اثر سریزی انتخابی بر نمرخ سطح آب در کنان جانی غیر منشوری: راهنمای طراحی

صلاح کوچکزاده

چکیده

کنال‌های جانبی کاربردهای گسترده‌ای در شبکه‌های انتقال و توزیع آب، سدهای مخزنو، تاسیسات تصفیه آب و لاستیک‌ها، و در مجاری زرکش سطحی درونی دارند. جریان در این سازه‌ها از نوع منگر مکانی با انرژی دیسک است و نمرخ سطح آب آن از فاکتورهای متن طراحی محصول می‌شود. معمولاً علاوه بر افزایش عرض کافی کنال در جهت جریان، در انتخاب پایپ‌دست کنال، سریزی نصب می‌شود تا ضمن ایجاد مقاومتر کنترل، شرایطی تراش نماید. کافی نمرخ سطح آب اهمیتی در کنالی به وجود آید. در این مقاله نتایجی که به‌وسیله آزمایشگاهی گزارش شده که برای تعیین میزان تأثیر نصب سریزی انتخابی با ارتفاعی مختلف بر ویژگی‌های سطح آب در یک کنال جانی غیر منشوری انجام شده بود. در هر آزمایش شش نمرخ طولی به طور مشخص و متمایز دیده شد. اختلاف میان اعمال آب نقطه میانی نمرخ‌های حداکثر و حداقلی در بررسی اثر نصب سریزی به کار رفت.

نتیج نشان داد که اختلافات ویژگی‌های پایین‌شده مشخصی در انتخاب پایپ‌دست کنال جانی می‌باشد. بیشترین تأثیر بر این میزان می‌باشد که در این مقاله از ابزار آزمایشگاهی گزارش شده که برای تعیین میزان تأثیر نصب سریزی انتخابی تعبیه می‌گردد تا به عنوان راهنمای طراحی ارتفاعی نصب‌های سریزی به کار گیری شود. واژه‌های کلیدی: جریان منگر مکانی، ضربه تصحیح اندازه حکمتی، انتخاب گردابی سریزی جانی، سریزی انتخابی، نمرخ سطح آب، کنال غیر منشوری

مقدمه

سریزهای جانی معمولاً به عنوان سریزهای اضطراری در تأسیسات هیدرولیکی بزرگ‌سازهای سده، و در شبکه‌های آبیاری و زردکشی به کار می‌رود. از سریزهای پای آب انتخاب می‌شوند. 1. دانشیار آبیاری، دانشکده کشاورزی، دانشگاه تهران
جراحان در کاتال جانی از نوع منفی مکانیکی با افزایش دیس است، بیشتر مقدار دیس، جراحان در امتداد کاتال جانی و در جهت جراحی افزایش می‌یابد. به همین دلیل عموماً عرض کف کاتال در امتداد جراحان افزوده می‌شود تا نیروی سطح آب پایین افزند.

جراحان ورودی را تحت تأثیر قرار داده. افزایش عرض کاف کاتال جانی را از حالت منشوری بجای می‌کند. در نهایت به منظور بررسی اثر هنده مقطعی و ارتفاع سریزی انتها بر مشخصات جراحی و وضعیت نیروی سطح آب در کاتال جانی انجام شد.

روابط حاکم بر جراحان

پژوهش‌های هندرز (7) مطرح کرده‌اند که ارائه معادلات حاکم بر جراحان متفاوت می‌باشد. در این پژوهش‌ها از قانون بقای اندازه حکم برای برقراری معادلات حاکم استفاده شده و عمود بر صرف نظر کردن از نیرو مصالح در معادله پیشنهادی، فرض کرده‌اند که انتگرال جراحان ورودی پس از برش از سریزی به طور کامل از بین می‌روند. هندرز در تحلیل خود افت سطح آب در امتداد جراحان را به عنوان تنه عاملی که جراحی را ایجاد می‌کند. در نظر گرفت (1، 5، 6 و 8).

برای اصل اصلاح و تکمیل معادلات حاکم کار اند ترمهای حذف شده در تحلیل هندرز، پژوهش‌گان دیگری همچونcorn و میش-پیترز (4)، kparnie و مارکوس (3)، پن و بینزر (12) پژوهش‌های نمودند که افزون ارائه روابط حاکم، به نتیجه بی‌پایه و روش کردن نیرو، همکاری کمک کرده است. با کار بردن اصل بقای اندازه حکم، بی‌پایه و روش کردن نیرو همکاری کمک کرده است. با کار بردن اصل بقای اندازه حکم، بی‌پایه و روش کردن نیرو همکاری کمک کرده است. با کار بردن اصل بقای اندازه حکم، بی‌پایه و روش کردن نیرو همکاری کمک کرده است. با کار بردن اصل بقای اندازه حکم، بی‌پایه و روش کردن نیرو همکاری کمک کرده است.

1. کار برای انتگرال سریزی توزیع هیدرواستاتیکی بسیار، 3 سل بند بسته و کم بودن شب طولی، 4. برقراری معادلات مقاومت سانام، 5. تاج‌سازی بند اختلاف‌ها با آب و ناپ بند بودن جرم خاصی.
مواد و روش‌ها

تجهیزات آزمایشگاهی
مدل فیزیکی که در این پژوهش به کار رفته مشکل بود از یک مخزن با سریژی جانی، کاوان جانی و یک‌سری سریژی که در انها کالینی جانی به صورت سهمی مشده، به منظور تأمین ذره ورودی به کالینی جانی، یک مخزن با سریژی به طول 1.5 متر مورد استفاده قرار گرفت. این مخزن مجهز به یک چاهک و یک مانومنتر بود. که اندازه‌گیری ارتفاع آب روي سریژی مخزن را ممکن می‌ساخت. با در دست داشتن ارتفاع آب روی سریژی، دری کل قابل محاسبه بود. برای تعیین رابطه دیب با ارتفاع آب روی سریژی، کلی‌سیستم سریژی‌گیران بر اساس است Bags از پروبازین سریژی‌گیران با استفاده از روش ترزوی دیجیتالی در تنی انجام شد. ارتفاع آب در پرونده و سیالی یک رقمی نقطه‌ای بی‌دقت 1/1 میلی‌متر ثبت شد. مخزن و سریژی آن کاملاً افقی بودند، به طوری که توزیع دیب و روزی به کالینی ناشست صورت می‌گرفت. آب پس از عبور از سریژی به کالینی جانی می‌رسید. کالینی جانی روی سکوی چوبی به طول 4.5 متر و عرض 1.8 متر احداث شده بود. دیواره‌های جانی کالینی با لوله‌ای لوله به سکو وصل شده بودند. و به اهرمیابی به لبه سکو مکنی بودند. پیچی که در هر اهرم قرار داشت قابلیت تغییر شیب دیواره‌ها را فراهم می‌ساخت، و به کمک این پیچ شیب جانی کالینی تنظیم می‌شده. برای آینده‌نشینی‌های استفاداته که در صنعت لایه‌سازی کاربرد دارد، شکل 1 نشان می‌دهد، طول کالینی 1/5 متر و عرض 0.25 میلی‌متر کانال با افتادگی و پایین‌دست آن به ترتیب 0.90 و 0.90 متر و شب جانی آن هم برای بسیار واقعی (افقی) به 1 (عمودی) بود.

سیل (Sill) به منظور بررسی اثر سریژی‌های آب در انها یا این دست کالینی جانی سریژی‌هایی با ارتفاع‌های مختلف تهیه شد. از این پروین چهار سریژی به ارتفاع صفر، 1.0، 1.50 و 1/100 متر به کار گرفته شد. به مقدار یاد شده دامنه (W/V) 2 را ایجاد کرد.

مکانیکی با افزایش دیب را مبلغ می‌کند. معمولاً عرض کف مقطع در امتداد جریان و افزایش دیب می‌شود تا رقم سطح آب کاهش یابد. این امر کالینی جانی را از جمله منشوری خارج می‌کند. در چنین حالتی، به دلیل تغییرات که در سطح مقطع در امتداد جریان وجود دارد، تغییر افت جریان گرافیکی (k)، هم‌نیاز مؤثری به دیک می‌کند. با پذیرش فرضیه هشتگاهه، به‌طوری‌گونه، در افزایش فرضیه و دخالت دادن ضرایب تصحیح، این افزایش حرکت و افزایش جریان گرافیکی، با به کار بردن قانون بقای اندازه حرکت، معادله جامع حاکم بر جریان مگنا مکانیکی با افزایش دیب برای مقاطع منشوری و غیر منشوری توسط کریتیکه و نظام‌های

\[
\frac{dy}{dx} = \frac{S_0 - S_f - (2\beta + k_c) Q_g^2 - (\beta + k_c) s_b g}{(\beta + k_c) T g^2}
\]

که در آن S بی‌تغییرات عرض کف در واحد طول کالینی، *Q* و *S* به عنوان فاکتور جریان ورودی به کالینی در جهت x می‌باشد. T عرض کالینی در سطح آب است و بقیه پارامترها قبل‌اً تعیین شده‌اند. معمولاً مؤلفه‌ای ناچیز است، و با برای بقیه فرضیه می‌شود. بنابراین، از معادله نهایی حذف شده و فرض شده است که جریان ورودی به کالینی باعث تغییر اندازه حرکت در جهت x می‌شود. حالت معادله 2 باید از مقطع گازی آغاز شود، و برای پایان‌های مقاطع مقطع گازی، با مشابه انتقال دارد هدفمند معادله زیر به دست آمد.

\[
\frac{S_0 - S_f}{g} = \left(\frac{2\beta + k_c}{T}
ight)^2 \left(\frac{\gamma}{\beta + k_c} + \frac{s_b}{T}
ight)\left(\frac{V}{T}\right)^3
\]

که در آن *n* ضریب زیرین ماتانیک R شعاع هیدرولیکی و

محدود شده است.
شکل 1. نحوه اتصال دیواره‌های جانبی به کف سکو برای تشکیل کانال جانی

انجام آزمایش‌ها

در اگر دامنه تغییرات عوامل مؤثر مورد نظر با توجه به محصول‌های مدل آزمایش‌گاهی، از قبل شیب طولی، شیب جانبی، و میزان دیب به کمک یک سری برداشت‌های مقدماتی تعیین شد. در طول آزمایش‌ها، برداشت قطعه سطح آب به ازای 5 مقدار معین دیب در 4 شیب طولی مختلف، و با نصب سری‌های انتهایی آزمایش مقادیر شیب در دامنه 4000 تا 5000 فشار داشت، و مقادیر دیبی Q1، Q2، ... Qn به ترتیب 1، 2، 3 و 4 لیتر بر ثانیه بود.

از آن جا که به فرزند بررسی تغییرات نیم‌خ طولی و عرض در کانال جانبی با مقطع غير مشترک بود، این امر نیازمند برداشت قطعه سطح آب در شمار زیادی از نقاط در امتدادی طولی معین بود. به همین منظور، برای تسهیل برداشت‌ها و افزایش میزان دقت کار، دستگاه مختصات معین و ثابتی تعیین شد. که در سری‌سنار آزمایش‌ها استفاده گردید (شکل 2). این داده‌ها به نحوی شبیه‌نما شده که به کانال به ترتیب نقاط طولی و عرض نقاط سطح داشته در دستگاه مختصات دستی عرض و شیب طولی در طول کانال اجاق

شده که مقطع انتقال آزاد انتهایی پایین دست کانال (سرزیری) با وای به مقاطع با شماره‌های 1 تا 10 مشخص شد. مقطع شماره 1 در آزمایش بالادست مقاطع شماره 10 بالافصله قبل از سرزیری پایین دست قرار داشت.

آزمایش‌های نخستین نشان داد که در صورت برداشت شش نقطه از قطعه سطح آب در هر مقطع عرضی، اطلاعات جامعی به دست می‌آید که به کمک آن سطح آب به طور سه بعدی قابل ترسیم می‌شود. هر کدام از این شش نقطه متعلق به یک محور طولی در امتداد کانال بود و از سالح چپ راست با دو حریر E و D.C.B.A.O سازگاری شد. موقتی نقاط یاد شده روي نقاط اکسترم تعریف نیم‌خ عرضی سطح آب قرار می‌گرفت. به عنوان مثال، محور C به شامل نقاط (C) معین معی...
نحوه انتخابی بر نیم‌پرخ سطح آب در کانال جانی طبیعی: ارتباطی طراحی

شکل ۲: کانال جانی و موقعیت آن نسبت به دستگاه مختصات انتخابی

شکل ۳: نمای شماتیک سطح آب و موقعیت نیم‌پرخ طولی روی آن

در تمام آزمایش‌ها ریزش آب روی امتداد مشخص و ناشی بر دیواره چپ صورت می‌گرفت. شکل ۳ موقعیت مشخص نیم‌پرخ‌های طولی سطح آب روی یک نمای شماتیک سه بعدی نشان می‌دهد. اندماژ گیری رقیم سطح آب در محل نقاط محوری طولی با مقاطع عرضی یازده گانه به کمک یک خطکش فلزی مخصوص و با دقت ± ۲ میلی‌متر صورت گرفت.

نتایج و بحث
بررسی سطح آب در طول آزمایش‌های مختلف نشان داد که می‌توان شش نیم‌پرخ طولی ممتاپسی را در امتداد جریان مشخص داد. اگرچه موقعیت این نیم‌پرخ‌ها در مقاطع عرضی ثابت نبوده و عمداً تنگ می‌زنند و شبیه طولی بود، ولی میزان افزایش آن

41
شکل ۴: تیم‌برخ‌های طولی و عرضی سطح آب برای داده‌های معین
در هر عکسی که کد می‌دهید، نتیجه به صورت متن طبیعی باز خلاصه می‌شود.
Side channel characteristics:

- $L = 1835$ mm
- $Z = Z_y = 0.5$
- $U_s = 90$ mm
- $D_b = 190$ mm
- $n = 0.009$

\(x = \) Lateral distance (mm)
\(y = \) Distance from d/s end (mm)
\(z = \) Water surface elevation (mm)
شکل ۶. تغییرات عمق بحرانی نسبی در برابر دیب واحد طول بعد سریز

شکل ۷. دیب واحد طول بعد در برابر اختلاف عمق نسبی

پوش طولی پیشتر است،

پوش تختانی داده‌ها. این موضوع نشان می‌دهد که سریز

فوکاتی داده‌ها که متعلق به داده‌های یا شیب (Envelop) خود در ارتفاعی به داده‌های نشان می‌دهد.

پوش اندیس نسبی تر داده‌ها می‌تواند به ارائه ضابطه معمولی
همیان متغیرهای یکسان در شرایطی از سریالیتی انتخابی
منجر شدند. در بررسی عمک یک یکی از پاسخات
شکل 8، مقدار یکی از اولین پاسخات باید در انتخاب
عمل به جای استفاده از خطوط پوشش شکل 8 غیر
نقطه یکی از انتخاب شده است. در هیچ یکی از انتخاب
مقطعه قرار داشته باشد. از آن پس، انتخاب دیگر میزان
را کاهش می‌دهد. این روند برای تمام سریالیتی و تامین هر شیپ
قابل رؤیت است. این حقيقة بهترین خطا بین‌سایز نقاط
فرای را امکان‌پذیر می‌سازد، که همان‌طور که نشان داده
شود در سطح آب باید انتخاب سریالیتی انتخابی
مورد نظر محسوبه می‌شود. سپس به همکنش پوش
می‌پردازد.

نتیجه کلی
در این پژوهش از نظر سریالیتی انتخابی در کانال جنوبی به
کمک مدل فیزیکی بررسی گردید. آزمایش‌های اولیه نشان داد

شکل 8. پوش داده‌های دیگر وارد طول یک باید در انتخاب عمل نسبی

\[Q^*_y = Q^*_y - Q_{y, \text{min}}^* \text{ و } \Delta y^* = \Delta y^* - \delta^* \text{ و } \Delta y^* \text{ در استادی \(Q^* \text{ برای } \Delta y^* \text{ مربوط به شرایط مساله مورد نظر تعیین می‌شود. سپس به همکنش پوش به دست می‌آید.} \]
نگیرارتی عرض کف کانال می‌باشد. از این رو، توصیه می‌شود که اثر ارتفاع سطوح و انرژی جریان و ورودی بر نیب‌های جریان و نش مولفه اندیشه حرکت جریان و رودی در اتمام جریان، به خصوص در شبیه‌های طولی نیز، باید حضور سریع‌تر از آن در سطح وجود آمیخته‌ای و بدون آن برسد. همچنین، توجه نمایندگان به تیزی‌های رودی نمی‌باشد که در طول کانال جایی که نیب‌های مطابق شکل 9 روی آمده است، از میان می‌گیرد. سپس، با پرداختن به وقوع واقعی، در کانال جایی به تیزی‌های شباهی خواهند گردید.

سیستم‌گزار

از معاونت محرمان پژوهشی دانشگاه تهران برای ایجاد فضای مناسب ثغیر و تأیید هزینه پژوهش در فضای پژوهشی صادق‌آباد و در سال 1394/1395/1396 می‌باشد. به وسیله تلاش‌های زیادی و در کنار همکار جامعه علمی، دیدگاه و ارائه جامعه تاریخی مطرح شد و به تعلیمی این اثبات طراحی و ارائه نتیجه جامع، مستلزم انگیز پژوهش‌های کست هدفه‌ریزی، به ویژه در مورد نیز تغییر ارتفاع سطوح و نیز