کاربرد داده‌ای رقابی سنجش‌های TM در تهیه نقشه کاربری اراضی حوضه

آبی‌خیز رودخانه بازفت

ندا زاده‌فرد، سید جمال‌الدین خواجه‌الدین و احمد جلیل‌آباد

چکیده

در حال حاضر با پیشرفت فناوری، استفاده از داده‌های ماهواره‌ای به عنوان یکی از پیشروی‌های کاربردی در اطلاعات طبیعی می‌باشد. آمکان پیشرفت‌های گسترده و امکان کاربردی ساختارهای در دنیای طبیعی با استفاده از روش‌های متغیر شده است.

هدف پژوهش حاضر عبارت است از بررسی قابلیت داده‌های سنجش‌های TM ماهواره‌ای در تهیه نقشه کاربری اراضی حوضه آبی‌خیز بازفت (استان چهارمحال و بختیاری). برای تهیه نقشه کاربری اراضی داده‌های مشابه µاده در سال 1377 مورد استفاده قرار گرفت. تصمیم‌گیری هنرمند با یکسک حاصل آمد. روش‌های مختلف و ترکیبات شکل بر حسب تلفک شناسه محاسبه شد.

کیفیت و ویژگی‌های گیاهی استفاده کننده در این سطح، از گونه‌بندی و ترکیب شکل، از تاریخ‌های کاربری اراضی ایجاد گردید. بین شاخص‌های گیاهی و توقف گیاهی، همبستگی‌های بالا و گردش داده شده است.

شکل‌آوری شناسه‌های TM، بستگی به دقت انسانی در تهیه نقشه کاربری اراضی دارد. بین شاخص‌های گیاهی و توقف گیاهی، همبستگی‌های بالا و گردش داده شده است.

شکل‌آوری شناسه‌های TM، بستگی به دقت انسانی در تهیه نقشه کاربری اراضی دارد. بین شاخص‌های گیاهی و توقف گیاهی، همبستگی‌های بالا و گردش داده شده است.

واژه‌های کلیدی: کاربری اراضی، شاخص گیاهی، همبستگی، نظارت شده

1. به ترتیب دانشجوی ساپک کارشناسی ارشد و استاد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار مرتع و آبخیزداری، دانشکده مهندسی طبیعی، دانشگاه صنعتی اصفهان
مقدمه
از نگاه‌های جغرافیایی به‌خصوص در کشورهای در حال توسعه رو به می‌روز در حال افزایش است، به‌همراه رطوبت‌های غیراصولی از منابع طبیعی ارزشمند، شناخت و مطالعه مستمر آنها ضروری می‌باشد. تغییرات کاربری اراضی (Land use) بررسی علائم و عوامل آنها در یک دوره زمینی می‌تواند مورد توجه برنامه‌برداری و مدیریت بانش، روش‌های سنتی برای بررسی تغییرات کاربری اراضی و پوشش اراضی (Land cover) مناسب تشخیص‌ والاست کمپیوتر اتصالی و پردازش داده‌های آن توسعه سنجش زمین و پیداکارانی به همراه مهارت‌های خاص نیاز دارد و لیکن تقابلی در سیستم‌ها اطلاعات زمین‌سنجی و تحقیقات علمی در زمینه اراضی است. در این میان، استفاده از داده‌های ماهواره‌ای با توجه به ویژگی‌های مناسب، به‌ویژه در زمینه‌های مختلف دانشگاه‌هایی مانند سه و سیستم‌های بزرگ‌دست از داده‌های ماهواره‌ای در TM و MSS استفاده کرده‌اند. مفهوم مورد تحقیق در ادامه شرح می‌گردد. در این بررسی پوشش گیاهی به طبقات زیر تقسیم شده است: اراضی زراعی، اراضی غیرزراعی و جنگل‌ها. تکنیکی شده که اراضی زراعی شامل خاک لخت هم بوده است. جنگل‌های مهیج سیاهی در دسته‌ای دارند که در بازآموزی از زیاتر در زبان‌گفتاری به ناپینه بوده است. بینار این سه تیپ در یک گروه طبقه‌بندی شده‌اند. بینار در مورد ویژگی‌های نظارت شده با بینار مشاهده شده است. البته درصد بیشترین شاهد برای این بررسی استفاده گردیده که خطای هی‌کی این طبقه بندی برای داده‌های 8/9، MSS درصد و برای 8/6 درصد بوده است.

بنابراین نظریه طبقه‌بندی با نظریه طبقه‌بندی تکنیکی کاربردی و پوشش اراضی با داده‌های رقومی 2/1 یا حداکثر که پذیرفته بوده و برای بعضی کلاس‌های کاربردی و پوشش اراضی چگونه شکل شده است (۱۳).
کاربرد داده‌های رقومی سنجیده \(\text{TM} \) در به‌پیش‌کش کاربری اراضی حوضه آبخیز رودخانه‌ها باید

مواد و روش‌ها

هدف از این پروژه بررسی قابلیت داده‌های رقومی سنجیده ماهواره‌های لندس نما و مقایسه دقت‌‌های مختلف شاخص‌های گاها رایج در تفکیک تاج پوشش گیاهی در به‌پیش‌کش کاربری اراضی در حوضه آبخیز باید باشد. در این مطالعه باید بخصوص در خلاصه، مراحل و روش انجام پژوهش توضیح داده شده است.

مشخصات مورد مطالعه

حوضه آبخیز بایست از شمال غربی و غرب به استان چهارمحال و بختیاری و شرق به استان خوزستان محدود است. مقطع مورد مطالعه 24 و 32 تا 39 و 50 طول شرقی و 31 تا 39 و 33 درجه شمالی واقع شده است. مساحت مقطع مورد مطالعه حوضه آبخیز بایست به 2136 هکتار و 500000 تا 500000 تا 30 درصد با سطح مساحت 50000 هکتار را شامل می‌شود و در این مساحت 650 هکتار را شامل می‌شود. در ارتفاعات زردکه بختیاری حداکثر 900 متر و در نقطه‌های خروجی حوضه است. نقطه پایین‌ترین ارتفاعات 2221 متر در ارتفاعات زردکه بختیاری حداکثر 900 متر در نقطه‌های خروجی حوضه است.

(5) متوسط بارش حوضه آبخیز بایست به 800 میلی‌متر بارود گردد. است. در ارتفاعات بالاتر از 1200 متر تا 3000 متر در ماه‌های مختلف سال، طول دوره برف‌گیری در منطقه، تابعی از ارتفاعات است. هرچه ارتفاع بالاتر، زمان شروع دوره برف‌گیری زودتر و خانه‌آن در دیتر خواهد بود.

مشخصات داده‌های رقومی مورد استفاده

تصاويری که برای بررسی مقطع مساحت استفاده شد، داده‌های رقومی شش باند سنجیده \(\text{TM} \) از ماهواره‌نامه لندس بود. در تاریخ ۵ می 1988 میلادی برداشت شده است. این تصاویر از چهار رشته اطلاعات ماهواره‌ای در دسترس داخل کشور در زمان تحقیق بوده است. تفکیک مکانی این تصاویر ۵۲ متر داشته است.

بازرسی تصاویر

در مرحله بازرسی شکل، به منظور افزایش وضعیت تصاویر و نمایش دادن پیدایش موجود از روش‌های زیر استفاده شد: ابزار افزایش تصاویر ترکیب رنگ کاب FCD با اندازه‌بندی و وضعیت تصاویر ابزار شده از سه روش: ۱- کش خش (Linear stretch) ۲- کش خش به مکان (Histogram equalization) ۳- کش خش با تغییر لایه‌های نمودار (Linear stretch with saturation) طیف‌یاب استفاده گردید. تکنیک ترکیب رنگ کاب ابزار شده و مناسب شکل موارد زیر بوده (7 و 8 ماهواره). ۶ و ۴ ماهواره) که به ترتیب از چپ به راست به فرمین، پری و ایب ارسال می‌گردید.

ب استفاده از فیلتر بازرسی لب‌های برای انجام تصویر

هندسی

1008

1008
بلعی از جهت منظور، شیب در پایتخت داده‌های رقیمی، از
یک نوع کاربری در جهت جویان و مفاد نسبت تبدیل
نمونه‌برداری شده، برای نمونه‌برداری گنجایش و مراتع به ترتیب
از کوارترها (150 × 100 × 50 متر مربع) و (25 × 25 × 25 متر مربع) تمثیل می‌شود. استفاده از 10 کوارترها هر گردی
سنج و سقوط‌نریز سطح خاک تخمین زده‌شده. سپس درصد تاج
بوش: 10 کوارترات میانگین کلی شده:
\[
\bar{X} = \frac{\sum x_i}{n}
\]
[1]

- تعادل کوارترها در هر نقطه

\[
X = \frac{\text{متوسط درصد تاج بوش}}{\text{نرخ نمونه‌برداری شده}}
\]

استفاده از این استفاده از دستگاه
Garmin مدل (Global Positioning System)

شیب منطقه با استفاده از شیب سنج، برای شیب با استفاده از
قطب نما، ارتقاء با استفاده از ارتقاء، در بالین محل هر نقطه
نمونه‌برداری باداشرکافت گردید. در نهایت نقاط عالی برای
اراضی، عوارض مشاهده شده در سطح زمین ملی فرسایش
و نوع آن، نرگ خاک زمینه و کاربردی های اطراف، اطلاعات
کششی و افراد بومی در منطقه محل عزاید و آبش
باداشرکافت گردید. تعادل 112 نقطه روز نشانه‌های توپوگرافی

۱۵۰۰۰: یک منطقه مشخص شد که برای این مناطق همگین در
روی تشکیل یکی گونه بسته و درصد بوش گاهی آن در محل تخمین
زده شده. همچنین در ۶۶ نقطه از محل‌های نمونه‌برداری با بررسی بوش
گاهی در کوارترها، درصد تاج بوش نیز دیققاً برآورد شد.

آنانیس داده‌ها
الف) طبقه بنی نظری الگو (خوشه بندی)
در این مرحله به منظور بررسی کلاس‌های طبقی کاربردی
مختلف، از آنانیس خوشه‌بندی (Clustering) مدل گزارش‌ها کاربردی اراضی به ترتیب دید کلی از پایتخت داده‌ها
استفاده گردید. باید ترتیب دید کلی از پایتخت داده‌ها
کاربردی اراضی به دست آمد.

چ) اعمال آنالیز
خروجی ایجاد گردید. بررسی اطلاعات در
تلکیب، جمع آوری شده و در نهایت از این ترتیبات برای
ایجاد تکرار زنج کاپژ زیر استفاده شد: \((\text{PCA}_1, \text{PCA}_2, \text{PCA}_3, \text{PCA}_4, \text{PCA}_5, \text{PCA}_6)\)

- از نسبت باند ۲ به ۳ برای نمایش‌نگ کارید

در سطح زمین مانند بوش گاهی اراضی بدون بوش
گاهی، آب و بر فر استفاده شد.

RVI، PVI، NDVI، NSWVI، NRVI، SAVI، DVI،

- استفاده از شاخص‌های گاهی مختلف

- از ۳ الگوریتم می‌شود. در هر جدول X فاکتور تنظیم است که آثار

بادتای خاک را کمتر سخت و محدوده ۸۰ در نظر گرفته

شده.

جمع‌آوری داده‌های صحرایی
اما، جمع‌آوری داده‌های صحرایی، روش نمونه‌برداری
(STRATIFIED random sampling) از نظر طبقه‌بندی شده.
پایه‌گذاری می‌باشد. با توجه به کاربردی های موجود و ناهماهنگ
درصد بوش گاهی، کاربردهای فلزی منطقه به شرح زیر
طبقه‌بندی شده و نمونه‌برداری گردید.

۱- اراضی زراعی: ۲۰٪ تا ۸۰٪ (با بوش گاهی بیشتر از
۱۵ درصد)، ۳- چهارگان (با تاج بوش ۲۵ تا ۵۰ درصد)، ۲- چهارگان با تاج بوش ۲۵ تا ۵۰ درصد، ۵- چهارگان با تاج بوش بیشتر از
۵۰ درصد، ۶- چهارگان با زیر اشک نسبتاً دم، ۷- مرتع مشجر
(مرتع با تاج بوش بیشتر از ۱۵ درصد و تاج بوش درختی
کمتر از ۱۵ درصد)، ۸- اراضی صحرایی و رحمان‌های
ساختگی، ۹- آب، ۱۰- اراضی سگرزایی‌دار (شامل بستر
رودرخانه)، ۱۱- مناطق مسکونی و جاده‌ها، ۱۲- اراضی با
بوش گاهی بیشتر از سه بار و بسیار ضعیف (کمتر از
۱۵ درصد)، ۱۳- خاک بدون بوش، ۱۴- برف و ۱۵- سایر، که در نمونه

آخر روز توصیف ایجاد شده شناسایی شد و نمونه‌برداری شد.
جدول 1. فرمولهای محاسبه شاخص‌های گیاهی مورد استفاده در پژوهش

<table>
<thead>
<tr>
<th>شاخص گیاهی</th>
<th>رابطه</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI</td>
<td>$\frac{(NIR - R)}{(NIR + R)}$</td>
</tr>
<tr>
<td>RVI</td>
<td>$\frac{NIR}{R}$</td>
</tr>
<tr>
<td>SAVI</td>
<td>$\frac{(NIR - R)(1 + L)}{(NIR + R + L)}$</td>
</tr>
<tr>
<td>DVI</td>
<td>$\frac{NIR - R}{DVI}$</td>
</tr>
<tr>
<td>PVI</td>
<td>$\frac{\sqrt{(R_g - R_v)^2 + (NIRs - NIRv)^2}}{2}$</td>
</tr>
<tr>
<td>TSAVI_1</td>
<td>$\frac{a(NIR - aR - b)}{b(NIR + R) - ba + x(1 + a^2)}$</td>
</tr>
<tr>
<td>MSAVI_2</td>
<td>$\frac{(12)(2(NIR + 1)) - \sqrt{((2NIR + 2)^2 - 8(NIR - R))}}$</td>
</tr>
</tbody>
</table>

1. بازتاب طول موج مادون فرم (با علامت β متعلق به ناحیه، با علامت γ متعلق به پوشش گیاهی و بدون علامت شامل همه عوارض) استفاده می‌شود.
2. بازتاب طول موج مادون فرم (بای علامت β متعلق به ناحیه، با علامت γ متعلق به پوشش گیاهی و بدون علامت شامل همه عوارض) استفاده می‌شود.

(Density Slicing)

برای شاخصهای $SAVI$, RVI, $NDVI$, $MSAVI_1$ و $TSAVI_1$ مورد بررسی قرار گرفت. به‌طور معمول مطالعات استفاده می‌شود که $L = 0.5$ گرفته شود. مقدار آزمون قرار $L = 0.5$ استفاده شده و به‌صورت PVI, DVI و $MSAVI_1$، معادله زیر برای این باور 3 متغیر غیر واحد ویژه و با توجه به یک عوامل متغیر، برای نمونه‌های خاک بدون پوشش به‌دست می‌آمد:

$$Y = \frac{-a}{\sqrt{b^2 + 2}} + \frac{1}{\sqrt{b^2 + 1}}$$

$\frac{a}{b} = 0.632854$
طیف‌بندی انبساط شد. قابل توجه است که برای کاربری‌های مختلف افزایش ناحیه پوشش گیاهی همراه با پلاک‌های اندازه‌گیری سطح برگ و رنگ می‌گردد و باعث افزایش دقت خروجی مارتفاع‌سنج. همراه کردن این بررسی با مقایسه هستوگرام داده‌های آن‌لاین شده، تفکیک بخش‌های مختلف را تسهیل می‌کند.

چ) طبقهبندی نظرات شده
برای انجام طبقه‌بندی نظرات شده می‌بایست بهترین واردات‌های را برای نهایی‌ترین ارزیابی بهترین بر روی داده‌های فرمولاریک خروجی این سیستم، چه در وضعیت هموار و چه در وضعیت مختلط، بررسی و ترکیب آنها به‌دست آورد. این سیستم می‌تواند در ما بررسی GPS استفاده شود. این‌ها یا با استفاده از PCA تعریف نمایند. پس از تعیین مقدار مطلوبی از تعدادی نمونه‌ها در این سیستم، می‌تواند در تصمیم‌گیری در وضعیت هموار سایر نظرات به‌صورت یک فاصله‌گری در این‌دستور نمود. سپس می‌تواند مختصات بازتاب‌های نمونه‌ها در شرایط جدید قابل بررسی به‌وجود آورد و با مقایسه مانگین‌های نمونه‌های آموزشی، بهترین داده‌های TM برای جداسازی کاربری‌های مختلف انتخاب گردد. که داده‌های 3.4 و 5 بهترین داده‌ها شناخته شد. پس از حصول نتیجه آنالیز سه نوع طبقهبندی نظرات اعمال شده:

1. طبقهبندی پیش‌ترین شاهد
2. طبقهبندی کمترین فاصله
3. طبقهبندی متوسطی سطح

تنیم دقت نشان‌های ایجاد شده
در مرحله نهایی با استفاده از نمونه‌های که در زیردسته جغرافیایی روی نقشه‌های توپوگرافی کنترل شد و ماتریس خطا مخابره گردد. مانند خطا، برای طبقه‌بندیی اگزه‌ها یا شباهت‌های شیب، حداکثری و فاصله نهایی توپوگرافی شده، دقت کلی (Total accuracy) شاخص کیفی کلی (Omission/Commission امروی ایکس) و (Omission/Commission امروی ایکس)
با معرفی و بررسی فناوری‌های جدید در زمینه مهندسی آب، امکاناتی جدیدی برای کنترل و مدیریت منابع آب در بستر سطح های رسوبی و ساحلی فراهم می‌شود. این فناوری‌ها شامل استفاده از سیستم‌های آب‌سازی و کنترل آب‌گذاری بر اساس تغییرات نوری در محیط و مقدمات جغرافیایی است. در این مقاله، تمرکز بر روی این فناوری‌ها قرار می‌گیرد که می‌تواند به بهبود کیفیت آب و کاهش آب‌زایی از منابع طبیعی کمک کند.

تمامی این فناوری‌ها با استفاده از تکنیک‌های نوینی ساخته شده و بر اساس اصول جدیدی در زمینه مهندسی آب تشکیل می‌شوند. این تکنیک‌ها شامل استفاده از اطلاعات اکستراور، پیش‌بینی داده‌های آب‌زایی، استفاده از سیستم‌های اطلاعاتی و داده‌های جغرافیایی، و جایگذاری سیستم‌های آب‌سازی در مناطق مختلف است. در این مقاله، تمرکز بر روی این فناوری‌ها قرار می‌گیرد که به بهبود کیفیت آب و کاهش آب‌زایی از منابع طبیعی کمک کند.

در ادامه، اکانتی از این فناوری‌ها در زمینه کنترل آب‌گذاری در منابع طبیعی و استفاده از فناوری‌های نوین در زمینه مهندسی آب می‌باشد. در این کار، تمرکز بر روی اکانتی از این فناوری‌ها در زمینه کنترل آب‌گذاری در منابع طبیعی و استفاده از فناوری‌های نوین در زمینه مهندسی آب می‌باشد. در ادامه، اکانتی از این فناوری‌ها در زمینه کنترل آب‌گذاری در منابع طبیعی و استفاده از فناوری‌های نوین در زمینه مهندسی آب می‌باشد.

در ادامه، اکانتی از این فناوری‌ها در زمینه کنترل آب‌گذاری در منابع طبیعی و استفاده از فناوری‌های نوین در زمینه مهندسی آب می‌باشد. در ادامه، اکانتی از این فناوری‌ها در زمینه کنترل آب‌گذاری در منابع طبیعی و استفاده از فناوری‌های نوین در زمینه مهندسی آب می‌باشد.
جدول 3: معادلات حاصل از رگرسیون شاخص گیاهی

<table>
<thead>
<tr>
<th>ضریب همبستگی (R)</th>
<th>رابطه</th>
<th>نام شاخص گیاهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.83</td>
<td>$Y = 139.15X + 2/132$</td>
<td>NDVI</td>
</tr>
<tr>
<td>0.81</td>
<td>$Y = -78/542 X + 8/70$</td>
<td>RVI</td>
</tr>
<tr>
<td>0.82</td>
<td>$Y = 8/651 X + 0/334$</td>
<td>SAVI</td>
</tr>
<tr>
<td>0.99</td>
<td>$Y = 0/888 X + 9/017$</td>
<td>DVI</td>
</tr>
<tr>
<td>0.96</td>
<td>$Y = 1/3954 X - 1/557$</td>
<td>PVI</td>
</tr>
<tr>
<td>0.80</td>
<td>$Y = 10/322 X + 1/078$</td>
<td>TSAVI</td>
</tr>
<tr>
<td>0.83</td>
<td>$Y = 0/8593 X + 7/781$</td>
<td>NRVI</td>
</tr>
<tr>
<td>0.88</td>
<td>$Y = 10/645 X + 1/1427$</td>
<td>MSAVI</td>
</tr>
</tbody>
</table>

برای نهایی سپرده پوشش گیاهی، یا به توجه به متوسط نمونه‌ها برای 74 نمونه تا بیشترین باند به‌عنوان باند درجه‌بندی شده باشد، می‌باشد. P کاهش یافته است. محدوده شاخص کاکی در ارایش زراعی 0.59 (MSAVI) به‌روز است. پوشش گیاهی کاکی با داده‌ها مرتبط به با ارایش زراعی، است که در ارایش زراعی SAVI رشد یافته و با داده‌ها مرتبط به با ارایش زراعی SAVI در ارایش زراعی 0.63 رابطه و علت SAVI کاهش به آن‌که در این‌جا در نظر گرفته است. در واقع این فاکتور برای مناطق با SAVI بیشتر یا پوشش متوسط و پایین می‌باشد. ولی چون ارایش زراعی بر تراکم هستند شاخص SAVI بیش از نسبت به SAVI بستگی دارد. برای به دست آوردن فاکتور به نظر می‌رود و لیست عمومی در ارایش زراعی SAVI به دست آوردن شکل SAVI در منطقه یا تغییرات جدی‌تر نشانه‌های صورت 25 درصد که در ترکیب با علامت اختصاصی FI و در نقش‌های ایجاد شده و مانند فکر گفته می‌شود.

طبقه بندی نظرات شده

جدول 4: میانگین از ارزیابی تعیین در هفت باند P را نشان می‌دهد که چهار باند 2.5 و 7 تنها از اکثر راه‌های، آنها را تفکیک می‌کند. در 1 و 2 دیه‌های آمارا پراکنده که می‌باشد. پوشش گیاهی دوای آمارا طیف‌بندی‌های نظرات 84 (100 × 120) متری. نارابین برا طیف‌بندی‌های نظرات بین و در ارایش زراعی شاهد را که در ارایش‌های از 6.1 استفاده نشده است. مالدرس و همکاران (1992) در پژوهشی
جدول 4- میزان پایداری نمونه‌های عمومی در هفت باند

<table>
<thead>
<tr>
<th>کاربردی اراضی</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>اراضی بدون پوشش</td>
</tr>
<tr>
<td>2</td>
<td>اراضی زراعی</td>
</tr>
<tr>
<td>3</td>
<td>جنگل کم تراکم</td>
</tr>
<tr>
<td>4</td>
<td>جنگل با تراکم متوسط</td>
</tr>
<tr>
<td>5</td>
<td>جنگل پر تراکم</td>
</tr>
<tr>
<td>6</td>
<td>برف</td>
</tr>
<tr>
<td>7</td>
<td>مرغ مشجر</td>
</tr>
<tr>
<td>8</td>
<td>مرغ</td>
</tr>
<tr>
<td>9</td>
<td>اراضی با پوشش پراکنده</td>
</tr>
<tr>
<td>10</td>
<td>اراضی اسکلرالی</td>
</tr>
<tr>
<td>11</td>
<td>آبی</td>
</tr>
<tr>
<td>12</td>
<td>اراضی سبزپریدار</td>
</tr>
</tbody>
</table>

13 آب

تولیدات چوبی آن در شرایط طبیعی کمتر از ارتفاع تولیدات علفه‌ای آن است (1). اگر چه در این منطقه همچنان شرایط برای تعیین میزان مشجر حاصل نمی‌شود و منطقه با داشتن تاج پوشش درختی، ذوب اسکوبان چنین دیگر مقررات مرغ مشجر در اراضی مشجر اراضی با ارتفاع اند. در ۱۵ دصر تا میانه درخت مصرف می‌کند و به دست می‌آید با ذوب اسکوبان مرتعگری به شکل مشترک شده است. در زمان شکل بدری از منطقه در سال می. ۱۹۹۴ پوشش برفی در اثر باران Snow وجود رئیسی چه در شرایط مشترک و اثرات اختصاصی مشترک گریزند. گزارش‌های محلی و مرجع دیگری که این مورد را در سال های ۱۹۷۰ تا ۱۹۸۰ اراضی بدون پوشش شال خاک بدن پوشش اراضی به منطقه و جاهایی است که این است که اراضی با عوامل B مشترک مشترک بدهد. و اراضی سبزپریدار یا یافته در شرایط باعث شده است. سبزپریدار شال محلی است که سبز و سبزپریدار ۵۰ تا ۹۰ درصد بوده و همچنین مصرف گربه‌گزاری با دانه درخت رودخانه را از فاصله این طبقه گربه‌گزاری به دست می‌آید. پوشش روزانه بادی از منطقه در اراضی سبزپریدار است. اراضی سبزپریدار دارند. اراضی اراضی با عوامل S مشترک

۱۵ درصد تاج پوشش درخت که با ذوب اسکوبان مرتعگری می‌باشد. سبز مشجر مرتعگری است که در اراضی درختان و درختچه‌های خودروی چنگلی پراکنده بوده و ارزش
مختلف درخت در این کاربری وجود دارد و دخالت انسان باعث ناهماهنگی منطقی شده. در نتیجه تعیین که از کاربری جنگلی یا زیر اشکوب دید شده، بایستی مشخص ندادار. درخت در این کاربری تراکم و پوشش بسیار متفاوت دارد و در واقع این کاربری شامل تک درختان پراکنده تا ۴۰ درصد ناحیه پوشش به همراه دیدکاری در زیر اشکوب می‌باشد. در آن‌‌طور که در دسته جنگلی کم تراکم و با تراکم متوسط قرار گرفت.

در منطقه، جاوه‌ها خاکی و دارای عرض کم می‌باشد که همراه با نوبت‌گرفتن پیچیده، یافته‌ها به شکلی تک‌پوش قابل فهم شد. می‌تواند منطقه سدکویی مجموعه نادراند و منازل در یکدیگر فاصله‌دار باشد و درختان نیز بین آنها واقع شده. ساختار درختی کاوه و کلیه با مصالح بکار رفته در آنها باعث شده که بی‌بازش آنها با خاک راحت تهیه شود. در بی‌بازش مسکونی و جاوه‌ها در روستاهای کوچک و پراکنده اغلب چنین مشکلی ایجاد می‌شود. علی‌عیاه و همکاران (۱۳۸۷) در هنگ قبیلی کاربری اراضی منطقه که‌یستا مکاس استان فارس با استفاده از داده‌های جمع‌آوری کلاس‌های منطقه سدکویی و روان‌های را توانستند تفکیک کنند (۸). اراضی بی‌بازش جنگل سیاه اشکوب دید، مربع مشجر، اراضی سپید پرچم‌دار و خاک بدن بیانی تداخل زیادی باین هموانه‌ها در دیگر دارن. در نتیجه این هموانه‌ها حذف و ۹ کلاس از طبقه‌های منطقه سدکویی در دست آمده که رازیهایی در یک سه‌سوم وسعت (حدود ۴۳۴۷ درصد از کل مساحت) به‌صورت طبقه‌بندی پدیده‌بندی باقی مانند. به‌گونه ای که اشکالات این طبقه‌بندی وجود پیکسل خاص طبقه‌بندی ناشد است. کلاس‌های کاربری اراضی در طبقه‌بندی مکاس مشاهد شاهکاری گیاهی همراه با پیکسل خاص طبقه‌بندی نشد است. که در این‌جا این طبقه‌بندی می‌باشد.

بررسی صحت نقشه‌های تولید شده

با بررسی جدول خطا مشخص می‌شود که بیشترین شاخص کاپا متعلق به طبقه‌بندی نظارت شده با روش بیشترین مقدار را به‌صورت زیر می‌توان بررسی نمود:

۱۰۰
جدول 5. ماتریس خطا به ترتیب طبقه‌بندی کلاس‌های گوشتی به روش گوشتی تکیه‌گری نظرات زندگی پیش‌تن شیفت

<table>
<thead>
<tr>
<th>خطا کیشون</th>
<th>جمع</th>
<th>B</th>
<th>F_5</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>Shadow</th>
<th>D</th>
<th>P</th>
<th>F_3</th>
<th>F_2</th>
<th>F_1</th>
<th>Snow</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/004</td>
<td>279</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>1</td>
<td>•</td>
<td>1228</td>
<td>W</td>
</tr>
<tr>
<td>0/000</td>
<td>1626</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>15</td>
<td>64</td>
<td>13</td>
<td>56</td>
<td>•</td>
<td>1521</td>
</tr>
<tr>
<td>0/028</td>
<td>107</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>21</td>
<td>12</td>
<td>34</td>
<td>62</td>
<td>•</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>0/006</td>
<td>380</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>5</td>
<td>•</td>
<td>223</td>
<td>F_1</td>
<td></td>
</tr>
<tr>
<td>0/017</td>
<td>584</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>1</td>
<td>583</td>
<td>•</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>0/000</td>
<td>119</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>2</td>
<td>115</td>
<td>•</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0/049</td>
<td>662</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>14</td>
<td>•</td>
<td>•</td>
<td>245</td>
<td>•</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0/008</td>
<td>322</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>75</td>
<td>•</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0/005</td>
<td>1637</td>
<td>9</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>1537</td>
<td>•</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0/000</td>
<td>358</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>15</td>
<td>•</td>
<td>39</td>
<td>•</td>
<td>25</td>
</tr>
<tr>
<td>0/033</td>
<td>426</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>145</td>
<td>•</td>
<td>34</td>
<td>•</td>
<td>245</td>
<td>•</td>
<td>2</td>
</tr>
<tr>
<td>0/013</td>
<td>119</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>75</td>
<td>•</td>
<td>•</td>
<td>9</td>
<td>•</td>
<td>•</td>
<td>17</td>
</tr>
<tr>
<td>0/022</td>
<td>787</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>1</td>
<td>359</td>
<td>•</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0/000</td>
<td>517</td>
<td>82</td>
<td>44</td>
<td>152</td>
<td>237</td>
<td>240</td>
<td>254</td>
<td>432</td>
<td>323</td>
<td>441</td>
<td>148</td>
<td>1421</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>0/000</td>
<td></td>
</tr>
</tbody>
</table>

جمع کل‌ها = 8788
دفت کنی = 158
کابای کلی = 87
جدول ۶: ماتریس خطای تایپ بندی کاربری اراضی به روش هیرید

<table>
<thead>
<tr>
<th>خطا</th>
<th>کمیسون</th>
<th>جمع</th>
<th>B</th>
<th>Fp</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>Shadow</th>
<th>D</th>
<th>P</th>
<th>F3</th>
<th>F2</th>
<th>F1</th>
<th>Snow</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>474</td>
<td>177</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>743</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>218</td>
<td>79</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1631</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>98</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>250</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>318</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>147</td>
<td>216</td>
<td>518</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>147</td>
<td>216</td>
<td>518</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>362</td>
<td>239</td>
<td>177</td>
<td>46</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>427</td>
<td>159</td>
<td>95</td>
<td>145</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>242</td>
<td>119</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>358</td>
<td>233</td>
<td>177</td>
<td>46</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>387</td>
<td>209</td>
<td>50</td>
<td>57</td>
<td>41</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>387</td>
</tr>
</tbody>
</table>

عکس اختصاری کلاس ها - مرجع

<table>
<thead>
<tr>
<th>کلاس های طبقه بندی شده کاربری اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب W</td>
</tr>
<tr>
<td>برف Snow</td>
</tr>
<tr>
<td>چنگال با تراکم کم F1</td>
</tr>
<tr>
<td>چنگال با تراکم متوسط F2</td>
</tr>
<tr>
<td>چنگال با تراکم زیاد F3</td>
</tr>
<tr>
<td>مربع P</td>
</tr>
<tr>
<td>پوشش گیاهی برآمده D</td>
</tr>
<tr>
<td>Shadow سایه</td>
</tr>
<tr>
<td>اراضی مکلاسی البرزی R</td>
</tr>
<tr>
<td>اراضی زراعی C</td>
</tr>
<tr>
<td>اراضی سخت رزور S</td>
</tr>
<tr>
<td>مربع منجره F</td>
</tr>
<tr>
<td>اراضی بدن پوشش B</td>
</tr>
</tbody>
</table>

جمع

جمع پیشکوئ = 7879
دقت کلی = 19.87
کلای کلی = 8872
شکل 1. نقشه کاربری اراضی حاصل روش هیبرید
جدول 7 سماحت کاربری‌های اراضی در طبقه بندی هیرید

<table>
<thead>
<tr>
<th>کاربری اراضی</th>
<th>سماحت (هکاتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشاورزی</td>
<td>1937/19</td>
</tr>
<tr>
<td>زراعت</td>
<td>1849/24</td>
</tr>
<tr>
<td>گیاه</td>
<td>1749/81</td>
</tr>
<tr>
<td>چنگال</td>
<td>1749/81</td>
</tr>
<tr>
<td>چنگال با تراکم کم</td>
<td>2599/88</td>
</tr>
<tr>
<td>چنگال با تراکم زیاد</td>
<td>1399/88</td>
</tr>
<tr>
<td>اراضی با پوشش برنج</td>
<td>1429/75</td>
</tr>
<tr>
<td>شالیه</td>
<td>1358/56</td>
</tr>
<tr>
<td>اراضی زراعی</td>
<td>7589/68</td>
</tr>
<tr>
<td>اراضی سنگ‌ریزدار</td>
<td>914/93</td>
</tr>
<tr>
<td>مرعاب مشجر</td>
<td>2191/69</td>
</tr>
<tr>
<td>اراضی بدون پوشش</td>
<td>3288/87</td>
</tr>
</tbody>
</table>

1. تأثیر انسان و دام که باعث رحم خرده همگنی‌ها و شکل‌دهنده اراضی می‌شود. اراضی زراعی را از طبقه‌بندی کمترین فاصله (با شاخص کاپای 100 درصد)، جنگل با تراکم کم (با شاخص کاپای 91 درصد) و MSAVI SAVI (با شاخص کاپای 91 درصد) جنگل با تراکم زیاد، مرعاب، پوشش گیاهی، چنگال اراضی سنگ‌ریزدار، مرعاب مشجر و اراضی بدون پوشش در طبقه‌بندی پیشبردگان طبقه‌بندی شده‌اند. در حال حاضر اراضی زراعی اراضی در طبقه‌بندی شده‌اند با دقت کلی 90/8% اراضی که دارای بسترهای آبی‌آبی‌ساز، دام و انسان دسترسی کامل به آنها داشته و خیلی کم تغییر یافته است.

2. شیب‌های تند و تر، پوششی چهار منطقه، روی عوارض و پیدایش‌های این چشمه گردیده و در هرگونه عکس‌های داده‌ها رقومی توضیح داده شده، نیرویی ساخته شده‌اند. اراضی بدون پوشش، اراضی سنگ‌ریزی و اراضی با پوشش برنج و غیر دانی، سماحت زیادی از منطقه داده‌های اراضی که در طبقه‌بندی 328/1 درصد از کل سماحت منطقه بالغ می‌گردد، این سطح وسیع، بدون دخالت خارجی، شارای‌های انسان‌پیمان که تغییرهای افزایش شده دیزی‌راهای رها شده و مرعاب مشجر جنگل تغییرهای شده است.

3. در بررسی پیش‌بازی‌ها، پیش‌بازی‌های مختلف، در شرایط خاصی یا اراضی سنگ‌ریز، پیش‌بازی‌ها با تأمین و در نهایت اراضی شیب‌های اراضی این مدل‌های بررسی شده در مقابل عویض استفاده از
فهرست زبانی:

1. بدری، ر. 1379. استفاده از سنجش از دور و سیستم اطلاعات جغرافیایی در تعیین جهت گسترش زیست‌پرورشی شهر نمونه موردی: شهر شاهرود. پایان‌نامه کارشناسی ارشد، دانشگاه علوم انسانی، دانشگاه تربیت مدرس، تهران.
2. بوجار، ا. 1375. مطالعات اجتماعی و توجهی طرح آب‌برداری حوزه بافت، هواشناسی و اقلیم. شرکت خدمات مهندسی جهاد و مهندسی کشاورزی، تهران.
3. دادرس، ب. 1375. مطالعات اجتماعی، توجهی طرح آب‌برداری حوزه بافت. شرکت خدمات مهندسی جهاد و مهندسین مشاک خارجی.
4. دماینی، ع. 1378. بررسی امکان کاربرد داده‌های ماهواره‌ای در مطالعات و قدم‌بندی اراضی شهر به روش رقیقی مشاهده دوره همایش نقش‌برداری، صفحه 238 تا 240، تهران.
5. حیدری‌پور، غ. 1375. مطالعات اجتماعی، توجهی طرح آب‌برداری حوزه بافت: فیزیوتراپی و تورپترافی. شرکت خدمات مهندسی جهاد و مهندسین مشاور پارس، تهران.
6. خواجه‌الدین، س. ج. 1375. اثر جمع‌آوری داده‌های صحرازی برای نمایش داده‌های ماهواره‌ای، سمینار بیانان‌دایی کرمان.
7. صادقی، ن. ع. 1378. سیستم سنجش از دور پژوهشگری علوم دفاعی، دانشگاه امام حسین.
8. علمی پناهی، س. ک. و. م. مسعودی، غ. 1375. توجهی نقش‌کاربری اراضی با استفاده از داده‌های رقیقی ماهواره‌ای برای تغییر صنعت ماهواره‌ای. مجله علوم کشاورزی و منابع طبیعی 17(1): ۶۵ تا ۷۸.
9. غیاثالن، غ. 1377. توجهی نقش‌کاربری اراضی با استفاده از تصاویر ماهواره‌ای زمینه (مطالعه موردی جنوب تهران). پایان‌نامه کارشناسی ارشد، دانشگاه علوم انسانی، دانشگاه تربیت مدرس، تهران.
10. منقی، م. 1379. کاربرد تصاویر رقیقی سنجش، ت. ام. در مطالعه پوشش گیاهی مرطوب در جهان نمایان‌نامه کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
11. نصیری، غ. و. 1375. روش‌های تحقیق بندی طبیعی و فضایی در تهیه نقش کاربری و پوشش اراضی. وزارت کشاورزی معاونت برنامه ریزی و پرداخت اداره کل آمار و اطلاعات، شماره 63، تهران.