف‌ها، شکاف‌های نزدیک بستر تأثیر بیشتری نسبت به کاهش طول شکاف‌ها می‌شود. در این پایه نیز تغییر طول شکاف‌ها در هر دو موضعی، عملکرد آبشستگی گذر موضعی گرد کوشه است.

5. پایه مستطیلی 3×9

شکل 10 نتایج مربوط به درصد کاهش عمق آبشستگی موضعی در پایه مستطیلی 3×9 را در زمان‌های مختلف نشان می‌دهد. این نتایج نشان می‌دهد که با افزایش زمان بهبود عملکرد شکاف‌ها در کاهش عمق آبشستگی موضعی گرد کوشه داشته است. در ساعت‌های آغازین آبشستگی در این پایه، شکاف بزرگ بستر، شکاف کوچک بستر، شکاف بزرگ بالا و شکاف کوچک بالا به ترتیب کاهشی در حدود 0.5 درصد در این پایه نسبت به پایه استوانه‌ای عملکرد گذر موضعی گرد کوشه است.
مباحث مورد استفاده

1. زرانتی، 1 و. ع. ع. وزیری. 1376. روش‌های محافظت پایه پل در برای آب‌سرگرمی. مجموعه مقالات نخستین کنفرانس هیدرولیک ایران. انتشارات دانشگاه خواجه نصری طوسی، تهران.

2. شفاعی پیجستان، م. 1378. هیدرولیک نیروی. انتشارات دانشگاه شهید چمران اهواز.

3. نظری، ه. 1380. تغییرات زمانی آب‌سرگرمی موضوعی اطراف پایه‌های پل سومین کنفرانس هیدرولیک ایران، دانشکده فنی، دانشگاه تهران.

