برآورد منطقه‌ای جریان‌های کم رودخانه‌های حوضه آبریز مازندران

سید سعید اسلامیان، علیرضا زارعی، احمد ابرشیم‌چی

چکیده

یکی از روش‌های تحلیل منطقه‌ای جریان کم استفاده از روش رگرسیون چندگانه برای محاسبه شدت آورده روابط بین دی جریان کم با دیگر داده‌های اقتصادی، ورزشی و عوامل جیوهای محیطی و رشد، طول شاخه اصلی رودخانه، طول شاخه‌های اصلی رودخانه از مرکز، نرخ تغذیه‌ای و نسبت جمعیت مساحت حوضه ربیویت و بهبود روابط معنی‌دار این داده‌ها درباره حجمی و سطحی مساحت حوضه را بهبود می‌بخشد.

روابط منطقه‌ای بین دی جریان کم با دیگر داده‌های اقتصادی، ورزشی و عوامل جیوهای محیطی و رشد، طول شاخه اصلی رودخانه، طول شاخه‌های اصلی رودخانه از مرکز، نرخ تغذیه‌ای و نسبت جمعیت مساحت حوضه ربیویت و بهبود روابط معنی‌دار این داده‌ها درباره حجمی و سطحی مساحت حوضه را بهبود می‌بخشد.

واژه‌های کلیدی: جریان کم، تحلیل روابط جریان، مازندران، ورژن‌های فیزیوگرافی حوضه، رگرسیون چندگانه، هیدرولوژی منطقه‌ای، مدیریت کیفیت آب رودخانه‌ها

مقدمه

یکی از مسائل که به خصوص در سالهای اخیر بیشتر با آن مواجه شده، خزانه آب است. این مشکل در سالهای اخیر تا درجه‌بندی خشکسالی بر روی دهد و یکی از تبعات هیدرولوژی خشکسالی به حداکثر رسیدن آب رودخانه‌هاست. از نظر زیست محیطی، به حداکثر رسیدن آب رودخانه‌ها باعث افزایش نسبی غلظت آلودگی و در نتیجه کاهش اکسیژن محلول می‌شود که پایدار آن مقدار و میزان عناصر و دیگر آب‌های نیز وارد شدن خسارات شدید به محیط زیست می‌شود. این امر به ترتیب حرارت، تغییرات در تراکم و حجم آب رودخانه‌ها و در نتیجه افزایش در خشکسالی و انحلال اکسیژن محلول به محیط زیست می‌ довنده تکامل و دیگر اتفاقات آن‌ها. با این حال، این دراز مدت را به تربیت کننده شرایط مناسب و بهبود در نگهداری آب و باران و در نتیجه بهبود در حداکثر رسیدن آب رودخانه‌ها تبدیل می‌کند.

1. دانشیار آبیاری، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
2. دانشجوی سال دکترانه از دانشگاه مهندسی عمران، دانشگاه صنعتی اصفهان
3. دانشیار دانشگاه مهندسی عمران، دانشگاه صنعتی شریف، تهران

27
چندگاه‌ها به منظور به‌دست آوردن رابطه‌ای بین جریان کم با دوره بازگشت معین و ویژگی‌های حوضه آبخیز به کار برده می‌شود. تاکنون محققان بسیاری مدل‌های منطقه‌ای برای تخمین جریان کم در محیط‌های اندازه‌گیری شده جریان‌ها استفاده از روش رگرسیون به‌دست آورده‌اند. شکل کلی چنین مدل‌هایی به صورت زیر است:

\[Q_{d,t} = f[X_1^{b_1}, X_2^{b_2}, ...] \]

که در آن:

- \(Q_{d,t} \) = جریان کم \(d \) روزه با دوره بازگشت \(T \) که از آمار جریان‌ها در محل‌های اندازه‌گیری شده رودخانه به دست می‌آید.
- \(X_i \) = ویژگی‌هایی از حوضه آبخیز که به آسانی قابل تعیین باشد.
- \(b_i \) = پارامترهایی که با استفاده از روش‌های رگرسیون چند متغیره برآورد می‌شوند.

شکاف والت و پنیسون (۱۹۷۰) در بررسی‌های خود روی رودخانه پوتوکی در ایالات متحده، میانگین خطاهای پیشینی را برای مدل‌های رگرسیون منطقه‌ای جریان کم به‌دست آورده‌اند. بیش از دو برابر میانگین خطاهای پیشینی برای مدل‌های رگرسیون سیل در همان حوضه به‌دست آورده‌اند (۷). ریگرز (۱۹۷۳) مطالعاتی را که تا آن موقع برای به‌دست‌آوردن برآورد جریان کم به روش رگرسیون انجام شده بود، بررسی کرد و نتیجه گرفت که بیشتر این بررسی‌ها نتایج بودند و خطاهای استاندارد در آنها بیش از ۱۰۰ درصد بوده است (۲). نتایج بررسی‌های مختلف انجام شده بین سال‌های ۱۹۷۶ تا ۱۹۹۳ در منطقه نیویورک آمریکا به‌کار می‌رفت (۴) و میانگین که اشاره شد که از مهم‌ترین بازارهای آن در محیط‌های منطقه‌ای می‌باشد. فاصله‌ای در رودخانه‌ها است که در حفظ شرایط مناسب برای زندگی موجودات آبزی بسیار مهم است. در قسمت‌هایی از رودخانه‌ها که این کاربردهای آنها در نظر گرفته شده بودند (۹)، خطای استاندارد برآوردها در این بررسی‌ها برای جریان کم می‌تواند به‌دست‌آورد. در دوره‌های بازگشت متفاوت برآورده نمود. ولی معمولاً در آن قسمت از رودخانه‌ها که جریان‌های طبیعی مورد توجه هستند، این بازارهایی برای رفع این مشکل از تحلیل منطقه‌ای استفاده می‌شود. اغلب برای تحلیل منطقه‌ای، روش رگرسیون...
برآورده منطقه‌ای جریان‌های کم رودخانه‌های حوضه آبریز مازندران

معنی‌های زیست‌پروریزیک و زیست‌پروریزیک مناسب ربط می‌دهد.

منجر به بهبود در ساختمان مدل‌های رگرسیون هدست آمده خواهد شد و لقب نهایی کارآمیزی در این بوده که اندیشگری ویژگی‌های حوضه که در نظر گرفته است. مشکل است

(9). دیتگیم و لاوتور (1995) در ایست‌های هورسون و
نیوهای آمریکا، برای جریان کم روزه ۱۰ نهال، میانگین
خطر‌ناپذیری را برای ۸۸۷ درصد و حقایق پیشین را برای

۴۴ درصد به‌دست آوردند.

منطقه‌ی مورد بررسی تقریباً بر حسب توجه و ساختار مازندران
متناسب است. این حوزه به مناسب ۲۵۰۰ کیلومتر مربع به

شکل دویچه در انتهای شرقی کوههای البرز و ساحل جنوبی
دریای مازندران واقع است. مشکل ۱ موفعت یا منطقه‌ی را
نشان می‌دهد. از نظر جغرافیایی منطقه‌ی بین طول‌های شرقی
۳۲° ۵۵ تا ۴۴° و عرض‌های شمالی ۴۳°۵ تا ۳۸°۳۳ قرار گرفته است. این حوزه در انتهای ناحیه، سواحل دریای

مازندران با ارتفاع ۲۹ متر و حداقلان قله‌های داماوآن با ارتفاع
۴۷۰۰ متر می‌باشد. آب و هوای در دشت عمدتاً و مرطوب است

و در ارتفاعات از معتدل مرطوب تا سرد خشک تغییر می‌یابد.

پهناو همایش سالانه در جهت غرب به شرق کاش و میانگین
درجه حرارت سالانه در همه جهت افزایش می‌یابد.

از نظر پوستش گیاهی، منطقه‌ی بسیار غنی است. پوشت

طیبی معیار جنگلی شامل سالانه مرغاب و در ارتفاعات شمال
مراتع چنگالی‌های است. گسترش‌هایی نزدیک پوسته‌گیاهی در کل با
حدود ۶۵ درصد مساحت حوضه، پوسته چنگالی است. پس

از آن اراضی زراعی با ۳۳ درصد مساحت حوضه، دومین

پوسته گیاهی مهم منطقه‌ی می‌باشد.

مواد و روش‌ها

جریان کم روزه در یک سالت، کمترین مقدار میانگین‌های

متحرک ۷ روزه جریان‌های روزانه در آن سال است. بعنوان برای

محاسبه جریان کم ۷ روزه در یک سال باز، میانگین روزه‌ای

اول تا هفت م، دوم تا هفت و ... و سیصد و پنجم و هنگام تا

۲۹
بعد از انتخاب یک توئیز و برآورد پارامترهای آن، این سوال پیش می‌آید که این توئیز در تحلیل فراوانی چگونه به کار برده شود. (طهران، 1964) وابستگی زیر این بیانیه کرد اینستم

\[X_T = m + Ks \]

که در آن:

\[X_T = \text{نرخ انتقال با دوره بازگشت} \]

\[m = \text{جنگلیان برآورده در نرم‌گیری} \]

\[S = \text{انحراف معمولی جامعه برآورده شده از نرم‌گیری} \]

\[K = \text{عامل فراوانی} \]

به طور معمول در اغلب کتاب‌ها و مراجع هیدرولوژی برای توزیع‌های محتفظ با توجه به T و K جایگزین را می‌تواند از این توزیع‌ها ساده و عملکرد باشد. اغلب در این جدول همان چگونه از این انتخاب استفاده می‌شود. در حقیقت دوره بازگشت مورد نظر برای رویدادهای حداقل مانند سیل در نظر گرفته شده است.

برای بحث‌های مربوط به تغییر منابع معمول برای دوره‌های برجسته نسبتاً کوتاه در دسترس هستند در حالی که پیش‌بینی‌های که لازم است به طور معقول، در بزرگ‌شهرهای و عموماً در اراضی برجسته طولانی تر است. به این دلیل از توزیع‌های آماری استفاده می‌شود. برای انتخاب بهترین توزیع در یک محل از روش‌های مختلفی استفاده می‌شود. این استفاده از آزمون‌های کلاسیک مانند آزمون‌های هیپوئنوس می‌باشد. استفاده از روشهایی مبتنی بر نمودار احتمال استفاده از آزمون‌های تبدوه‌رسانی‌ها (کشتاروها) معمولی و استفاده از نمودارهای کشتارهای خشک وجود دارد. در این بحث از انتخاب توزیع آماری، پارامترهای توزیع پایین از روی داده‌های نرم‌گیری برآورده شوند که نتایج داده‌ها باشد. برای انجام این عمل از روشهای هم‌جزین روشن کشتارهای روی درستن‌مانی بیشتر، روشهای مشترک‌مرتبه و روشهای ترسیمی استفاده می‌شود.

شکل 1. موقعیت منطقه مورد مطالعه
برآورد منطقه‌ای جریان‌های کم رودخانه‌های حوضه آبریز مازندران

رفع این مشکل از تحلیل منطقه‌ای استفاده می‌شود. یکی از مهم‌ترین روش‌های تحلیل منطقه‌ای استفاده از رگرسیون چندگانه به مدل‌پردازی اجسام اجسام گامه‌ای کم با دو رتبه پایکار مانند و وزیری های حوضه آبریز است. محققین در اغلب موارد روابطی به شکل زیر را به عنوان روابطی برگزیده معرفی کردند:

\[Q_{7,T} = bX_1 X_2 b_3 \ldots \]

\[Q_{7,T} = 10^{b_3 X_1 + b_2 X_2 + b_1 X_3} \ldots \]

که در آن:

\[b_i \]

پارامترهایی که با استفاده از رگرسیون چندگانه برآورده می‌شود.

\[X_i \]

وزیری‌های مختلف حوضه آبریز که به آسانی قابل تعیین یافته‌اند.

\[Q_{7,T} = Q_{7,T} \]

جریان کم 7 روزه با دو رابطه بازگشت

برای بررسی بهتر این روابط فرض می‌گردد که در ایستگاه‌ها آماری وجود ندارد و با استفاده از روابط رگرسیون منطقه‌ای، مقدار جریان کم 7 روزه T ساله را برآورد می‌شود.

\[Q_{7,T} = Q_{7,T} \]

ماکسیموم به استفاده از روابط بازگشت می‌توان خطای نسبی آنها را با استفاده از رابطه زیر به دست آورد:

\[\text{خطای نسبی(هنگام)} = \left| \frac{Q_{7,T} - Q_{7,T}}{Q_{7,T}} \right| \times 100 \]

که در آن:

\[Q_{7,T} \]

جریان کم 7 روزه با دو رابطه بازگشت T برآورد شده از روابط رگرسیون منطقه‌ای

\[Q_{7,T} \]

جریان کم 7 روزه با دو رابطه بازگشت T به استفاده از تحلیل فراوانی نقطه‌ای (به کمک آمار موجود در ایستگاه) تقلیل گرفته شده‌اند.

نتایج و بحث

در تحلیل فراوانی، هر چه دو رابطه آماری طول‌تر باشند، دقت نتایج بیشتر خواهد بود. به همین دلیل استیگاه‌های کوچک مدت

31
جدول 1. مشخصات استخراج آب سنجی انتخاب شده

<table>
<thead>
<tr>
<th>تعداد سال آماری</th>
<th>مشخصات جغرافیایی</th>
<th>رودخانه-ی استخراج</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>عرض طول (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>36-42</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>36-42</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>150</td>
<td>36-42</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>1380</td>
<td>36-42</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>975</td>
<td>36-42</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>375</td>
<td>36-42</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>350</td>
<td>36-42</td>
<td>7</td>
</tr>
<tr>
<td>34</td>
<td>330</td>
<td>36-42</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>36-42</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>860</td>
<td>36-42</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>1320</td>
<td>36-42</td>
<td>11</td>
</tr>
<tr>
<td>22</td>
<td>1450</td>
<td>36-42</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>375</td>
<td>36-42</td>
<td>13</td>
</tr>
<tr>
<td>39</td>
<td>102</td>
<td>36-42</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>360</td>
<td>36-42</td>
<td>15</td>
</tr>
<tr>
<td>45</td>
<td>220</td>
<td>36-42</td>
<td>16</td>
</tr>
<tr>
<td>38</td>
<td>400</td>
<td>36-42</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>280</td>
<td>36-42</td>
<td>18</td>
</tr>
<tr>
<td>33</td>
<td>370</td>
<td>36-42</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>175</td>
<td>36-42</td>
<td>20</td>
</tr>
</tbody>
</table>

شکل 2. منحنی فراوانی جریان کم Q روزه در استخراج بیل ذغال واقع بر رودخانه چالوس
برآورد منطقه‌ای جریان‌های کم رودخانه‌های حوضه‌های آبریز مازندران

بررسی قرار گرفتند و ترکیب‌های مختلفی از آنها به کمک نرم افزار SPSS برای ورود به مدل‌های مختلف ارزیابی شدند که در نهایت پرینت روابط به‌دست آمده به صورت زیر بودند:

\[Q_{7,2} = \frac{10^{-3} \cdot 6414 \cdot 0.742 \cdot \log(A) + 11.05}{S_7} \]

\[R_{0,0} \approx 0.45 \]

\[Q_{7,5} = 10^{-0.285 \cdot 3/309 + 10^{-4}} \cdot A \]

\[R_{0,0} = 0.6 \]

\[Q_{7,10} = 10^{-0.403 \cdot 3/410 + 10^{-4}} \cdot A \]

\[R_{0,0} = 0.62 \]

\[Q_{7,20} = 10^{-0.921 \cdot 1/839 + 10^{-4}} \cdot H_a + 3/547.10^{-4} \cdot A \]

\[R_{0,0} = 0.8 \]

در این روابط:

\[S \] میزان حوضه (کیلومتر مربع)\n
\[A \] ارتفاع متوسط حوضه (متر)\n
\[H_a \] شیب متوسط حوضه (درصد)\n
\[S_p \] ضریب هیبسنگی\n
\[S.E. \] خطای استاندارد

کلیه روابط 11 تا 14 در مطالعه بکر ارائه شده است. به‌دست آمده از این روابط مقدار جریان برآورد می‌شود که در این جدول از هر ایستگاه انتظار است که مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌دست آمده از این روابط مقدار جریان برآورد شده از ایستگاه ۲ سال به ۵ سال و از ۵ سال به ۱۰ سال و از ۱۰ سال به ۲۰ سال روندی کاهشی را نشان دهد در حالی که در برخی موارد مشاهده می‌شود که روندی مزبور افزایشی سختگان. در کلیه از این روابط بازگشت مختصات به‌طور جدایگان به‌‌
جدول 2. مقادیر جریان کم حاصل از تحلیل فراوانی نفتخواب و ویژگی‌های حوضه به کار رفته در مدل‌ها

| شیب حوضه | ارتفاع | مساحت | $Q_{0.5}$ (m/s) | $Q_{2.5}$ (m/s) | $Q_{4.0}$ (m/s) | $Q_{6.0}$ (m/s) | نام رودخانه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37/8</td>
<td>1450</td>
<td>126</td>
<td>0/201</td>
<td>0/277</td>
<td>0/370</td>
<td>0/543</td>
<td>صفارود-رامسر</td>
</tr>
<tr>
<td>5/5</td>
<td>2026</td>
<td>415</td>
<td>0/60</td>
<td>0/96</td>
<td>0/132</td>
<td>0/178</td>
<td>2- چالککود-گانکسر</td>
</tr>
<tr>
<td>4/5</td>
<td>2347</td>
<td>500</td>
<td>0/39</td>
<td>0/52</td>
<td>0/64</td>
<td>0/79</td>
<td>3- جنگه-گلابیر</td>
</tr>
<tr>
<td>3/6</td>
<td>3408</td>
<td>196</td>
<td>0/34</td>
<td>0/49</td>
<td>0/69</td>
<td>0/83</td>
<td>4- سرداپورود-کالدشت</td>
</tr>
<tr>
<td>8/7</td>
<td>2518</td>
<td>328</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>0/58</td>
<td>5- سرداپورود-والت</td>
</tr>
<tr>
<td>7/8</td>
<td>1899</td>
<td>678</td>
<td>0/16</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>6- هریسک-جواب</td>
</tr>
<tr>
<td>3/6</td>
<td>2089</td>
<td>1054</td>
<td>0/49</td>
<td>0/66</td>
<td>0/79</td>
<td>0/83</td>
<td>7- چالوس- یل دژال</td>
</tr>
<tr>
<td>4/5</td>
<td>3000</td>
<td>104</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>0/58</td>
<td>8- ناری- تکه- اریج</td>
</tr>
<tr>
<td>3/6</td>
<td>2597</td>
<td>119</td>
<td>0/34</td>
<td>0/49</td>
<td>0/64</td>
<td>0/79</td>
<td>9- نزار- نمرسنک</td>
</tr>
<tr>
<td>4/5</td>
<td>2117</td>
<td>736</td>
<td>0/25</td>
<td>0/34</td>
<td>0/46</td>
<td>0/58</td>
<td>10- نزار- نججاب</td>
</tr>
<tr>
<td>4/5</td>
<td>2919</td>
<td>500</td>
<td>0/16</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>11- نور-بلدیه</td>
</tr>
<tr>
<td>4/5</td>
<td>2719</td>
<td>1230</td>
<td>0/40</td>
<td>0/52</td>
<td>0/64</td>
<td>0/79</td>
<td>12- نور- زرن</td>
</tr>
<tr>
<td>3/6</td>
<td>2464</td>
<td>393</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>0/58</td>
<td>13- هراز- اردک سنت</td>
</tr>
<tr>
<td>6/5</td>
<td>2588</td>
<td>518</td>
<td>0/16</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>14- آلیش- لله بند</td>
</tr>
<tr>
<td>3/6</td>
<td>3087</td>
<td>1722</td>
<td>0/49</td>
<td>0/64</td>
<td>0/79</td>
<td>0/83</td>
<td>15- طافل- شیرگاه</td>
</tr>
<tr>
<td>3/6</td>
<td>3418</td>
<td>1268</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>0/58</td>
<td>16- دودانگه- سلیمان تکه</td>
</tr>
<tr>
<td>26/8</td>
<td>1476</td>
<td>1191</td>
<td>0/16</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>17- چهارانگه- برد</td>
</tr>
<tr>
<td>26/8</td>
<td>1536</td>
<td>2709</td>
<td>0/24</td>
<td>0/34</td>
<td>0/46</td>
<td>0/58</td>
<td>18- تجن- برک- چشمه</td>
</tr>
</tbody>
</table>

شکل 3. نمودارهای مقادیر برآورد شده لگاریتم‌های جریان کم هفته روزه با دوره‌های بازگشت مختلف در مقابل مقادیر شاهد، شده
جدول ۳: مقادیر جریان کم حاصل از تحلیل فراوانی نفت‌های ویژگی‌های حوضه‌های مکان‌های رنگ در مدل‌ها

<table>
<thead>
<tr>
<th>شیب متوسط حوضه (درصد)</th>
<th>ارتفاع متوسط حوضه (متر)</th>
<th>مساحت حوضه (کم²)</th>
<th>نام رودخانه‌های حوضه آبیاری</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۳۷۸</td>
<td>۱۴۳۰</td>
<td>۱۳۶۶</td>
<td>صفارود-رامسر</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۴۷۰</td>
<td>۲۰۲۲</td>
<td>۴۱۵</td>
<td>چالکرود-کانکسک</td>
<td>۲</td>
</tr>
<tr>
<td>۰/۵۰۰</td>
<td>۲۴۰۷</td>
<td>۷۶۸</td>
<td>پاکسکه-کیه‌هراز</td>
<td>۳</td>
</tr>
<tr>
<td>۰/۴۸۳</td>
<td>۲۰۷۶</td>
<td>۱۹۷</td>
<td>سردآباد-کلاکردشت</td>
<td>۴</td>
</tr>
<tr>
<td>۰/۳۸۰</td>
<td>۲۱۱۷</td>
<td>۳۲۸</td>
<td>سردآباد-سپاه</td>
<td>۵</td>
</tr>
<tr>
<td>۰/۳۸/۷</td>
<td>۱۸۹۹</td>
<td>۲۲۷</td>
<td>هیسک-دوآب</td>
<td>۶</td>
</tr>
<tr>
<td>۰/۸۸۷</td>
<td>۲۰۸۹</td>
<td>۱۵۴۴</td>
<td>چالوس-پل ذغال</td>
<td>۷</td>
</tr>
<tr>
<td>۰/۳۰/۵</td>
<td>۱۰۴۰</td>
<td>۸۱۸</td>
<td>لاریجان-نگه لاریجان</td>
<td>۸</td>
</tr>
<tr>
<td>۰/۴۴/۲</td>
<td>۲۸۹۷</td>
<td>۱۱۹</td>
<td>نمار-نامدارستان</td>
<td>۹</td>
</tr>
<tr>
<td>۰/۵۰/۰</td>
<td>۲۷۸۷</td>
<td>۲۵۳</td>
<td>نمار-نظاج</td>
<td>۱۰</td>
</tr>
<tr>
<td>۰/۴۶/۸</td>
<td>۲۹۱۹</td>
<td>۷۵۰</td>
<td>نور-نوده</td>
<td>۱۱</td>
</tr>
<tr>
<td>۰/۴۸/۰</td>
<td>۲۷۷۹</td>
<td>۱۲۰۴</td>
<td>نور-زن</td>
<td>۱۲</td>
</tr>
<tr>
<td>۰/۴۵/۸</td>
<td>۲۱۷۴</td>
<td>۳۹۶۷</td>
<td>هزار-کره سنگ</td>
<td>۱۳</td>
</tr>
<tr>
<td>۰/۴۰/۶</td>
<td>۲۰۸۷</td>
<td>۵۱۸</td>
<td>آلاش-لله بند</td>
<td>۱۴</td>
</tr>
<tr>
<td>۰/۳۷/۶</td>
<td>۲۰۱۴</td>
<td>۱۸۷۲</td>
<td>طالار-شیرگاه</td>
<td>۱۵</td>
</tr>
<tr>
<td>۰/۳۳/۸</td>
<td>۱۷۱۷</td>
<td>۱۲۵۶</td>
<td>دوستاباه-سیاحان نگه</td>
<td>۱۶</td>
</tr>
<tr>
<td>۰/۳۶/۸</td>
<td>۱۴۷۵</td>
<td>۱۱۹۱</td>
<td>چهاردانگه-ورن</td>
<td>۱۷</td>
</tr>
<tr>
<td>۰/۲۹/۷</td>
<td>۱۵۲۶</td>
<td>۲۷۰۹</td>
<td>چنج-ریک چشمی</td>
<td>۱۸</td>
</tr>
</tbody>
</table>

شکل ۴: نمودار میانگین، حداقل و حداقل خطاهای نسبی برای دوره‌های بازگشت مختلف
<table>
<thead>
<tr>
<th>شماره</th>
<th>نام رودخانه - نام استگاه</th>
<th>$Q_{7.20}$ (م³/س)</th>
<th>$Q_{7.10}$ (م³/س)</th>
<th>$Q_{7.5}$ (م³/س)</th>
<th>$Q_{7.2}$ (م³/س)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>صفارود-رامسر</td>
<td>0.245</td>
<td>0.440</td>
<td>0.575</td>
<td>0.404</td>
</tr>
<tr>
<td>2</td>
<td>چالکرد-گانکس</td>
<td>0.396</td>
<td>0.588</td>
<td>0.712</td>
<td>0.479</td>
</tr>
<tr>
<td>3</td>
<td>چشمه کیه-هرایر</td>
<td>0.242</td>
<td>0.583</td>
<td>0.604</td>
<td>0.374</td>
</tr>
<tr>
<td>4</td>
<td>سردارآبود-کالاردشت</td>
<td>0.518</td>
<td>0.462</td>
<td>0.703</td>
<td>0.503</td>
</tr>
<tr>
<td>5</td>
<td>سردارآبود-والنت</td>
<td>0.516</td>
<td>0.712</td>
<td>0.873</td>
<td>0.819</td>
</tr>
<tr>
<td>6</td>
<td>هنیسک-دوآب</td>
<td>0.604</td>
<td>0.837</td>
<td>0.837</td>
<td>0.730</td>
</tr>
<tr>
<td>7</td>
<td>چالوس-پل ذوالفقار</td>
<td>0.124</td>
<td>0.133</td>
<td>0.153</td>
<td>0.274</td>
</tr>
<tr>
<td>8</td>
<td>لاریج-نتلاج لاریج</td>
<td>0.127</td>
<td>0.331</td>
<td>0.431</td>
<td>0.335</td>
</tr>
<tr>
<td>9</td>
<td>نمر- مارستانق</td>
<td>0.120</td>
<td>0.344</td>
<td>0.434</td>
<td>0.441</td>
</tr>
<tr>
<td>10</td>
<td>نمر- نیبات</td>
<td>0.158</td>
<td>0.379</td>
<td>0.497</td>
<td>0.469</td>
</tr>
<tr>
<td>11</td>
<td>نور- باده</td>
<td>0.139</td>
<td>0.198</td>
<td>0.298</td>
<td>0.315</td>
</tr>
<tr>
<td>12</td>
<td>نور- زرن</td>
<td>0.190</td>
<td>0.313</td>
<td>0.446</td>
<td>0.623</td>
</tr>
<tr>
<td>13</td>
<td>هرآز- کوک سبک</td>
<td>0.195</td>
<td>0.494</td>
<td>0.654</td>
<td>0.700</td>
</tr>
<tr>
<td>14</td>
<td>آلاتش- لکه بند</td>
<td>0.195</td>
<td>0.494</td>
<td>0.654</td>
<td>0.700</td>
</tr>
<tr>
<td>15</td>
<td>طالار- شیرگاه</td>
<td>0.195</td>
<td>0.494</td>
<td>0.654</td>
<td>0.700</td>
</tr>
<tr>
<td>16</td>
<td>دَرَهَ بَیْهَان- سَلْیْمان تَنْگَه</td>
<td>0.195</td>
<td>0.494</td>
<td>0.654</td>
<td>0.700</td>
</tr>
<tr>
<td>17</td>
<td>چهاردانگه-رون</td>
<td>0.195</td>
<td>0.494</td>
<td>0.654</td>
<td>0.700</td>
</tr>
<tr>
<td>18</td>
<td>تَجَن- ریگ جَشَمَ</td>
<td>0.195</td>
<td>0.494</td>
<td>0.654</td>
<td>0.700</td>
</tr>
</tbody>
</table>

جدول 5. میانگین، حداقل و حداکثر درصد خطاهای نسبی محاسبه شده

<table>
<thead>
<tr>
<th>دوره بازگشت</th>
<th>حداکثر</th>
<th>حداقل</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.16</td>
<td>0.65</td>
<td>0.41</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>5</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>7</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>8</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>9</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>10</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>11</td>
<td>0.20</td>
<td>0.63</td>
<td>0.43</td>
</tr>
</tbody>
</table>

بررسی های قبلی خطای نسبی کمیرا نشان می دهد که علت این امر می تواند همگنی نسبی خوب مطلوعه مورد مطالعه باشد. از أنجامی که در روش مورد استفاده معادلات مربوط به دوره بازگشت مختلف یکسان نیستند، در نتیجه در مواردی قادمی که در آروروده در هر افزایش دوره بازگشت نقض
برآورد منطقه‌ای جریان‌های کم رودخانه‌های حوضه آبریز مازندران

سیاست‌گرایی

در مراحل اولیه مطالعات به ویژه هنگام نیاز به جریان کم با

ک در مورد بازگشت خاص که مشکل را باید متغیرهای متفاوت

در معادلات مختلف وجود ندارد قابل توصیه است.

متابع مورد استفاده

1. افشار، ع. 1379. مدل‌سازی مهندسی، چاپ دوم، مرکز نشر دانشگاهی، تهران.
2. بزگر نیا، ا. علیزاده، م. نقیب زاده، و ح. خیابانی (مترجمان). 1379. تحلیل فراوانی وقابلیت در هیادولوژی. مؤسسه چاپ

و انتشارات آستان قدس رضوی. مشهد. صفحه 43.