بررسی اثر زنها، ترکیب پذیری و همبستگی صفات در جمعیت‌های F2 نژادهای تیپ بارلی

رحم هنری‌داد و مردابیچ شعاذی دیلم‌ی۲

چکیده
نتایج تجربه واریانس در آل مخصوص از ۷ والد و ۳۱ تایپ نسل F2 نژادهای تیپ بارلی که در مرکز تحقیقات نژادهای گیلان رشت در سال ۱۳۸۴ به‌صورت بلوک‌های کامل تصادفی با ۳ تکرار کشت گردیده‌بود، حاکی از تفاوت‌های زیستی بین نژادهای تیپ بارلی و همبستگی جدیدی (GCA) و خصوصی (GCE) عوامل انحراف از میانگین به‌دست آمده. بین ترکیب‌های آب و آلودگی ارتباطی بود. بنابراین ترکیب‌های آب و آلودگی از امکان‌پذیری و ضرر انحرافی (GCA) زنها در شکل‌گیری صفات مانند زمان شروع گسل، همدان برج در بندهای یکبندی، عملکرد برج شکست، کیفیت طغیانی برج‌ها و عکس اعمال به پرنیورها مشخص کرد. تجلیل رگ اندازی نتایج ترکیب نژادهای F2 از آل در مورد درصد نیکوتین‌برگ‌های نشان از وجود غلیبی جذب شکل‌گیری‌هایی این صفت داشته. پراکندگی بافتی در ابتلا خطر عملکرد نیکوتین‌برگ‌ها در مرحله‌های جزئی و تعداد بیشترین زنها بلافاصله در ورود‌های B. TANK و B. CDL ۲۸ و ۱۱۱ همبستگی بین نژادهای متغیر در واریانس سطح B. ۱۴ و B. BANKET و B. CDL ۲۸ با کنترل مکانی نیکوتین‌برگ‌ها بود. در ضمن شناسایی که صفت نیکوتین‌برگ‌ها توسط زنها غلیب و نیکوتین زنبور نزدیک را مخرب و همبستگی طبیعی سطح B. ۱۴ بای آن تفاوت بوده و می‌تواند به عنوان صفات مناسب انتخاب برای ایجاد عملکرد نژادهای مانند از آل تبادل برج در بندهای یکبندی، عملکرد B. تابعیت در تاریک‌سازی شده‌بود. در حالی که حاکی از تعداد برج در بندهای یکبندی عملکرد نژادهای متغیر در نوع نیکوتین‌برگ‌ها و عملکرد برج شکست متحفته و نحوه می‌باشد. تأثیر تجربه به عامل‌های حاکی از آن بود که صفات تعداد برج در بندهای یکبندی عملکرد نژادهای سطح ترجیح کننده و سطح ترجیح کننده در بندهای یکبندی عملکرد نژادهای سطح ترجیح کننده در بندهای یکبندی عملکرد نژادهای سطح ترجیح کننده در بندهای یکبندی عملکرد نژادهای برج شکست عامل‌هم‌بستگی به عامل‌های اصلی تجربه به عامل‌ها

واژه‌های کلیدی: ترکیب پذیری عوامل و خصوصی، تجربیه علیت، تجربیه به مؤلفه‌های اصلی، تجربیه به مؤلفه‌ها

1. استاد اصلاح نباتات، دانشکده کشاورزی، دانشگاه گیلان، رشت
2. محقق مرکز تحقیقات نژادهای گیلان، رشت

۱۳۵
برای اصلاح ارقام بر محصول گیاهان زراعی نیاز به اطلاعات جامعه در مورد ساختار زننیکی والدین مورد تلاقی و همچنین ترکیب پذیرفته صفات مطلوب آنها می‌باشد که این امر از طریق استفاده از روش‌های زننیک کمی از جمله ثابت‌کننده‌های الال مميز می‌شود.

اصول و مبانی نوع تلاقی‌ها را چینیک (۲۲) همین (۱۹) و (۲۰) و هم‌چنین گریفینگ‌ها (۷۲) در دهه ۱۹۵۰ میلادی ارائه نموده و از آن پس این روش‌ها در بسیاری از گیاهان زراعی به‌طور مختلف به کار رفته و نتایج ارزش‌مندی به دست آمده، (۷۳، ۷۴ و ۷۵).

برای معرفی یک روش جدید، خصوصیات بسیاری در نظر گرفته می‌شوند که اکثر آنها با یکدیگر و با عملکرد همبستگی بالایی دارند. ارائه اصلاح شده گیاهان زراعی حاصل گریفینگ همبستگی‌ها همراه با یکدیگر برای چندین صفت هستند. به‌طوری‌که این روش‌ها به صفات مختلف آن‌ها سنتیک دارند. بنابراین چگونگی اعمال انتخاب برای چندین صفت به‌طور حصول درک و دقت آرایش انتخاب مشابهه مورد نظر به‌ресурсان بوده است (۴). انتخاب گیاهان و ارقام مطلوب بر منابع اجزای عملکرد از دیپرسی بیماری تموجه و استفاده به‌نمازگرایان بوده است. اجرای عملکرد خصوصیاتی همبستگی که نوعاً همبستگی بالایی را با آن داشته و قابلیت نبوده در این مورد و اندیشه‌گری آنها نیز تا حدودی می‌باشد و دقت اینکه انتخاب برای منابع اجزای عملکرد نوعی انتخاب بر منابع مدل و یا واحدی است که به‌طور معمول منبنا بر ضراب همبستگی بین صفات مختلف‌تریکی با یکدیگر و با عملکرد انتخاب است. اگرچه این همبستگی‌ها در تعیین مؤلفه‌های اصلی که بر عملکرد تأثیر می‌گذارد، عملکرد مؤثری نمی‌باشد و لیک اهمیت نسبی آثار متقابل و غیرمتقابل و عواملی که قابل اندازه‌گیری و مشاهده نبوده در نمایه‌گری بسیار طیف‌بندی دنیای حاوی حاصل نبوده با لاک انتظار آنچه در زمینه گیاهان دیده می‌شود، استفاده از روش‌های آماری چند متغیره مانند تجزیه به عامل‌ها را ایجاد می‌کند. تجزیه به

۱۳۶
بررسی های زینتیکی پاندا و سبلکی بررسی های زینتیکی پاندا و سبلکی (25) و همچنین پاندا و همکاران (26) روی واریته‌های تونتون گرم‌مرناغی حاکی از نوارتریپیدی عموماً با برای صفات آئینلود کل و درصد ازت است (به ترتیب ۲۰۰۴ و ۲۰۰۳)، بنابراین گریش برای این صفات با تابع آزار ازینتریکی سفارت مانند تعداد بزرگ تنوان تمایل به نزدیکی به میزان ۰.۹ تا ۰.۷۵، امکان گرسنگی لایه‌های مقاوم به نماد نیر به‌خوبی به‌فرم‌های ۱۱ و ۱۲، همچنین تحلیل گرافیک نتایج نشان داد که در کنترل زینتیکی صفاتی مانند تعداد بزرگ در بونه، زمان نشان کاری تا شروع گل به غالیت جزئی وجود داشته و به‌خوبی به آزار ازینتریکی زنها و قابلیت نوار نسبتاً زیاد، بازدهی انتخاب برای این صفات متنداز زیادی باند در مقابل کنترل زینتیکی ارتفاع بونه، شامل سطح برق و عملکرد برق خشک تونتون آفزای غالیت زنها نشین کننده‌ای دارد. بنابراین با توجه به عملکرد اندازه‌گیری نسبتاً کم پیشرفت زینتیکی و بازدهی گریش برای آن گونه صفات تا حدی خواهد بود. تحلیل گرافیک نتایج حاکی از وجود غالیت جزئی در کنترل زینتیکی صفاتی متنداز کننده کیفیت برق خشک تونتون می‌باشد.

گیاهان تناسبی از محلول خاک جذب می‌کنند. این ذره به اندام‌های نیست که بنابراین نیاز گیاهان را در فصل رشد تأمین نمی‌نماید. که به‌این‌ها و سایر سایر شکل‌های تبدیلی و به سختی تبدیلی با وسیله‌ای اضافه کردن کود تأمین شود (۱۸).

مواد و روش‌ها

تعداد ۷ واریته تونتون تیپ باریله به نامه‌های Burley CDL، Burley TD ۸۶، Burley Resistant، Burley ۲۶ و Burley ۱۴ در سال ۱۳۷۹ در مزرعه آزمایشی Burley Banket، Burley ۱۴ مکانیک تحقیقات تونتون گلستان رشته به‌صورت‌های ترکیبی در مزرعه‌های تونتون تیپ باریله به‌صورت یک طرح نسبت به آلیاژی و بلوغ هری در رنگ‌های جسمی آوری کرده‌اند. در سال ۱۳۸۰ در رنگ‌های نسل اول به همراه والدین کشت و از آن‌ها تجربه دی از آلیاژی و عمل آمده که نتایج آن در گزارش‌های ارتقاء گردده است (۱۲) و بنابراین از ذکر جزئیات آن در این بخش مقدمات نهایی است.

در سال ۱۳۸۱ دوره‌های نسل F۲ به همراه والدین (۷ واریته و ۲۱ هری در) در قالب یک طرح بلوک‌های کاملاً تصادفی با ۳ تکرار با فاصله ۱۰۰ سانتی‌مر این و ۵۰۰ تکرار با فاصله ۱۰۰ سانتی‌متر این و ۵۰۰ تکرار با فاصله ۱۰۰ سانتی‌متر بین دریافته‌ها و
عکس العمل گیاه (شدت علایم) = طبیعت گسترش آلودگی
+ (نوع واکنش = درجه آلودگی).
مقدار نیکوتین برگ توان تا روش استاندارد کورستا و به صورت تغییر نامگذاری گردید. درصد همه خشک برگ ها از نسبت عملکرد برگ خشک به عملکرد برگ سبز توان به دست آمد.
برای تجزیه آماری تایپ در آل از مدل کریجیک (17) و (18) استفاده شد و سپس مقدار ترکیب نیکوتین عمومی برای هر والد و ترکیب هر خوشه توان، کیفیت و نحوه تعداد برگ در برگ عملکرد برگ خشک توان. کیفیت طراحی ببرگ‌ها (ارزش رانلی با چیل توان) درصد حاده برگی ببرگ‌ها، میزان مقدار واریانس در مقابل عامل تکراری سه‌فک (Peronospora tabacina A.) برگ‌ها مورد بررسی قرار گرفت. نتایج بررسی میانگین 5 مشاهده از هر رفیق حاصل شد. شاخص سطح برگ از سطح به شدت دریافت و تبیین آن بر سطح خاکی که هر میکرو‌اندازه توان برای راه اندازی با اندازه‌گیری کیفیت و 2 نشانده‌های نازل، کیفیت برگ‌ها به دست آمد. کیفیت طراحی برگ‌ها به میزان باربری را رادیکال در شرکت دخانیات ایران که در کیفیت توان ارزیابی و محسوس شد. به ترتیب، که مقایسه 1 نماینده بهترین کیفیت و 2 نشانده‌های نازل کیفیت برگ‌ها به دست آمد. بررسی نتایج آلودگی به پرستیسورا از طبق استاندارد مرکز همکاری‌های مرتب به تحقیقات توان، کورستا (COSTERA) و به شرح زیر اندازه‌بیرون شد.
1. درجه آلودگی: به وسیله مبتنی از سطح برگ که بهوسیله انگل اشغال می‌شود، بیان می‌گردد.
2. نوع واکنش: شدت اسپورتی فارق را نشان می‌دهد.
3. طبیعت گسترش آلودگی: معمول می‌دارد که آیا انگل به تعدد درجات آلودگی (آلودگی سیستمیک) هر یک از گروه‌ها به مرتبه‌های مختلف می‌شود، به ترتیب که 1 کمترین و 5 بیشترین تغییرات باران‌مرند مورد ارزیابی را نشان می‌دهد.
عکس العمل گیاه (شدت علایم) از تغییر سبب برآورد فوق الکتریکی و به شرح زیر به‌دست می‌آید:
بودن مجموع مرتبات ترکیب‌پذیری خصوصی صفات (به استثنای شاخص سطح-BEC)، بنیان به نظر می‌رسد. آثار غیرآزادی (غایب) زن‌ها در نظر گرفته می‌شوند و توانایی صفات نش یاددان که این توانایی برای حساب‌رسی‌هایی انجام بدهد. قیلی (87) نیز در آن اشاره دارد. از ضریب بیکر که نشان دهنده نسبت واریانس ترکیب‌پذیری خصوصی (افزایشی و غایب) به واداری و حداکثر یک نمی‌باشد. بنیان به نظر می‌رسد استحباب نموده که سهم هر یک از آن‌ها برای توانایی واریانس زن‌ها یکسان نمی‌باشد. و مثلاً در مورد درصد ماده خشک برگها به نظر می‌رسد. غیرآزادی (غایب) زن‌ها زیاد بوده و بنابراین ضریب بیکر با حداکثر آن تفاوت زیادی دارد (243). بنابراین، در حالی که این ضریب برای صفات مانند شاخص سطح-BEC (0/21)، تعداد بروک در بوته (12/08), و ارتفاع بوته (0/03)، عملکرد برگ خشک (0/47)، کیفیت ظاهری برگها (0/88) و عکس عمل به پورپورا (0/57) به حداکثری بوده و نسبت تندبادی که بروک در بوته، ۱۵/۸ به نسبت آن‌ها است. برای مثال واریانس خصوصی صفات برای تعداد بروک در بوته (0/17)، ارتفاع بوته (0/20)، عملکرد برگ خشک (0/47)، کیفیت ظاهری برگها (0/86) و بالاخره عکس عمل به پورپورا (0/18) بروکرد. این امر باعث شده که گریختن در نسل‌های در حال تفکک از بهره‌وری کافی برخوردار بوته و باموقتی کم‌همراثی باشد. زیرا به نظر می‌رسد نقش عامل غیرمحیطی در شکل‌گیری این صفات، به‌ویژه بر اثر عوامل زن‌کنی است. بنابراین گرین‌نگ تها در مورد صفات مایه و موانع موقت‌آمیز یافته‌ها به دارایی واریانس افزایشی بلافاصله هستند.

نتایج و بحث

نتایج تجربه واریانس در آلی در جدول ۱ نشان داده است. این زن‌تیپ‌ها مورد ارزیابی تفاوت‌هایی نزدیک‌ترین از نظر صفات اندازه‌گیری شده مشاهده می‌گردد که از نظر آماری معنی‌دار می‌باشد. بنابراین ترتیب می‌توان چنین استنباط نموده که زن‌تیپ‌ها بیشتر از توان زن‌کنی متفاوت از نظر صفات مورد اندازه‌گیری شده. بنابراین شرایط برای انجام تجربه در آلی و تفکک مجموع مرتبات زن‌تیپ‌ها به مجموع مرتبات ترکیب‌پذیری عمومی و (GCA) و خصوصی (SCA) می‌باشد.

واریانس ترکیب‌پذیری عمومی به استثنای شاخص سطح برگ و درصد ماده خشک در همه موارد معنی‌دار بوده و حاکی از این است که در شکل‌گیری صفات بایسته آثار افزایشی و واریانس تلخ زن‌ها نشان دارد. بنابراین، این توجه به معنی‌دار
جدول 1. تجزیه واریانس دی آلئ ۲۸ زنوتیب (۷ واریته و ۱۱ هیرید F2) نژاد

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>تعداد برگ در بونه</th>
<th>نریاگی</th>
<th>شاخص سطح برگ</th>
<th>زمان شروع گل‌دهی (روز)</th>
<th>تعداد بکر در بونه</th>
<th>گل‌دهی ها</th>
<th>تکرارها</th>
<th>زنوتیب ها</th>
<th>ترکیب پذیری عمومی (GCA)</th>
<th>ترکیب پذیری خصوصی (SCA)</th>
<th>خطأ</th>
<th>ضریب پیکر</th>
<th>وراثت پذیری خصوصی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲</td>
<td>۱۵/۷۶</td>
<td>۲</td>
<td>۱۶/۰۰</td>
<td>۲۸/۸۱</td>
<td>۱۶/۰۰</td>
<td>۲</td>
<td>۲۷</td>
<td>۲۴/۵۵/۲۶</td>
<td>۶</td>
<td>۳۱</td>
<td>۵۴</td>
<td>۶۰</td>
<td>۰/۶۰</td>
</tr>
<tr>
<td>۱</td>
<td>۸۷/۱۱</td>
<td>۸۷/۱۱</td>
<td>۸۷/۱۱</td>
<td>۸۷/۱۱</td>
<td>۸۷/۱۱</td>
<td>۱۱</td>
<td>۳۰</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۱</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۱</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۵۰/۹۳</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۲۸</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۱</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۶۰</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۶۰</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۴۰/۲۴</td>
<td>۱۴</td>
<td>۲۸</td>
<td>۱۵/۰۰/۱۵</td>
<td>۲۱</td>
<td>۱۱</td>
<td>۵۴</td>
<td>۱۰۰</td>
<td>۱۰۰/۱۰۰</td>
</tr>
</tbody>
</table>

میانگین تغییرات

$$O_{2}^{SCA} + 2O_{2}^{GCA}$$

میانگین که گزارش‌های واریانس (مقدار عددی مطلق) بر اساس وراثت پذیری خصوصی هنوز دستگاه نسبت واریانس افزایشی به واریانس فنی که می‌باشد.

مکانیزم اتصال و آثار متغیر واریانس (آیندیتی) وجود ندارد و

بنابراین تجزیه داده‌ها به روش هیمن نظیر ساختار چوبی می‌باشد.

در مورد چنین شرایطی سه افرادی و وراثت به دو زن‌ها

بیش از آن‌ها، گرایش زن‌ها به واقعیت یک گرایش

موفقیت آزمایش برای لایه‌های ترکیبی نیکوتین که زیاد فراهم خواهد

بود. پرداخت و الکتریکی اضافه خرید رگرسیون حاصل از بیشترین

برگ‌های نژاد واریتی B. Banket

زن‌هایی غلیب واریتی B. CDL ۲۸ . وارد کردن میزان نیکوتین

برگ‌های نژاد واریتی B. CDL ۲۸ . B. Banket

در این شکل ارقام B. CDL ۲۸ . B. Banket

در دو مرحله "غلاب" منفی "دیاگرمان" قرار گرفته و با

B. ۲۶
درصد نیکوتین نسبتاً کم خود (به ترتیب 1/20، 1/60، و 1/100) و زنده‌ای غالب برای کنترل درصد نیکوتین، می‌توانند موجب کاهش درصد نیکوتین نتیجه‌ر در راه‌نماه‌ای نمایند. در حالی که ارقام 86 درصد TN B. Resistant B. TN 14 درصد و 15 درصد عنوان می‌شود. گرفته ارد. به عربت دیگر این ارقام با نیکوتین نسبتاً زیاد خود (به ترتیب 1/20، 1/60، و 1/100) و زنده‌ای فعلی برای کنترل درصد نیکوتین برگ‌ها باعث افزایش درصد نیکوتین برگ در نتیجه نهایی شد. به‌سیله درصد نیکوتین برگ به نظر می‌رسد صفت درصد نیکوتین کم (از B. Banket گمله در ورینه در کنترل زنده‌ای غالب و درصد نیکوتین زیاد (از گمله در ورینه 14 (B. Banket) در کنترل زنده‌ای
شکل 2 انحرافات استاندارد شده ریف و الکلی برای غلیظ‌بندی واریته‌های توتون

殒مور امکان ملاحظه و معنا‌دار می‌باشد. این صفات به‌عمداً به عنوان اخراج عملکرد توتون محسوب می‌شوند، بنابراین توزیع همبستگی‌های معنی‌داری را نشان می‌دهند که از جمله آنها می‌توان به همبستگی‌های بین تعداد ببرگ در بوته و شاخص سطح ببرگ (*** = 0.001)، تعداد ببرگ و ارتفاع بوته (*** = 0.001) و بالاخره، تعداد ببرگ و کیفیت ظاهری ببرگ‌ها (*** = 0.001) اشاره نمود. همچنین همبستگی‌های معنی‌داری بین شاخص سطح ببرگ و ارتفاع بوته (*** = 0.001)، زمان شروع گل‌دهی و کیفیت ظاهری ببرگ‌ها (*** = 0.001) مشاهده می‌گردد. مانند چنین همبستگی‌های بین صفات مرحله‌ی زمین و کالیفرنیا (33) توزیع گذارش گردد. است.
جدول 2. همبستگی‌های ساده (فونتی) بین صفات مورد بررسی زنوبیه‌های تونتون

<table>
<thead>
<tr>
<th>صفات</th>
<th>تعداد</th>
<th>برگ خشک</th>
<th>ارتفاع بوده</th>
<th>شاخک ظاهاری</th>
<th>گل‌دهی (سانتی‌متر)</th>
<th>سطح برگ</th>
<th>برگ‌ها (رنگ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکردها برگ خشک</td>
<td>0/312</td>
<td>2/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
<tr>
<td>عملکردها برگ در بوده</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>شاخق سطح برگ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ارتفاع بوده</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>زمان شروع گل‌دهی</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>کیفیت ظاهاری</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>درصد ماده خشک</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 3. نتایج رگرسیون گام به گام عملکرد برگ خشک تونتون (7) با دیگر متغیرهای مورد بررسی (8) در زنوبیه‌های تونتون

<table>
<thead>
<tr>
<th>عرض از ضرب رگرسیون برابر صفات</th>
<th>مدل</th>
<th>صفات مستقل</th>
<th>تجمعی (R2)</th>
<th>کیفیت ظاهاری برگ (X3)</th>
<th>شاخق سطح برگ (X2)</th>
<th>درصد ماده خشک (X1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/312</td>
<td>0/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
<tr>
<td>0/312</td>
<td>0/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
<tr>
<td>0/312</td>
<td>0/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
<tr>
<td>0/312</td>
<td>0/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
<tr>
<td>0/312</td>
<td>0/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
<tr>
<td>0/312</td>
<td>0/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
<tr>
<td>0/312</td>
<td>0/240</td>
<td>0/240</td>
<td>0/248</td>
<td>0/240</td>
<td>0/240</td>
<td>0/240</td>
</tr>
</tbody>
</table>

شکل 4.کاهش میزان زایدی ناشی از روش مستقیم توسط همبستگی معنی‌دار برگ خشک تونتون.

توجه: با توجه به نتایج تجزیه و تحلیل تونتون و شاخق سطح برگ وارد مدل گردیده، به دلیل معنی‌دار بودن ضرایب رگرسیون آنها از طریق آزمون 2 مدل باقی ماندند و حدود 78٪ تغییرات عملکرد برگ خشک تونتون را توجیه کرده.

توجه باید به نتایج تجزیه و تحلیل رگرسیون گام به گام می‌باشد که تجربه بالای گردد که نتایج آن در جدول 4 و شکل 3 مدرج می‌باشد.

توجه: همبستگی معنی‌دار برگ خشک تونتون، معنی‌دار بودن ضرایب رگرسیون آنها از طریق آزمون 2 مدل باقی ماندند و حدود 78٪ تغییرات عملکرد برگ خشک تونتون را توجیه کرده.

توجه باید به نتایج تجزیه و تحلیل رگرسیون گام به گام می‌باشد که تجربه بالای گردد که نتایج آن در جدول 4 و شکل 3 مدرج می‌باشد.

توجه: همبستگی معنی‌دار برگ خشک تونتون، معنی‌دار بودن ضرایب رگرسیون آنها از طریق آزمون 2 مدل باقی ماندند و حدود 78٪ تغییرات عملکرد برگ خشک تونتون را توجیه کرده.

توجه باید به نتایج تجزیه و تحلیل رگرسیون گام به گام می‌باشد که تجربه بالای گردد که نتایج آن در جدول 4 و شکل 3 مدرج می‌باشد.

توجه: همبستگی معنی‌دار برگ خشک تونتون، معنی‌دار بودن ضرایب رگرسیون آنها از طریق آزمون 2 مدل باقی ماندند و حدود 78٪ تغییرات عملکرد برگ خشک تونتون را توجیه کرده.

توجه باید به نتایج تجزیه و تحلیل رگرسیون گام به گام می‌باشد که تجربه بالای گردد که نتایج آن در جدول 4 و شکل 3 مدرج می‌باشد.

توجه: همبستگی معنی‌دار برگ خشک تونتون، معنی‌دار بودن ضرایب رگرسیون آنها از طریق آزمون 2 مدل باقی ماندند و حدود 78٪ تغییرات عملکرد برگ خشک تونتون را توجیه کرده.

توجه باید به نتایج تجزیه و تحلیل رگرسیون گام به گام می‌باشد که تجربه بالای گردد که نتایج آن در جدول 4 و شکل 3 مدرج می‌باشد.

توجه: همبستگی معنی‌دار برگ خشک تونتون، معنی‌دار بودن ضرایب رگرسیون آنها از طریق آزمون 2 مدل باقی ماندند و حدود 78٪ تغییرات عملکرد برگ خشک تونتون را توجیه کرده.
جدول ۲: میزان آثار مستقیم و غیر مستقیم افزایش عملکرد بر گر خشک توتون

| صفات | تعداد برگ در بوته | شاخ صفحه برگ | ارتفاع بوته | زمان شروع کلی همیشه | بارکدها | عملکرد (پم) | همبستگی با
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>تعداد برگ در بوته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۱۱۳/۰/۰۲ ۰۲۱۹۶</td>
<td>۰/۰۱۰۴</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۲</td>
<td>۰/۰۲۰۲</td>
<td>۰/۰۲۲۲</td>
<td>۰/۰۲۲۲</td>
<td>۰/۰۲۲۲</td>
</tr>
<tr>
<td>۱۱۱۳/۰/۰۲ ۰۲۱۹۶</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
</tr>
<tr>
<td>۱۱۱۳/۰/۰۲ ۰۲۱۹۶</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
<td>۰/۰۲۰۰</td>
</tr>
</tbody>
</table>

** و ***: معنیدار در سطح احتمال ۰/۰۵ و ۰/۰۰۱

* اعداد روی فقر نشان دهنده آثار مستقیم صفت مربوط به عملکرد بر گر خشک توتون می‌باشد.

![شکل ۳: نمودار علیت (مسیری) برای عملکرد برگ خشک توتون و خصوصیات زراعی موثر بر آن]

: به پخش نامعلوم و یا آثار متغیرهای دیگر بر روی عملکرد برگ خشک توتون می‌باشد که در این برسی مال‌ور نشده‌اند.

• همبستگی قوی و معنی‌دار کیفیت ظاهری برگ‌ها (ارزش بالایی یک کیلو توتون) سنگین حاصل آثار مستقیم این صفت بر عملکرد بوده (۰/۵۲۷) و آثار غیر مستقیم این صفت از طریق صفات دیگر نتیجه می‌باشد و بنابراین صفت مناسب برای افزایش عملکرد می‌باشد. از بین صفات موجود ارزیابی درصد ماده خشک برگ‌ها یا بالاترین همبستگی را با عملکرد برگ خشک توتون نشان داده (۰/۶۴۵) و آثار مستقیم این صفت بر شکل‌گیری عملکرد بسیار چشمگیر است (۰/۵۱۵) و آثار غیر مستقیم این صفت بر عملکرد برگ خشک توتون از طریق صفات دیگر جنگل قابل توجه بوده.

• برای افزایش عملکرد برگ خشک توتون بکار گرفته می‌شود که در این برسی به عنوان میزان معیار گونه‌شکن برگ بیش‌تر می‌باشد.

۱۲۲
جدول 5: نتایج تجزیه به عامل‌ها برای کلیه صفات مورد ارزیابی در دوزی های نمونه‌برداری

<table>
<thead>
<tr>
<th>عامل مشترک</th>
<th>عامل 2</th>
<th>صفات</th>
<th>عامل 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعادل برگ در بوته</td>
<td>0/752</td>
<td>0/413</td>
<td>0/762</td>
</tr>
<tr>
<td>شاخص سطح برگ</td>
<td>0/573</td>
<td>0/199</td>
<td>0/783</td>
</tr>
<tr>
<td>ارتفاع بوته (سانتی‌متر)</td>
<td>0/626</td>
<td>0/123</td>
<td>0/878</td>
</tr>
<tr>
<td>وزن شروع گل‌دهی (روز)</td>
<td>0/661</td>
<td>0/192</td>
<td>0/855</td>
</tr>
<tr>
<td>شکاف ظاهری برگها</td>
<td>0/243</td>
<td>0/04</td>
<td>0/361</td>
</tr>
<tr>
<td>درصد ماده خشک برگها</td>
<td>0/688</td>
<td>0/261</td>
<td>0/47</td>
</tr>
<tr>
<td>میزان واردی (٪)</td>
<td>0/671</td>
<td>0/119</td>
<td>0/51</td>
</tr>
<tr>
<td>میزان واردی (٪)</td>
<td>0/510</td>
<td>0/332</td>
<td>0/49</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

وجود تفاوت‌های معنی‌داری بین دوزی‌های مورد نظر صفات مورد ارزیابی در اندام‌کلیه می‌تواند برای تحقیق اهداف اصلاحی به مدت و ارزیابی عملکرد برگ شکاف هر دوره استفاده فراوری کرده و تفکیک مجموع مربعات دوزی به ترتیب بدین شکل (GCA) و خصوصی (SCA) نشان می‌دهد که در شکل گیری میزان بهبود در ترتیبی بهره‌مند است. در عامل اول با واریانس 24٪ صفات میان در تعداد برگ در بوته، شاخص سطح برگ و ارتفاع بوته ضرایب عاملی معنی‌دار برخوردار بوده و میزان خاص برخورداری باعث شده است. با توجه به اینکه صفات فوق الذکر بالاترین بار عاملی را دارا بوده و تعیین کننده مورفولوژی گیاه توتون می‌باشند، می‌توان یک عامل را به عنوان
گرچه به‌معنی‌دار افزایش عملکرد برخ چک‌شدن شاخص‌های مناسبی بوده‌باشد، نتایج تجربه به‌عمل‌آوری‌هایی که به‌معنای‌دار دلیل‌هایی را برای نتایج می‌تواند استفاده کند. مفهومی‌پذیرفته‌هرنیگاه ممکن است این گونه که برای انتخاب را به‌صرفه‌نیت قابل توجه‌بوده و می‌تواند قابلیت تحقیق صفات مورد توجه و موثر بر عملکرد بر چک‌شدن نتوان و نتیجه‌ی‌آل‌بودن عملکرد آن را فراهم نماید.
بیانی ممکن معتبر است در دوران کریشک به انتخاب را افزایش دهد. برای مانند تجربه روش‌پذیری نسل‌هایی در حالت تغییرات عملکرد بر چک‌شدن نتیجه‌ی‌آل‌بودن عملکرد آن را فراهم نماید.

منابع مورد استفاده

1. چغانگ، ر. 1372. مطالعه‌های تجربی عملکرد با اجراي عملکرد و تجربه آن‌ها از طریق روش عملیت‌های در سویا. پایان‌نامه کارشناسی آموزشی دانشکده کشاورزی، دانشگاه تبریز.

3. رضائیان، ع. 1373. شاخص‌های انتخاب در اصلاح نباتات. پایان‌نامه کارشناسی ارشد اصلاح نباتات، مجموعه مقالم دومین کنگره علوم رازه‌نیت نباتات ایران، دانشگاه تبریز.

4. قاسمی‌فرد. 1372. تجربه‌هایی در آلکلرک در سرزمینی پایان‌نامه کارشناسی ارشد اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران.

8. هنری‌زاده، ر. م. شعاعی‌دیلمی. 1378. بررسی تکپی بذری علف و گیاه زننگی در جمعیت‌های در حال تکپی (F2) بذری (Oryza sativa L.). مجله علوم و صنایع کشاورزی 1 (1): 51 - 65.

146
10. هنر زاد، ر. م. شعاعی دیلمی و محرم مصبح. 1380. بررسی زنیکی پایدار در برای عامل بیماری سفیدک دروغی تولید گیاه مجله علوم و فنون کشاورزی و منابع طبیعی. 5 (2)، 57-74.

11. هنر زاد، ر. م. شعاعی دیلمی. 1381. بررسی آثار زنیکی مقاومت به نماد مولد غدد (Meloidogyne incognita) و سفیدک کرکی (Peronospora tabacini A.) در تولیدهای نیل باری. مجله علوم و صنایع کشاورزی 16 (2) : 142-151.

