ارزیابی نوارهای کاغذی پوشیده شده با اکسید آهن در تعیین فسر قابل جذب خاک
تعدادی از خاک‌های همدان

امیر حسین قانعی و علیرضا حسین پور

چکیده
روش نوارهای کاغذی پوشیده شده با اکسید آهن آماده به صورت مصنوعی فسفر از محلول خاک جذب کند. در این روش مکانیزم عصاره‌گیری فسفر احتمالاً شبیه مکانیزم جذب فسفر به رسوب گیاه است. هدف این پژوهش ارزیابی روش نوارهای کاغذی پوشیده شده با اکسید آهن در پرورش فسفر قابل جذب خاک در گیاه ذرت رشد کرده و در گلخانه‌ای در تعیین فسفر در نمونه از خاک‌های استان همدان با ویژگی‌های کیفی و شیمیایی مشابه توسط عصاره‌گیری اول‌سان کالول، مهالیک 1 و 2، کلرید کلسیم 1/0/0 میلی‌گرم در کیلوگرم خاک به کار رفته. نتایج این پژوهش نشان داد که فسفر عصاره‌گیری شده توسط روش‌های فوق به ترتیب زیرکاهش یافته: اسید کلریدریک/1 میلی‌گرم در کیلوگرم خاک. مهالیک 1/ کالول / اولسان / روش اول نوارهای کاغذی. پیوسته می‌تواند در واقعیت مورد استفاده قرار گیرد.

واژه‌های کلیدی: فسفر، عصاره‌گیری، ذرت
مقدمه

محققان به منظور ارزیابی فسفر قابل استفاده در خاک، روش‌هایی را انجام دادند. این روش‌ها شامل استفاده از فرمول‌های مختلفی برای محاسبه مقدار فسفر قابل استفاده در خاک است. در این مقاله، به‌عنوان مثال، ارزیابی‌های شیمیایی و فیزیولوژیکی در دو روش مختلفی برای محاسبه مقدار فسفر قابل استفاده در خاک مورد بررسی قرار گرفته است.

به‌عنوان یکی از روش‌های ارزیابی شیمیایی، که به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود، روش انتخاب شده با توجه به خصوصیات محلول و محیط خاک است. در این روش، به‌عنوان مثال، روش توانیان (19) برای محاسبه مقدار فسفر قابل استفاده در خاک استفاده می‌شود.

روش‌هایی که بر اساس قابلیت خدماتی، توانایی و سرعت توانیان مشابه، برای محاسبه می‌شوند، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود. در این روش، روش‌هایی که بر اساس قابلیت خدماتی، توانایی و سرعت توانیان مشابه، برای محاسبه می‌شوند، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود. در این روش، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود. در این روش، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود. در این روش، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود. در این روش، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

نهایتاً، در این مقاله، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود. در این روش، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

محدوده مقاله

روش‌هایی که بر اساس قابلیت خدماتی، توانایی و سرعت توانیان مشابه، برای محاسبه می‌شوند، به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.

به‌عنوان یکی از روش‌های معیارهای بیشتری در تحلیل‌های خاک استفاده می‌شود.
مواد و روش‌ها

به منظور انجام این پژوهش از بین ۲۵ نمونه اولیه ۱۶ نمونه خاک سطحی (۲۰-۳۰ سانتی‌متر) بر اساس درصد رس، کلیسیم معادل و فسفر عصاره‌گیری شده برو بوسیله انتخاب شد. نمونه‌های نهی به داشته باشد در هواز آزاد خشک و از اکثر میلی‌متری غیر داده شدند. ویژگی‌های فیزیکی و شیمیایی خاک‌ها شامل بافت خاک به روش پی پت (۸) قابلیت هدایت الکتریکی، pH، خاک و نیکول برای عصاره‌گیری فسفر به داشته گردید

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد

به منظور تعیین نسبت نورهای تغییرهای آزمایش‌گاهی مناسب به داشته و ابعاد
شَهَدَند. نموده‌ی پی از شستشو با آب مفطر به مدت 28 ساعت در دمای 70 درجه سانتی‌گراد خشک و پس از توزین بودر شدند. به متغییر تعیین غلظت فسفر از روش اسید کاربردی استفاده شد و غلظت فسفر عصاره‌ی توسط روش رنگ سنگی (19) تعیین گردید.

پاسخ‌های گیاهی شامل گذب فسفر، عملکرد نسبی، افزایش غلظت، پاسخ گیاهی و گذب اضافی با توجه به فرمول‌های زیر تعیین گردید.

\[\text{جذب فسفر (میلی گرم در گلدان)} = (\text{عملکرد نسبی (درصد)}} \times 100 \text{ب } \text{عملکرد گیاهای قابل فترة اضافی) } \]

\[\text{افزایش غلظت = غلظت فسفر در گیاه } - \text{غلظت فسفردرگاهی گیاه شده } \]

\[\text{جذب اضافی = جذب فسفر در گیاه شده } - \text{جذب فسفردرگاهی گیاه شده} \]

\[\text{عملکرد گیاه شده - عملکرد گیاهی تیمار شده } = \text{پاسخ گیاه} \]

در پایان هم‌سنتی فسفر عصاره‌گیری شده به روش نوارهای کاذبی با روش‌های شیمیایی و همچنین از تبادل پاسخ‌های گیاهی با فسفر عصاره‌گیری شده با روش‌های فوق بررسی شد.

نتایج و بحث

ویژگی‌های فیزیکی و شیمیایی خاک‌های بررسی شده، در جدول 1 نشان داده شده است. خاک‌های مورد بررسی دارای تنوع گسترده‌ای از خصوصیات خاک می‌باشند. براساس نتایج ارزیافت شده می‌توان گفت این خاک‌ها عموماً دارای یافته‌های ریز زن و مستند محسوس است. درصد رسانی، سبیت و شن به ترتیب pH 6/53/52/85/54/41/97/2/1/180/3/162/52/85/54/41/97/2/1

شَهَدَند. نموده‌ی پی از شستشو با آب مفطر به مدت 28 ساعت در دمای 70 درجه سانتی‌گراد خشک و پس از توزین بودر شدند. به متغییر تعیین غلظت فسفر از روش اسید کاربردی استفاده شد و غلظت فسفر عصاره‌ی توسط روش رنگ سنگی (19) تعیین گردید.

پاسخ‌های گیاهی شامل گذب فسفر، عملکرد نسبی، افزایش غلظت، پاسخ گیاهی و گذب اضافی با توجه به فرمول‌های زیر تعیین گردید.

\[\text{جذب فسفر (میلی گرم در گلدان)} = (\text{عملکرد نسبی (درصد)}} \times 100 \text{ب } \text{عملکرد گیاهای قابل فترة اضافی) } \]

\[\text{افزایش غلظت = غلظت فسفر در گیاه } - \text{غلظت فسفردرگاهی گیاه شده } \]

\[\text{جذب اضافی = جذب فسفر در گیاه شده } - \text{جذب فسفردرگاهی گیاه شده} \]

\[\text{عملکرد گیاه شده - عملکرد گیاهی تیمار شده } = \text{پاسخ گیاه} \]

در پایان هم‌سنتی فسفر عصاره‌گیری شده به روش نوارهای کاذبی با روش‌های شیمیایی و همچنین از تبادل پاسخ‌های گیاهی با فسفر عصاره‌گیری شده با روش‌های فوق بررسی شد.

نتایج و بحث

ویژگی‌های فیزیکی و شیمیایی خاک‌های بررسی شده، در جدول 1 نشان داده شده است. خاک‌های مورد بررسی دارای تنوع گسترده‌ای از خصوصیات خاک می‌باشند. براساس نتایج ارزیافت شده می‌توان گفت این خاک‌ها عموماً دارای یافته‌های ریز زن و مستند محسوس است. درصد رسانی، سبیت و شن به ترتیب pH 6/53/52/85/54/41/97/2/1/180/3/162/52/85/54/41/97/2/1
جدول 1. تعدادی از ویژگی‌های شیمیایی و شیمیایی-کمی‌شیمیایی خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>شماره اکثریک</th>
<th>گنجشک</th>
<th>کلسیم</th>
<th>آلی‌کلسیم</th>
<th>کلسیم + متریم</th>
<th>کلسیم + شن</th>
<th>سورت</th>
<th>کربن</th>
<th>قابلیت هدایت</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره محلول</td>
<td>تبدیل</td>
<td>محلول</td>
<td>cmol kg⁻¹</td>
<td>cmol kg⁻¹</td>
<td>dS m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/450</td>
<td>8/3</td>
<td>29/3</td>
<td>32/6</td>
<td>36/3</td>
<td>1/20</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>6/5</td>
<td>35/6</td>
<td>36/8</td>
<td>38/6</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
<tr>
<td>0/550</td>
<td>0/55</td>
<td>7/7</td>
<td>35/6</td>
<td>36/8</td>
<td>1/22</td>
<td>1/10</td>
<td>1/11</td>
<td>18/1</td>
<td>7/6</td>
</tr>
</tbody>
</table>
جدول ۲: میانگین فسفر استخراج شده از خطای بار و روش‌های مختلف عصاره‌گیری (میلی‌گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>شماره نوارهای کاغذی پوشیده شده با اکسید آهن</th>
<th>شماره روش دوم</th>
<th>حریف</th>
<th>کاریه کلسیم (0/1 میلی‌گرم)</th>
<th>کالری پردازی (0/2 میلی‌گرم)</th>
<th>اسید کلسیم (0/1 میلی‌گرم)</th>
<th>کالری پردازی (0/2 میلی‌گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
<td>۷</td>
</tr>
<tr>
<td>۲۰/۹</td>
<td>۱۰/۹</td>
<td>۴/۳</td>
<td>۵/۳</td>
<td>۱/۷</td>
<td>۱۵/۹</td>
<td>۷/۸</td>
</tr>
<tr>
<td>۲۷/۳</td>
<td>۲۷/۳</td>
<td>۲/۹</td>
<td>۳/۶</td>
<td>۲/۴</td>
<td>۳/۱</td>
<td>۲/۱</td>
</tr>
<tr>
<td>۳۲/۳</td>
<td>۳۲/۳</td>
<td>۶/۴</td>
<td>۶/۴</td>
<td>۱/۵</td>
<td>۱۵/۶</td>
<td>۶/۸</td>
</tr>
<tr>
<td>۴۵/۷</td>
<td>۴۵/۷</td>
<td>۷/۵</td>
<td>۷/۵</td>
<td>۱/۴</td>
<td>۱۵/۴</td>
<td>۷/۵</td>
</tr>
<tr>
<td>۵۰/۳</td>
<td>۵۰/۳</td>
<td>۹/۸</td>
<td>۹/۸</td>
<td>۱/۱</td>
<td>۱۵/۲</td>
<td>۹/۶</td>
</tr>
<tr>
<td>۴۸/۵</td>
<td>۴۸/۵</td>
<td>۶/۴</td>
<td>۶/۴</td>
<td>۰/۷</td>
<td>۱۵/۳</td>
<td>۷/۶</td>
</tr>
<tr>
<td>۸/۲</td>
<td>۸/۲</td>
<td>۱/۹</td>
<td>۱/۹</td>
<td>۲/۴</td>
<td>۱۵/۴</td>
<td>۶/۸</td>
</tr>
<tr>
<td>۱۵/۹</td>
<td>۱۵/۹</td>
<td>۳/۴</td>
<td>۳/۴</td>
<td>۱/۷</td>
<td>۱۵/۵</td>
<td>۷/۶</td>
</tr>
<tr>
<td>۲۰/۶</td>
<td>۲۰/۶</td>
<td>۳/۳</td>
<td>۳/۳</td>
<td>۱/۸</td>
<td>۱۵/۶</td>
<td>۶/۸</td>
</tr>
<tr>
<td>۲۸/۱</td>
<td>۲۸/۱</td>
<td>۴/۸</td>
<td>۴/۸</td>
<td>۱/۳</td>
<td>۱۵/۷</td>
<td>۷/۶</td>
</tr>
<tr>
<td>۳۱/۸</td>
<td>۳۱/۸</td>
<td>۵/۱</td>
<td>۵/۱</td>
<td>۱/۵</td>
<td>۱۷/۱</td>
<td>۸/۵</td>
</tr>
<tr>
<td>۲۹/۴</td>
<td>۲۹/۴</td>
<td>۶/۴</td>
<td>۶/۴</td>
<td>۱/۶</td>
<td>۱۷/۱</td>
<td>۸/۵</td>
</tr>
</tbody>
</table>

فسفر استخراج با سیستم عصاره‌گیری

مندل معمول است. در بررسی همیشه فسفر عصاره‌گیری شده با روش اول با فسفر استخراج با عصاره‌گیری اولین کلرید کلسیم ۱۰/۱ میلی‌گرم در کیلوگرم، و کالری پردازی ۱۰/۱ میلی‌گرم در کیلوگرم، به کربنات امونیوم دی‌تی‌پی‌ای، اسید کلسیم ۷/۶ میلی‌گرم در کیلوگرم، و کالری پردازی ۷/۶ میلی‌گرم در کیلوگرم، شارونی همیشه زیادی میان فسفر استخراج شده به روش نوارهای کاغذی و فسفر استخراج به روش اول و در حالت های آمریکا به دست آورد.}

نتایج نشان می‌دهد که در بررسی میانگین این فسفر استخراج به روش اول نوارهای کاغذی پوشیده شده با اکسید آهن با
<table>
<thead>
<tr>
<th>نام عصاره‌گیر</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش اول نوار های کاغذی</td>
<td>0/81</td>
<td>7/7'</td>
<td>7/8^{2}</td>
<td>0/7'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
</tr>
<tr>
<td>روش دوم نوار های کاغذی</td>
<td>0/6'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>روش است مرحله‌ای 100 مولار</td>
<td>0/6'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
</tr>
<tr>
<td>مهالی 1</td>
<td>0/6'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
</tr>
<tr>
<td>مهالی 2</td>
<td>0/6'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
<td>0/5'</td>
</tr>
</tbody>
</table>

فَسَف* استخراج شده به روش دوم نوارهای کاغذی با فسفر عصاره‌گیر شده به روش اول نوارهای کاغذی با فسفر عصاره‌گیری شده با روش اول نوارهای کاغذی هیپستگی معنی دارد ولی با فسفر استخراج شده با سایر عصاره‌گیری‌های شیمیایی هیپستگی معنی دارد ندارد. احتمالاً مکانیزم مشابه عصاره‌گیری در دو روش نوارهای کاغذی دلیل این هیپستگی می‌باشد.

همان‌گونه که جدول ۲ نشان می‌دهد، مقدار فسفر استخراجی توسط روش اولین با همه عصاره‌گیری‌ها به جز

روش دوم نوارهای کاغذی پیشنهاد شده با اکسید آهن هیپستگی معنی دارد. نتایج در مدت زمان عصاره‌گیری

می‌تواند در مقدار فسفر عصاره‌گیری شده تأثیر بگذارد. به

عبارت از پر مقدار عصاره‌گیری شده در صورتی که زمان عصاره‌گیری فسفر با یک

کربنات سدیم از نیم ساعت تا ۱۲ ساعت افزایش یابد (روش

کال ول)، توانایی این عصاره‌گیری در برقراری تئام

فسفر زودگذار را از خاک خارج می‌کند Lable phosphorus

(۳) فسفر عصاره‌گیری شده در بسته‌ای روش کال ول نیز به جز

روش دوم نوارهای کاغذی پیشنهاد شده با اکسید آهن با فسفر

عصاره‌گیری شده با روش دوم دیگر هیپستگی معنی دارد.
جدول ۴: همبستگی فسر استخراجی توسط عصاره‌گیری و شاخص‌های گیاهی (۱۲ نمونه خاک)

<table>
<thead>
<tr>
<th>شاخص‌های گیاهی</th>
<th>فسر</th>
<th>غلظت</th>
<th>افزایش</th>
<th>افزایش</th>
<th>نسبت</th>
<th>سال</th>
<th>تعداد</th>
<th>روش‌های تولید</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان گونه‌کننده</td>
<td>۰/۱۲</td>
<td>۰/۱۴</td>
<td>۰/۱۷</td>
<td>۰/۲۲</td>
<td>۰/۲۴</td>
<td>۰/۲۶</td>
<td>۰/۲۸</td>
<td>روش اول نوارهای کاغذی</td>
<td>۰/۲۸</td>
</tr>
<tr>
<td>میزان روش روش دوم نوارهای کاغذی</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>افزایش</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>افزایش</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>افزایش</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>فسر</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>افزایش</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>میزان کاردی کلسیم</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>افزایش</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>میزان اسید کلریتریک</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>افزایش</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>میزان محله ۱</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>افزایش</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>میزان کال ول</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>افزایش</td>
<td>۰/۲۴</td>
</tr>
</tbody>
</table>

نتیجه‌ی به‌سایر روش‌ها استخراج کره‌های با فسر عصاره‌گیری شده با روش‌های دیگر به جز روش دوم نوارهای کاغذی همبستگی معنی‌دار دارند. زیرال توجه و نسبت (۴۳) و کارگزار کره‌های که مقدار فسر استخراجی توسط روش اولین و کارگزار کلسیم به ترتیب ۳۰ و ۲ درصد برای فسر استخراجی توسط روش محله ۱ می‌باشد. کور و جلما (۱۱) در بررسی خودشان نشان دادند که نسبت فسر عصاره‌گیری شده با روش اولین و روش نوارهای کاغذی همبستگی بالایی وجود داشت.

بنابراین، همبستگی فسر استخراجی شده با روش اول نوارهای کاغذی با فسر استخراج شده با سایر روش‌ها، نتایج این پژوهش مشخص کرد که روش اول نوارهای کاغذی می‌تواند به عنوان یک عصاره‌گیر قابل استفاده به کار رود.

ارتباط فسر استخراج شده با ویژگی عصاره‌گیری و شاخص‌های گیاهی

آزمون‌های فسر خاکی که مقادیر فسر قابل جذب گیاه را برآورد کرده باید از این آزمون‌ها برای کاربرد در تولید محصول مورد نیاز هستند. نتایج ثبت شده می‌تواند مقادیر فسر عصاره‌گیری شده توسط عصاره‌گیری با شاخص‌های گیاهی
عصاره‌گرها نیاز می‌توانند در این خاک‌ها به عنان عصاره‌گر
فسف حاصل جذب استفاده شوند.

در مورد ارتباط فسفر استخراج شده به روشهای مختلف
و شاخص‌های گیاهی بررسی‌های انجام شده است (9،7، و
۱۲۳). نیمی و گزارا (۲۳) دریافتند که روش دی نی پنی ای
همبستگی خوبی با جذب فسفر در خاک‌های با مقدار کم
و زیاد کربنات کلسیم دارد. ولی در خاک‌های با مقدار رس زیاد
نیایه مورد استفاده است.

در بررسی‌های انجام شده آزمون مهیلخ ۱ دارای همبستگی
بی‌الا با پاسخ‌های گیاهی جذب، غلظت فسفر و عامل دکر
پوسته است (۴۷،۱۵ و ۲۴) نگمانه و راسل (۶) گزارش کردند
که روش مهیلخ ۱ همبستگی بالایی با فسفر قابل استفاده گیاه
درشت داشته است. به‌وسیله (۳۱) رابطه خوبی بین جذب گیاه و
نارواه‌کاذب نسبت به روشهای دیگر به‌دست آورد. سارکار
و همکاران (۷۲) همبستگی خوبی بین نارواه‌کاذب و روشه‌گر

متابی مورد استفاده