اثر تغذیه از برگ توت غنی شده با تركیبات نیترژنی، فسفر و پتاسیم در برخی صفات بیولوژیک [Bombyx mori L. (Lep., Bombycidae)]

کیوان اعتباری و محمد فضیلی

چکیده

به مطابق بررسی تأثیر تركیبات معدنی به عنوان مکمل‌های غذایی کرم ابریشم (Bombyx mori) آزمایشی در چارچوب یک طرح کاملاً تصادفی به سه تیمار (شامل غله‌های ها1، های 5، و 10 درصد، ترکیب مواد میترال (شامل نیترژن، فسفر و پتاسیم) و کیم تیمار شاهد عادی) که در آن از هیچ ماده‌ای به عنوان تیمار استفاده نشده بود، و یک تیمار آب فقط انداخته شد. قرارداده تا سیس چهارم از برگ‌های نیترزه تازه از واریته پنجه شیره نوریه (12) تغذیه می‌شدند و از آغاز سیس چهارم روزانه یک نیترزه از برگ‌های غنی شده به تیمار می‌گرفت. غذای صحرایی برگ‌ها به وسیله اشکان‌دان محیطی روی آنها انجام می‌گرفت. مقادیر پروتئین، کلسیم و اسید اوریک موجود در هموئوفیلی ساوه‌های غنی شده نسبی این تغذیه گری افزایش یافته بود.

مقادیر پروتئین کل در کلیه تیمارهای انفرازیث شگفت‌نگری را در مقایسه با شاهد نشان داد. و این در حالی است که وزن لبریز روزی از روز سوم سنجش نیز اختلاف معنی‌داری با شاهد پیدا نمود. ولی وزن غده ابریشم‌ساز تغییر چندانی نشان نداد. مقادیر اسید اوریک انفرازیث شگفت‌نگری شده در خون حشره به وجود تغییرات جزئی، از لحاظ آماری اختلاف معنی‌داری با حشرات شاهد نداشت. با وجود این، وزن پهلو، فشار ابریشمی و شفایی نیز در مقایسه با شاهد اختلاف معنی‌داری نشان نداد. به طوری که این انفرازیث در حشرات ماده بیش از حشرات نر بود. با توجه به انفرازیث شمار تخم در پرورانی در مقایسه به شاهد، از لحاظ آماری نتیجه در تیمار 60% اختلاف معنی‌دار وجود داشت. تركیبات میبیست باعث کاهش درصد تغذیه نیترزه شد. وزن تخم‌ها نیز در کلیه تیمارها در یک مقطع آماری قرار گرفت.

واژه‌های کلیدی: کرم ابریشم، مواد میترال، برگ توت، صفات بیولوژیک، صفات بیوشیمیایی، پروتئین کل، اسید اوریک

1. به ترتیب دانشجوی سابق کارشناسی ارشد حشرشناسی و استادیار بیوشیمی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

233
مقدمه
کرم ابرشی اهلی [Bombes volc L. (Lep., Bombycidae)] عضو یک سرده از خانواده ابرشی است. مطالعه‌ای از جنس و اقسام این گونه نشان داده که این گونه به طور کامل به گیاه می‌زاید و از آن به طور کامل به محافظت می‌آورد. این گونه که در جنگل‌ها و در مناطق بااریک و در نزدیکی گیاه‌های مختلف کنار رودخانه‌ها توانسته باشد.

مواد معدنی ترکیبیاتی هستند که وجود آنها برای ادامه زندگی کرم ابرشی از نظر مناسب است. 

10 درصد از انرژی و لازمکهایی که مورد نیاز گزارش شده است از این ماده ارائه می‌شود.

هویه (13) چهار عصر پتاسیم، فسفور، منیزیم و روی را در رشد و تجویز در نشانی می‌کند. 

برای این امر نیازی به نان در حالی است که تمامی این عناصر در حد مناسب باید بر روی وجود داد. 

وی از استفاده از کمک‌های ارائه‌دهنده به منظور غنی‌سازی جنگل‌های سبزی از جانداران از جمله نیاز از دیزاین مزبوریک و صفات اقتصادی کرم ابرشی با استفاده از برگ توت غنی شده به وسیله مکمل‌های غذایی مختلف به‌همراه می‌پیامدهای ارائه‌هایی برگ توت از استفاده از ترکیبات سبزی مهار می‌گردد. 

شار زیستی و حیاتی و تأمینی و نمک‌های معدنی از اماکن جاودان.

یافته‌ها (18، 21 و 22) 

استفاده از مواد معدنی به منظور افزایش عملکرد پرورش کرم ابرشی را پژوهشگران بسیاری بررسی کرده‌اند (1، 2 و 19). 

کاربرد ترکیباتی با صورت محلول‌پذیر روی درختان توت داخل تونسیت نیز افزون بر این که بسیار ازبین‌بسته بوده و در افراد ویژه‌گر نیز اپوزیس با اقتصادی کرم ابرشی بسیار همبستگی دارد (1 و 31). بسیاری از 

نابودی معدنی نیز به عنوان مکمل غذایی برای کرم ابرشی استفاده می‌شود. 

شیمیایی و روش‌ها، اطمینان و جدیت در 

از جمله نمک‌هایی که سبب افزایش چشم‌گیر در عملکرد تولید ابرشی خواهند شد (8 و 19). برخی از پژوهشگران حتی استفاده از آب باران را به لحاظ دارا بودن املاح معنی‌اندی از این که از نظر افزایش عملکرد زیستی و اقتصادی کرم ابرشی گزارش کرده‌اند (27). در مبحث مکمل‌های غذایی در تغذیه کسری کرم ابرشی، مسیر متابولیسم مواد در داخل گیاه کمک به بوده و یا حذف شده و عمل غنی‌سازی صرف‌آور از افزودن مواد معنی‌های نهانگ تغذیه حشره به برج آن‌ها نموده‌اند.

پس از (2) گزارش کردن که لازم‌تر است کرم ابرشی با تغذیه از برگ توت غنی شده به تاسیم (0.3٪)، فسفور (0.1٪)، تیروزین (0.2٪)، کلسیم (0.1٪) و منگنز (0.16٪) در پیام‌داری از ویژگی‌های یونیک صرف‌آور نسبت به غذا، و زن لازمی، طول تازه ابرشی و عملکرد تولید گزارش افزایشی نشان می‌دهد. زیرا پتاسیم نقش مهمی در تغذیه کرم ابرشی داشته و سبب افزایش تولید اکسید می‌گردد (32 و 33). ژنگرگ و همکاران (17) نشان داده‌اند که مقدار پتاسیم همولنف در لازم‌تر است کرم ابرشی با استفاده از برگ توت غنی شده به وسیله مکمل‌های غذایی مختلف به‌همراه می‌پیامدهای ارائه‌هایی برگ توت از استفاده از ترکیبات سبزی همچنین گل‌کرک، گلپیک، شمار زیستی و حیاتی و نمک‌های معدنی از اماکن جاودان 

یافته‌ها (18، 21 و 22) 

استفاده از مواد معدنی به منظور افزایش عملکرد پرورش کرم ابرشی را پژوهشگران بسیاری بررسی کرده‌اند (1، 2 و 19). 

کاربرد ترکیباتی با صورت محلول‌پذیر روی درختان توت داخل تونسیت نیز افزون بر این که بسیار ازبین‌بسته بوده و در افراد ویژه‌گر نیز اپوزیس با اقتصادی کرم ابرشی بسیار همبستگی دارد (1 و 31). بسیاری از 

نابودی معدنی نیز به عنوان مکمل غذایی برای کرم ابرشی استفاده می‌شود. 

شیمیایی و روش‌ها، اطمینان و جدیت در
تغذیه گیاه فرامله شده، انجام گردد تا اثر آن در ویژگی‌های بیولوژیکی و اقتصادی کرم ابریشم ارزیابی شود. آگاهی از وضعیت بیوشیمای همولوف، افریون بر این که نقش مهمی در فرمالون بسیار مواد غذایی برای جنگ غذایی حشرات دارد (16)، می‌تواند اطلاعات کمی از برهم‌کنش تركیبات غذایی ارائه نماید. از این رو، ویژگی‌های بیوشیمای همولوف لاورها نیز بررسی گردد.

مواد و روش‌ها

تخم کرم ابریشم هیری دو سه‌تخت (Morus alba) به عنوان ایسپانیایی در شرایط آزمایشگاهی با دمای 25 درجه سانتی‌گراد و رطوبت نسبی 75 درصد در اتفاق پروسک، کرم ابریشم واقع در واحد تحفیضات شرکت ابریشم شهرستان مرودشت در روز دوم در دسترس قرار داده شد. پس از درون‌بودن پوست‌ندازی و آغاز سن چهارم، لاورها به وسیله تخم کر کر تخم الك
اصس این روش برا یا پایه تأثیر آزم اوریکاراک گروه اسید اوریک است که به دنبال نمایه آنلاین و پیامدهای هیدرولیز ناشده.
که سبب تأثیر آزم ایزیدید سبب تاک‌کارام یک اوریکا در محلول مگرد، که در نتیجه چند جدای اندازه‌گیری شده در طول موج 500 یافته‌مانند با مقدار اسید اوریک موجود در نمونه خواهد بود.

کلیه نتایج به نرم افزارهای EXCEL (نسخه 97) و IRRISTAT (نسخه 9) با ایزومن چند دانه را دانست در

کوریسم قیام لازم تأثیر چه می‌گردد. در آن‌گاهی کاملاً صادقی تجزیه آماری گردید.

نتایج و بیان

تأثیر به کارگیری ترکیب مولی میزان به عنوان مکمل غذایی کرم ابریشم در واریته شین ایجه نویسه در جداول 1 تا خلاصه شده است.

ویژگی‌های لازمی

جانه که جدول 1 نشان می‌دهد، در روز اول سن پنجم اختلاف معنی‌داری بین وزن لازم شده نشان دهنده در صورتی که در روز سوم میدان ۱۱/۵ درصد افزایش وزن لازم در مقایسه با شاهد ایجاد شده، و این افزایش وزن در روز پنج تیمار فوق به ۱۲/۳ درصد رسیده که لحاظ آماری اختلاف معنی‌داری با شاهد دارد، ولی در غلظت‌های مختلف تفاوت چشم‌گیری مشاهده نشد. در روز هفتم نیز اختلاف معنی‌داری بین تیمارها و افزایش وزن در مقایسه با شاهد دیده می‌شد، ولی در میان غلظت‌ها این اختلاف از لحاظ آماری محسوس نیست. نتایج مشابه نیز از غنی‌سازی برج نتو می‌باشد با استفاده از ترکیبات معدنی و ویتامین‌های ادره‌های دیگر به دست آمده است.

(1,۳,۶,۷,۸)

زمان و همکاران (۳۳) دریافت که افزایش ۲/۷ نیترژن به

چهارچوب طرح کاملاً صادقی تجزیه آماری گردید، ولی کارو و مارینار (۱۷) نشان دادند که رشد نسبی

طیف‌های Spodoptera eridania مستقل از مقدار نیتروژن جیره می‌باشد. افزایش بیش از حد مقدار نیتروژن به جیره غذای مصنوعی این لازم نه تنها سبب افزایش وزن لازم تبدیل نمی‌شود، بلکه کاهش نسبی وزن را نیز به دنبال داشته. همچنین میزان قیاد لازم تأثیر نیتروژن اضافی کاشت می‌یابد.

ناتیو رو می‌باشد. هنگامی که کرم ابریشم موگا از یک‌گره‌های حاوی پاتاسیم پیش‌تر غذایی می‌کند، 

به جیره غذایی سبب افزایش عملکرد تغذیه لازمها K3HPO4 

می‌شود. این میزان به دلیل بالا رفتن غلظت پاتاسیم است (۳۰).

پایه‌ها بسیاری وجود دارد که نشان دهنده اهمیت پاتاسیم در 

تغذیه کرم ابریشم است (۵۰ و ۳۰).

از بررسی ضریب رگرسیون ناشی از شب منحی وزن
لازمه در روزهای مختلف برای غلظت‌های مورد تیمار (جدول
۱) می‌توان درفت که سبب تیمار مزبور با سرمای ییبی از شاهد سبب افزایش وزن لازم شده است. که این افزایش وزن می‌تواند به اعتک فردی تغذیه‌یا و یا افزایش مصرف و جذب غذا باشد. جوانه که مولی‌های و همکاران (۷) نشان دادند هنگامی که مخلوط ویتامین و مواد معدنی بر لازم‌های سبب یافتن تیمار افزایش وزن لازمی‌ها به تغذیه کرم ابریشم مطالعه که این قرار گرفته است. به این حال باید نشان داد که با غنی‌سازی

برگ توت به سرعت محلول ۲/۷/نیترژن و ۱۵/۰۵/۰یک، 

میزان تا ۹۵/۰/وزن اضافه مصرف گذا زا در لازم‌های کرم ابریشم

افزایش داد. این در حالی است که به دیدار آب مفرط نیز

مقدار مصرف غذا از افزایش دهنده. که در

نتیجه این وزن لازم و عملکرد تولید پیله در این گروه از

لازمه افزایش نشان داده است (۳۳). در بررسی حاضر تیمار

آب مفرط توانسته سبب افزایش وزن لازم گردید. که این

می‌تواند به دلیل شرایط اقلیمی منطقه و نوع برگ مورد استفاده

باشد. همچنین، مشاهده درصد افزایش وزن روزهای در سن

۱۳۸۲
جدول 1. تأثیر غلظتی برگ‌تربیت بر ترتیب مولی میترال ور و ژیگ‌های لاروی کرم ابرپیشه (B. mori)

<table>
<thead>
<tr>
<th>غلظت (گ)</th>
<th>وزن اصلی</th>
<th>فرآیند</th>
<th>روز 1</th>
<th>روز 2</th>
<th>روز 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>26/53</td>
<td>ab</td>
<td>1/34</td>
<td>1/12</td>
<td>1/12</td>
</tr>
<tr>
<td>5%</td>
<td>61/13</td>
<td>ab</td>
<td>1/34</td>
<td>1/12</td>
<td>1/12</td>
</tr>
<tr>
<td>10%</td>
<td>7/26</td>
<td>ab</td>
<td>1/34</td>
<td>1/12</td>
<td>1/12</td>
</tr>
</tbody>
</table>

نتایج مشاهده نیز در بررسی انتگرالیستا و همکاران (1) در تأثیر مخلوط ویتامین و مواد معدنی در کرم ابرپیشه به دست آمده است. به طوری که با وجود افزایش وزن پیله در مقدار پنجم در لارویه تیمار‌های مختلف اختلاف معنی‌داری با شاهد نشان می‌دهد. و این در حالتی است که این شاخص در دو غلظت 5 و 10 درصد بیش از غلظت 1/2 درهم است. وزن غده ابرپیشه در کلی مختلف اختلاف معنی‌داری با شاهد عادی از خود نشان نداده (جدول 1).

ویژگی‌های پیله

همان گونه که در جدول 2 آمده است. وزن پیله، شفافیت و قطر ابرپیشه‌ها حرکت‌تر و ماده در پیش‌شماری تیمارها اختلاف معنی‌داری با شاهد نشان داده است. ولی همین ویژگی‌ها برای ماده ماده در غلظت 10/2 کاهش یافته، بیشترین وزن پیله در 10/1 بوده، که /7/2 درصد نسبت به شاهد نشان می‌دهد. در خصوص وزن شفافی در حشرات ماده 4/8/2 درصد مشاهده می‌شود که اختلاف معنی‌داری با دیگر گروه‌ها دارد، ولی در حشرات نرم همین مقادیر اختلاف در نتیجه 15 درصد می‌گردد. وزن پیله

این مورد را می‌توان به تحلیل و تیزهوای فیزیولوژیکی مقایسه
جدول 2. تأثیر غلی اجری بر گرگ توت با ترکیب مولتی میرال بر ویژگی‌های پیله کرم ایریشم (B. mori)

<table>
<thead>
<tr>
<th>صفات پیله منفرد نر</th>
<th>درصد فشردن</th>
<th>وزن پیله (گ)</th>
<th>وزن شفاف (گ)</th>
<th>شفافیت پیله (گ)</th>
<th>ایریشم (گ)</th>
<th>بالینی (گ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| جنس نر و ماده به ماده غلیبی مختلف نسبت داد، برودیک و همکاران (27) نشان دادند که مقدار نیترژن موجود در شیره نباتی غلی اثر مستقیم در افزایش رشد، زادآوری و مصرف و میر گونه‌ای از زنگرگ‌ها دارد و این تأثیر کاملاً به جنسیت حشرات ویژه است. زیرا حشرات ماده در فرآیند تولید مل تیاز غلیبی پیشتری به پروتئین دارند.

ویژگی‌های نخ

شمار نخ در کلیه تیمارها بیش از شاهد بوده است، ولی تنها در غلظت 10% از بانه‌های اختلاف معنی‌داری با شاهد وجود داشت است (جدول 3). اشک و همکاران (28) نشان دادند که غلی اجری بر گرگ توت با محلول نیترژن 0.1% می‌تواند تا پیش از 31 درصد شمار نخ کرم بیان‌ها را افزایش دهد، در حالی که تیازه‌های این محلول‌ها افزایش گنگ‌کننده شرایط شاهد لازم ندارند. در نتیجه حالت تا 43% این ویژگی را افزایش دهد (1).
جدول 3. تأثیر غلظت سوزانی بر ترکیب مولکулی بیئال بر وزن 50 تخم (mg) (±SE) شمار تخم ظاهر شده درصد تخم شمار تخم غلظت ترکیبات معدنی 24 ساعت 48 ساعت

<table>
<thead>
<tr>
<th>غلظت خون (mg) (±SE)</th>
<th>وزن 50 تخم (mg) (±SE)</th>
<th>شمار تخم ظاهر شده</th>
<th>درصد تخم</th>
<th>شمار تخم</th>
<th>غلظت ترکیبات</th>
<th>معدنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>33/4±0.3 b</td>
<td>66/8±0.2</td>
<td>99/25±0.5</td>
<td>76/74/5 b</td>
<td>67/74/5 b</td>
<td>76/74/5 b</td>
<td>34/10</td>
</tr>
<tr>
<td>33/4±0.3 b</td>
<td>66/8±0.2</td>
<td>99/25±0.5</td>
<td>76/74/5 b</td>
<td>67/74/5 b</td>
<td>76/74/5 b</td>
<td>34/10</td>
</tr>
<tr>
<td>33/4±0.3 a</td>
<td>66/8±0.2</td>
<td>99/25±0.5</td>
<td>76/74/5 b</td>
<td>67/74/5 b</td>
<td>76/74/5 b</td>
<td>34/10</td>
</tr>
</tbody>
</table>

در هر ستون اعدادی که دارای حداکثر یک حرف مشابه هستند، از لحاظ آماری تفاوت معنی‌داری ندارند.

نمودار 1. تأثیر ترکیب مولکولی میترال بر تغییرات مقدار پروتئین موجود در همولوگ لاروهای روز ششم‌یک بیک شده از پنج شش می‌گردد.

نمودار 2. تأثیر ترکیب مولکولی میترال بر تغییرات مقدار اسید اوریک موجود در همولوگ لاروهای روز ششم‌یک بیک شده از پنج شش می‌گردد.
همواره با افزایش مقدار نیتروژن در جیره غذایی حشرات می‌تواند اسید اوریک در اندازه‌ای کافی نیتروژن مصرفی وارد متابولیسم گردد. همچنین، هیچ گاه افزایش کمی نیتروژن یا پروتئین در جیره غذایی حشرات می‌تواند به یک شاخه مناسب برای رشد حشرات گیاه‌خوار باشد. بلکه کیفیت نیتروژن مصرفی نیز می‌تواند حالت اهمیت است.

گزارش‌های هنگامی که کرم ابریشم از زین تغذیه می‌شود، تولید اسید اوریک در آن است که به‌همراه کیفیت تغذیه و در درون‌های سبزه‌ای S. eridania (۱۴) و یا با همکاری شناس مصرف اسید اوریک مکمل بوده است. در این مطالعه در حیواناتی که نیتروژن موجود در جیره غذایی پروتئین در امر ارجاع‌ساز رشد و نمو مهم است مبتلا به اسید‌های آمینه است. همچنین، کارو و مارتن (۱۷) نشان دادند که در غرب از لازمه‌های مزیت که تفاوت مقدار پروتئین جذب شده آنها بیش از ۷۵ بوده است. تولید اسید اوریک از ا Hispana مصرفی دارد و در تولید سلول‌های اوراس در باین چپی سوسیس آمریکایی کاملاً به سطح نیتروژن مورد تغذیه و لیاقت است. هرچند عواملی چون مقدار کانسانسیون آب و چرب استرس در تمرینات این مکانیزم مؤثر هستند (۲۰) و نتیجه گرفتند که افزایش شکل گزینی آن در اندام جریان و سبب تحریک تولید اسید اوریک در سوسیس آمریکایی شده است (۲۰). این نتیجه مبنایی که گزارش کرده‌اند که میان افزایش پیامدهای و مقدار اسید اوریک در اندام جریان چربی مصرفی سکو در خلال دوره شفیعیت ارتباطی و جوید دارد.

از آنجا که با افزایش مقدار پروتئین در همولوف لازمه کرم ابریشم می‌باشد تغییراتی نیز در متابولیسم دفعی ترکیبات نیتروژن می‌گردد. ولی این اضافه گریه مقدار اسید اوریک در همولوف لازمه این موضوع را نشان نمی‌دهد.
مهمترین ترکیبات اولیه ایجاد شده در منابع پرورش تیتوژن در کرم ابریشم امروز و آمونئوم است (5 و 12). تغییرات غلظت اوره در همولفون لازم کرم ابریشم به عوامل زیادی، از جمله مرحله سنی و جهور غذایی، وابسته است (21). این تغییرات در ارتباط مستقیم با منابع پرورش تیتوژن و اسیدهای آمینه مهم‌ترین (5 و 32). آزمایش آزماینی مهم برای تولید اوره در همولفون کرم ابریشم است که در بسیاری از یافته‌ها فعالیت می‌کند. این فعالیت در سه بند اولی به اوج خود می‌رسد. سپس آزمایی اوره آرا که از بزرگ توت داخل بدن حشره شده است وارد عمل می‌شود و به تکامل آمونئوم می‌گردد (10، 11 و 12)، و این شاخص از آغاز نتیجه تاره‌ای ابریشم (تقییاً از نوع هفتگی پنجم) به بعد باشد. کیک از جنبه‌های جالب توجه در منابع پرورش تیتوژن در کرم ابریشم بازیابی آمونئوم تکامل شده، برای تولید پروتئین برای استفاده خاص منابع پرورش نتیجه (10). بنابراین، با توجه به نتایج اخیر، تصویر می‌شود غلظت این اوریک در همولفون کرم ابریشم بخلاف بسیاری از شرایط تیتوژن می‌تواند مبتنی مناسب برای ارزیابی منابع پرورش پرورش تیتوژن در این حشره باشد.

سیاسگاری

پدری و سیله تنگاندیل سیستم‌پرورش کرم ابریشم امروز به حداکثر درک امکانات برورش کرم ابریشم، و نیز از کروه صنایع غذایی کشاورزی داشته‌اند که امکانات صنعتی استفاده از امکانات آزمایشگاهی اساس می‌دارند. از جنبه اقائی دکتر رحمی عبارتی نیز به حداکثر مطالعه نشان دهنده‌ای بیشتر نویسی این مقاله تقدیر می‌گردد.

منابع مورد استفاده


241