در این آزمایش از صفات روز تا ساعتی، وزن حجمی، عملکرد بیولوژیکی، عملکرد دانه و شاخص پرداشت استفاده شد. محاسبات آماری داده‌ها شامل ضرایب همبستگی ساده، رگرسیون گام به گام و ری.

صفات زراعی مهم تجزیه به عامل‌ها و تجزیه روش‌های صفات و زیست‌ها بر اساس صفات زراعی بود.

نتایج نشان داد که تنویع زنتیکی چشمگیری برای صفات مورد بررسی بوده و به ویژه عملکرد دانه، شاخص برداده، شمارندوزه‌نگار در سطح و شمار دانه در سبیله وجود دارد. عملکرد دانه با صفات شاخص پرداشت، عملکرد بیولوژیکی، تعداد روز تسکین‌دهی، شمار دانه در سنین و وزن دانه در سنین همبستگی مثبت و معنی‌داری داشتند. در تجزیه عامل‌های شاخص پرداشتی نشان داده شد که جمعاً ۷۲ درصد از کل تنویع داده‌ها را توجه می‌کردند. این عوامل در ارتباط با پتانسیل انتقال جنبه‌های مختلف مخزن‌های کربن، روابط مخزن و معنی‌داری را از نظر نمادی صفات زراعی مورد بررسی با یکدیگر تشخیص نمود.

به‌طور کلی، میزان عملکرد دانه و شاخص پرداشت را قدرت که دراهای او نزدیکی نشان داده که تجزیه عامل‌ها تجزیه خوش‌سازانه و بازه‌های کلیدی: گندم دوروم، اجزای عملکرد دانه، تجزیه به عامل‌ها، تجزیه خوش‌سازانه ۱.

به ترتیب دانشجوی سایه کارشناسی ارشد و دانشیار اصلاح نباتات، دانشکده کشاورزی، دانشگاه یزدی اصفهان.
مقدمه

از دیر باز کندم دوروم (Triticum turgidum L. var. durum Desf.) به صورت آبی و دم در غرب ایران کشت می‌شده است. اگرچه این گیاه یکی از قطعاً برای کندم دوروم در کشور، به‌خصوص در زمین‌های به‌نژاده آن، مورد استفاده گسترده‌تر قرار می‌گیرد، اما هرچه ساده‌ترین چهار روش‌کار باشد، کشت‌هازاران در نواحی مرکزی و غربی ایران با آن رو به رو هستند. یکی از روش‌های که در معرض تغییرات شدید بیشتری هستند، تیپ می‌شود (19).

تینش آبی و گروهای اصلی مهم‌ترین تنش باشد که کشک‌ها در این فاصله ترشیده‌ترند. یکی از روش‌های که در معرض تغییرات شدید بیشتری هستند، تیپ می‌شود (19).

تغییرات عملکرد دانه تابیه از تغییرات که در این اجراهای عملکرد، شامل شیار دانه در سر، وزن دانه و شمار سلوله در متر مربع انجام می‌شود (21). وارون و همکاران (21) در اجرای اجزای عملکرد، لایه‌ها و عملکرد زیاد را در سه جمعیت مختلف کندم دوروم و در سه منطقه جدایگانه به روش جدید و جدید اعمال مطرح شده. بنابراین هفته کاملاً (21) در بررسی‌های گردیده‌تر و دوروم، نتایج در عملکرد دانه در ارتباط نزدیکی با وزن زیست توغه و شاخص برادشت بوده است.

ادامه روند افزایش نشان می‌دهند که استفاده بهینه از ذخایر زنبیکی آنتی‌بیوتیک در دارویی، جریان و ارزیابی این ذخایر انجام شده. در زمینه بررسی تغییرات زنبیکی در گندم‌های نان و دوروم پژوهش‌های این محققان در یک سطح دلتا آبادی برجسته است. جریان‌های (11) در بررسی 50 نمونه دومی کندم دوروم در اندوزه‌های مختلف به‌منظور محصولات بسته و اولیه به شکل‌هایی، ازل پیش‌بینی نموده و برندها و ارزیابی کمیتی ساختار مربوط به توانایی در ارتباط با اجزای عملکرد قرار داشت.

طلاعی و بهرام‌نژاد (5) در بررسی 50 نمونه کندم‌های بومی غرب کشور با استفاده از تجزیه به مؤلفه‌های اصلی، هفظ توانایی در ارتباط با اجزای عملکرد قرار داشت.

شناختی نموده، و با استفاده از این مؤلفه‌ها، از طریق تجزیه
بررسی نتایج زنیکی و تجزیه عاملی برای ویژگی‌های زراعی در گندم دوروم

عملکرد دانه بررسی نموده است.

مواد و روش‌ها
محل آزمایش، ماده زنیکی و طرح آزمایشی
این آزمایش در سال زراعی 1378–79 در مزرعه پژوهشی دانشکده کشاورزی دانشگاه صنفه‌بان، واقع در لوری نجف‌آباد (۱۲۷۳۳۶ شمای و ۱۳۰۵۵۰۰ شرفی، با ارتفاع ۱۶۳۰ متر از سطح دریا) اجرا شد. تعداد ۳۰۰ زنیک در دوروم مشتمل بر ارقام بومی ارکم و لاین‌های خارجی تا به شده از سه‌گونه ویژگی‌دار (برχ) در آزمایش به شرح در سه طرح آزمایش انجام گرفت. هر طرح دارای ۴ تکرار نفری بوده که شامل دو تکرار شده (Augmented design/unreplicated) می‌باشد (آثار ۴۴ مکررکالی، شواب در شش پمپ ارزیابی گردید. هر ابد نتیجه‌ی طبیعی دارای ۴۵ تکرار در نظر گرفته شد.

صفحه شمار روز ۱۰۰ درصد سنبله درشت، شمار روز تا رسیدگی، ارتفاع بونه و طول سنبله (سنتری) شمار سنبله در متر مربع. شمار دانه در سنبله وزن دانه در سنبله وزن هزار دانه (گرم) عملکرد بیولوژیک و عملکرد دانه (گرم بر متر مربع)، شاخص برداشت وزن هجمی (کیلوگرم بر هکتار) اندامگریزی شده.

تجزیه و تحلیل آماری
به مترنگ و تحلیل مدل‌های بایناری یک‌نواختی زمین‌آزمایشی و مشخص کردن نیاز احتمالی به تعداد داده‌های کارت‌ها داده‌های حاصل از صف‌های زراعی در ارقام شاهد به عنوان شیوه برای کدام از شش پمپ، و در طرح‌های خاص سطح بسامد تصادفی تجربه و تحلیل گردید. تصویب پایه‌ها در کل آزمایش با تجزیه و تحلیل مکانی ASREML (۱۰۰) انجام گرفت.

تجزیه آماری یک متغیری شامل محاسبه میانگین‌ها، انحراف

خوشه‌های ۴۷، مورفولوژی گندم دوروم را در شش گروه قرار دادند.

النگر و ناجی‌پور (۹) در بررسی ۱۸۵ توده بومی گندم دوروم جمع‌آوری شده از ۱۹۶ منطقه در سردبیرک، و با استفاده از تجزیه‌ی خوشه‌ای به منظور تعیین مناطق نسبتاً یکسان از نظر آب و هوا و مناسبات اکولوژیک زراعی سه منطقه آب و هوا وی را تعیین کردند.

پورسیابی‌ای (۴) با استفاده از ۱۵ صفت زراعی مختلف در ۱۰۰ گونه زنیکی ارکم و لاین‌های خارجی دندان به ویژگی‌های خاص خود بهترین زنیک‌های دندانی‌ای را و به دلایل زیر به اهمیت است:

۱. ارکم‌های زنیکی که در زمین‌های سردبیرک به مغز و ناحیه‌های نشان داده‌اند، به طوری که در مناطق گرم و خشک دنبای، با جمعه آفریقای شمالی کشت می‌شوند (۱ و ۱۹).

۲. هوای زیاد بهاره با ناسازگاری و رطوبت کم‌پای یک‌پایه‌های که دانه‌گان گندم دوروم می‌شود (۱۶) که منطقه‌ای مرکزی ایران از این زنیک‌های بخش‌دار است.

۳. هر گونه اقدام مقدماتی گندم دوروم بستگی به موقعیت و دسته‌بستگی به دختر(Lists) آن به ویژه در مکان دیگر بستگی به منشا آن در حال حاضر خطر دارد. هر ایرانی بخش کلی نشانی از این حال حاضر در حالی که شناسایی می‌شود.
می‌دهد که مجموعه حاضر از نظر صفات عامل‌رسال این داده‌ها و اجزای آن به همرافشان برداشت، از نظر بیان خوبی برخوردار است. و انتخاب زندهی‌پذیری برای برای مقاصد به‌نژادی می‌تواند بر اساس این صفات صورت گیرد.

بیشترین ضریب تغییر در صفات عامل‌رسال (93/1 درصد) در صفات عامل‌رسال و مدل‌های آن را جذاب می‌نماید. این نتایج نشان می‌دهد که جهدی نسبی در مدل‌های فردی از یک درصد انجام شد. تجزیه و تحلیل خوش‌های خودکار رونده وارد (15) و با استفاده از نظریه‌های استاندارد شده و از طریق نرم‌افزار SPSS، برای تعيین تعداد (The cubic clustering criterion) معیار نمون نسبت خوشه‌ها (Fisher’s least significant differences F and statistic) که برای گرفته شد.

نتایج و بحث

نتایج آزمون توصیفی شامل برآورد میانگین، انحراف معیار، حداقل و حداکثر ضریب تغییرات صفات در جدول 1 آمده است. صفات عامل‌رسال، شامل مشاهدات نشان می‌دهد که جهدی نسبی در مدل‌های فردی از یک درصد انجام شد. تجزیه و تحلیل خوش‌های خودکار رونده وارد (15) و با استفاده از نظریه‌های استاندارد شده و از طریق نرم‌افزار SPSS، برای تعيین تعداد (The cubic clustering criterion) معیار نمون نسبت خوشه‌ها (Fisher’s least significant differences F and statistic) که برای گرفته شد.

کمک‌گرفته شد.
جدول 1. میانگین، انحراف معیار، حداقل و حداکثر و ضریب تغییرات صفات زراعی در 300 ژن‌توبی گندم دومور

<table>
<thead>
<tr>
<th>ضریب تغییرات</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>حداقل</th>
<th>حداکثر</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمار روز تا 50 درصد سبله‌دهی</td>
<td>0/96</td>
<td>0/02</td>
<td>150</td>
<td>174</td>
</tr>
<tr>
<td>شمار روز تا رشدگی</td>
<td>0/97</td>
<td>0/03</td>
<td>194</td>
<td>205</td>
</tr>
<tr>
<td>ارتفاع گیاه (سانتی‌متر)</td>
<td>0/34</td>
<td>0/71</td>
<td>36</td>
<td>66</td>
</tr>
<tr>
<td>طول سبله (سانتی‌متر)</td>
<td>9</td>
<td>0/9</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>شمار دانه در سبله</td>
<td>1/0</td>
<td>0/2</td>
<td>10/0</td>
<td>10/3</td>
</tr>
<tr>
<td>وزن دانه در سبله (گرم)</td>
<td>0/68</td>
<td>0/46</td>
<td>4/6</td>
<td>10/5</td>
</tr>
<tr>
<td>وزن هزار دانه (گرم)</td>
<td>0/8</td>
<td>0/3</td>
<td>3/2</td>
<td>5/8</td>
</tr>
<tr>
<td>عمرکرد دانه (گرم بر متر مربع)</td>
<td>5/92</td>
<td>12/45</td>
<td>132/5</td>
<td>145/0</td>
</tr>
<tr>
<td>عمرکرد پوسترژولیک (گرم بر متر مربع)</td>
<td>8/26</td>
<td>3/4</td>
<td>188/4</td>
<td>211/1</td>
</tr>
<tr>
<td>شاخص برداشت (درصد)</td>
<td>28/59</td>
<td>20/00</td>
<td>30/7</td>
<td>38/0</td>
</tr>
</tbody>
</table>

1. خطای معیار به میانگین اضافه و کم شده است.

جدول 2. ضرایب همبستگی ساده بین صفات زراعی مورد بررسی در 300 ژن‌توبی گندم دومور

صفات	پرورش و شرایط محیطی بستگی دارد	نیاز به عناصر به‌گزارش‌های مشابه از این همبستگی‌ها مشخص می‌شود که تعیین نفس اجزای عملکرد دانه در عملکرد احتمالا به‌زنبورعی های مورد
رویکرد	سطح معمول در امرام 5 و درصد	دانه همبستگی معنی‌دار نشان داد و نیاز به باعثه به‌گزارش‌های مشابه از این همبستگی‌ها مشخص می‌شود که تعیین نفس اجزای عملکرد دانه در عملکرد احتمالا به‌زنبورعی های مورد

119
روی عملکرد دانه هماهنگی دارد. بنابراین، مشخص می‌شود که این دو صفت در ارتباط بسیار نزدیکی یکدیگر هستند و از آن جا که عملکرد دانه گندم ناشی از آثار تجمعی اجزای مشکل‌های آن مشابه، و از سوی دیگر همبستگی منفی بین احساسی عملکرد، انتخاب کلیه صفات مطلوب را که همبستگی منفی با عملکرد دانه دارد، با مشکل رول ره‌رو می‌کند. بنابراین شاخص برداشت به عنوان معیار مناسب در گزارش‌های زنی‌تیپه‌های با عملکرد دانه زیاد یا توصیه است. در بررسی‌های کاک (19) توزیع می‌باشد.

در مطالعه همبستگی ساده صفات، ارتباط یک متغیر با متغیر دیگر، بدون در نظر گرفتن نقش دیگر متغیرها بررسی می‌شود. در مطالعات رگرسیون مدل‌گیری و با توجه به ضرایب رگرسیون نیز نتایجی را به اثبات همبستگی متغیرهای مستقل با یک متغیر وابسته بررسی می‌شود. و بررسی می‌شود، آیا متغیرهای مستقل بر یکدیگر قابل دستیابی نیست. ولی با کمک روش فلیکن تجزیه به صورت همبستگی می‌توان به طور مؤقتی آموزی شمار زیادی متغیرهای همبسته را به شمار کمتری اعمال کمکی کشید، و ضمن گزارش صفات، رابطه بین صفات همبسته را نیز به خوبی توجیه کرد. افزون بر این، تحلیل همبستگی صفات و مقدار توزیع که هر یک از صفات از نوع گروهی می‌کند، مشخص خواهد شد.

جدول 5 نتایج تجزیه با عامل‌ها برای گروه‌های زنی‌تیپه مورد بررسی نشان می‌دهد. این تجزیه توسط یک از 12 صفت زراعی، شش عامل پنهانی را نشان می‌دهد. که جمعاً 70820 درصد از کل تعداد داده‌ها نسبت به تعداد می‌کردن. از این مقدار، 87679% 0/8، 1/13، 2/19، 2/19 و 8/5 درصد بود.

در عامل اول متغیرهای عملکرد دانه و شاخص بردآشت دارای بار عامل مثبت و زیادی بودند. این عامل به نام پتانسیل دانه را در گاند دوره گزارش نموده‌اند. (آمر 9) بین عملکرد دانه و شمار دانه در سیستم و شمار سنبله در مری مربع همبستگی معنی‌دار و در بین عملکرد دانه و وزن هزار دانه نبود همبستگی با مشاهده نمود. پس از پایان (21) توزیع می‌باشد. بنابراین همبستگی منفی و معنی‌دار دانه دانه چهاره‌ی دانه به نظم همبستگی‌های دانه، به عنوان سهم‌دار دانه در سیستم، همبستگی معنی‌دار و با توجه به داده‌های 12 نشان داد که شاخص بردآشت و عملکرد بیولوژیکی به عنوان عامل‌هایی از تغییرات عملکرد دانه را توجیه کرده و در این بخش دیده می‌شود.

نتایج رگرسیون چندگانه، که در آن عملکرد دانه به عنوان متغیر نیروی وابسته در بررسی ساختگی دیگر به عنوان متغیرهای مستقل در نظر گرفته شد (جدول 6) نشان داد که شاخص بردآشت و عملکرد بیولوژیکی به عنوان عامل‌هایی از تغییرات عملکرد دانه را توجیه کرده و در این بخش دیده می‌شود.

از این زمینه، شاخص بردآشت که حدود 90 درصد از تغییرات عملکرد دانه را توجیه کرد است. این به اثبات سپری به عملکرد دانه در سیستم و ارتفاع گیاه بودیده نشود. که نتایجی از تغییرات عملکرد دانه در سیستم و ارتفاع گیاه بودیده است. این هم از جمله بررسی‌های سایر به اثبات سپری به عملکرد دانه زیادتری خواهد داشت. دیگر صفات نیز جانشینی شده در مدل به ترتیب اهمیت مشتمل بر شمار روز تا سنبله‌ها، شمار سنبله در مری مربع و ارتفاع گیاه بودیده نشود. که نتایجی از تغییرات عملکرد دانه در سیستم و ارتفاع گیاه بودیده است. این این نشان داد که به رغم این که عملکرد دانه دانه اسیانی توجه می‌باشد. ضرایب موجود در مدل رگرسیون واقع ضرایب رگرسیون جزه هستند. و نتایج متغیر مربوطا را پس از در نظر گرفت که متغیرهای دیگر نشان می‌دهد (39) با توجه به این که مشخصاً برداشت یکی از صفات همبسته در ریز‌داده‌های محصول می‌شود (21). بررسی صفات به اثبات مشخص با مشاخص بردآشت ارتباط دارد و این نشان داده است. نتایج رگرسیون مدل‌گیری با مشخص بردآشت به عنوان متغیر رابطه و دیگر صفات به عنوان متغیرهای مستقل در جدول 4 آمده است. نتایج این تجزیه و تحلیل با تابیت رگرسیون مدل‌گیری

120
جدول 3. نتایج رگرسیون مدل‌های عملکرد دانه به عنوان متغیر وابسته و دیگر صفات زراعی به عنوان متغیرهای مستقل در زونتیپ‌های گندم دوروم

<table>
<thead>
<tr>
<th>صفات</th>
<th>ضریب رگرسیون برای صفات</th>
<th>میانگین</th>
<th>مربوطات خطی x5</th>
<th>x4</th>
<th>x3</th>
<th>x2</th>
<th>x1</th>
<th>استدلال 1</th>
<th>x5</th>
<th>x4</th>
<th>x3</th>
<th>x2</th>
<th>x1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>شاخص برداشت (X1)</td>
<td>79.79</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.75</td>
<td>0.49</td>
<td>1/5</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>2</td>
<td>عملکرد بولوژیک (X2)</td>
<td>48.95</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.02</td>
<td>0.79</td>
<td>2/6</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>3</td>
<td>روز تا 50/60 سیل‌دهی (X3)</td>
<td>91.31</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.27</td>
<td>0.95</td>
<td>2/6</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>4</td>
<td>شمار سلیقه در متغیر (X4)</td>
<td>93.44</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.26</td>
<td>0.95</td>
<td>2/6</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>5</td>
<td>ارتفاع گیاه (X5)</td>
<td>93.6</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.26</td>
<td>0.95</td>
<td>2/6</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>6</td>
<td>روز تا رسیدگی (X6)</td>
<td>92.46</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.26</td>
<td>0.95</td>
<td>2/6</td>
<td>0.45</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
</tbody>
</table>

مقدار نهایی: Y

جدول 4. نتایج رگرسیون مدل‌های برای گیجه‌های صفات توجه کننده شاخص برداشت

<table>
<thead>
<tr>
<th>صفات</th>
<th>ضریب رگرسیون برای صفات</th>
<th>میانگین</th>
<th>x5</th>
<th>x4</th>
<th>x3</th>
<th>x2</th>
<th>x1</th>
<th>استدلال 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>عملکرد دانه (X1)</td>
<td>79.79</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.75</td>
<td>0.49</td>
<td>1/5</td>
</tr>
<tr>
<td>2</td>
<td>عملکرد بولوژیک (X2)</td>
<td>48.95</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.02</td>
<td>0.79</td>
<td>2/6</td>
</tr>
<tr>
<td>3</td>
<td>روز تا 50/60 سیل‌دهی (X3)</td>
<td>91.31</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.27</td>
<td>0.95</td>
<td>2/6</td>
</tr>
<tr>
<td>4</td>
<td>شمار سلیقه در متغیر (X4)</td>
<td>93.44</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.26</td>
<td>0.95</td>
<td>2/6</td>
</tr>
<tr>
<td>5</td>
<td>ارتفاع گیاه (X5)</td>
<td>93.6</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.26</td>
<td>0.95</td>
<td>2/6</td>
</tr>
<tr>
<td>6</td>
<td>روز تا رسیدگی (X6)</td>
<td>92.46</td>
<td>294.95</td>
<td>70.46</td>
<td>211.94</td>
<td>0.26</td>
<td>0.95</td>
<td>2/6</td>
</tr>
</tbody>
</table>

مقدار نهایی: Y

جدول 5. ضرایب عامل‌های مشترک، پارامترهای نسبی و میانگین و میزان اشتراک عامل‌ها در صفات زراعی 300 زونتیپ گندم دوروم

| صفات | ضریب اشتراک | عامل سوم | عامل پیش‌گیری | عامل صفر | عامل آنالیز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>2</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>5</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>6</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
</tbody>
</table>

مقدار نهایی: Y

* و **: به ترتیب معنی‌دار در سطح احتمال 0.01 و 0.001 درصد.
متغیرهای عملکرد دانه و اجزای عملکرد بود، ولی عامل‌های
سوم، پنجم و ششم با عامل سنگین تری را در صفات مربوط با
رشد رویش گیاه داشتند. اعمال انتخاب از طریق هر یک از
عامل‌های جنگلی گروهیتوپ‌ها براساس مجموعه صفات
موجود در هر یک از این عامل‌ها با یا با غیرعامل به گردد.

لی و کاتشیکر (15) با اینکه در ۱۲ صفت زراعی در نتایج
تلاقی‌های دایپل اکل، نشان دادند که پنج گروه می‌تواند بر
عمل عامل‌های دهنده نشان از این عملکرد داشته باشد. این وضعیت
دانه در بیونی و کریت و اجزای عملکرد شمار دانه و
سنتلیه و سنگین و وزن هزار دانه، شمار سنتلیه در سنتلیه و نسبت گل‌جه
دانه در نسبت بیشترین با عامل بودن.

والتون (۳۳) از تجربه عامل‌ها در شناسایی و یابندی
رشدی و مورفولوژیک مربوط با عملکرد در گندم بهره‌دار استفاده
کرد و چهار عامل را معرفی نمود. همچنین اجزای عملکرد
صفات مورفولوژیک، طول سنتلیه و شمار دانه در گیاه، و نیز
ارتباطات دانه‌های بزرگ و طول دوره بر دانه با عملکرد زیست
بودند.

به منظور گروه‌بندی صفات زراعی مختلف و تعیین صفات
که بیشتر از عارضات این کمک یک سیستم دارد، تجربه خون‌های صفات
زراعی انجام داده و دو گروه مجزا تشخیص داده شد. گروه اول به
گروه‌های زیرین گروه‌های نخستی از توجه به صفات موجود در هر یک از گروه‌های بیشترین این صفات اشکال
داد و نتایج حاصله به نتایج ضریب همبستگی و تجزیه عامل‌ها
C۱۰ هم خواهد کامل نشان می‌دهد. به طوری که کنار زیرگروه هه
در عامل اول و زیرگروه C۱۰ نیز در عامل بزرگویه چهارم و
ششم بیشترین عامل با عامل را نشان دادند. از سوی دیگر، صفات زیرگروه
C۱۰ در عامل دوم و صفات موجود در زیرگروه C۱۰ در عامل دایپل
می‌تواند با نظر به بیکاری بودن. نتایج در گروه
زیرگروه با عامل‌های دهنده از این صفات را نیز در روابط
موجودی بین صفات توجه داشت، و از این روابط در گروه
افراد استفاده نمود.

در گروه‌بندی زنوتیپ‌ها و شناسایی گروهی از زنوتیپ‌ها که

انتقال نام‌گذاری گردید. در صورتی که انتخاب بر اساس عامل
اول انجام شود، این انتخاب بیشتر تأثیر را در عملکرد دانه
خواهد داشت. و زنوتیپ‌های گروه‌های شده بیشترین میزان
عملکرد دانه را نشان خواهد داد.

عملکرد در هر یک از این عامل‌ها با یا با غیرعامل به گردد.
وزن دانه در سنتلیه و وزن هزار دانه استفاده بودند. چنین
مختصات از مخلوط زینتوپ‌ها گمی را نشان می‌دادند. به طوری
که عملکرد دانه بیشتر در انتخاب با وزن و شمار دانه در سنتلیه قرار
داده و مخلوط زینتوپ‌ها که بیشتر مورد توجه قرار می‌داد.
ولی در اعتلال بالای وزن هزار دانه بیشتری از خانه می‌بیند
خود ارائه دهنده قرار دارد که عملکرد مخلوط زینتوپ‌ها توده گیاهی
بود. در عامل تاریکی عامل عملکرد بیشتری را در
عکس مناسب دارد تا به فاصله بررسی گردید.
و شمار در ساعت‌های ۳ تا ۴ ساعت بودند. و
شمار روز در ساعت‌های ۳ تا ۴ ساعت بودند. که نشان
دهنده خطرمسازی بیشتر می‌باشد.

در عامل پنج صفات انتخاب بیونی و طول سنتلیه بیشتر تأثیر
را داشتند. و این عملکرد به عنوان یک گروه کارکردی
Stojciri-1 و Haurani

سانتی‌متر، ۳۰ و زنوتیپ‌های مخصوص ۱-۸. Kirki-1
با انتخاب بیونی به ترتیب ۲۵ و ۳۸ زنوتیپ‌های مخصوص دانه
به انتخاب بیونی به ترتیب ۲۵ و ۳۸ زنوتیپ‌های
اوریای عملکرد با رنگ رویش گیاه بیشتری با عاملی را

اگر عامل را می‌توان به ترتیب آنالیز تولید نهج نامید

۱۲۲
جدول ۲. نتایج تجزیه و اریانس میانگین‌ها و ضرایب ترکیب بروز صفته در ۲۰۰ زننیت گندم دوروم

صفته	میانگین نرمال	میانگین انحراف	ضریب
بروز صفته	کره شمش	کره دوم	کره سوم
مواد غذایی	۱۵۸/۴۸	۱۵۹/۴۸	۱۵۹/۴۸

شمار دانه در صفته (گرم)
وزن دانه در صفته (گرم)
وزن حجمی (کیلوگرم)
عمیق‌کننده دانه (گرم بر مربع)
عمیق‌کننده بولوزیک (گرم بر مربع)
شاخ برداشت (درصد)

شکل ۱. دندورگرمان حاصل از تجزیه خوش‌های صفته در زراعت

منبع:‌ در سطح احتمال یکدرصد.

1. مقایسه میانگین‌ها به روش دانک در سطح احتمال ۵ درصد آن‌گونه است که در هر رده تفاوت هر دو میانگین که حداکثر دارای یک حرف مشترک محسوس از نظر آماری معنی‌دار نیست.
وزن حجمی نیز بیشترین مقادیر را در این گروه داشتند.

نمونه‌هایی در پارامتر اصلیکه که اهداف آن افزایش عملکرد دانش‌آموخته، شایع برخاست است، ژنوتپ‌های ژنوتپ‌های موجود در گروه

ویژگی‌های زراعی و به ویژه عملکرد دانه مطلوب باشد.

از تجربه‌های جمعده ۸۶ ویژگی‌هایی از بسیاری استفاده می‌شود. بگر ورود کامل‌تری، که از نظر کلیه صفات زراعی

اختلاف معنی‌داری داشتند. شاخص‌های گردید. نتایج این تجربه در

جدول ۶ آورده شده است. در گروه‌های پایی نش به ترتیب

در رتبه.

نخستین گروه از نظر صفات شما سیل‌بندی‌های می‌تر می‌بود و وزن

هزار دانوی دایی بیشترین مقادیر و از نظر صفات شمار دانه

سیل‌بندی و وزن دانوی در سیل‌بندی دارای کمترین مقادیر نسبت به گروه‌های دیگر پایین. بنابراین ژنوتپ‌های این گروه تحت تأثیر

اوج اعمال عملکرد قرار داشتند. که رابطه جدولی از متغیری عملکرد به

خوبی مشخص است.

ژنوتپ‌های گروه‌های دوم و سوم از نظر صفات زراعی مهم

مانند عملکرد دانه. عملکرد بیولوژیک و شاخص برداشت نسبت به دیگر گروه‌ها در پایین ترین سطح بودند، و مطلوبیت‌برای

انتحاب داشتند.

ژنوتپ‌های موجود در گروه چهار از نظر صفت عملکرد

بیولوژیک در سطح بالایی بودند. ولی عملکرد دانه و شاخص

برداشت این ژنوتپ‌ها پایین بود از سوی دیگر صفات شمار

دانه در سیل‌بندی و وزن دانه در سیل‌بندی نیز در حد بالایی قرار داشتند.

ولی این جزء عملکرد به نهایی قادیر به افزایش عملکرد نیز

است.

در گروه پنج صفات عملکرد دانه و شاخص برداشت، به

ترتبی با مقدار ۲۸۰/۳۸ گرم بر متر مربع (پانچ تن در هکتار) و

۳۸ درصد بیشترین مقادیر را در میان گروه‌ها داشتند. ضمن این

که از یک سو صفات مربوط به رشد و رویشی در سطح پایین بوده و از سوی دیگر عملکرد فتوستاتی در این ژنوتپ‌ها صرف

ذخیره در بدن و افزایش عملکرد شده است.

ژنوتپ‌های گروه پنجم از نظر صفات عملکرد دانه و شاخص

برداشت، پس از گروه پنج بیشترین مقادیر را به خود

اختصاص دادند. صفات وزن دانه در سیل‌بندی، شمار دانه در سیل‌بندی و
مباحث مورد استفاده

1. ارزانی، ا. 1381. اصلاح گیاهان رعایی (ترجمه). مرکز نشر دانشگاه صنعتی اصفهان.
2. پورسیابی، م. 1377. بررسی تنویع زنبیلکی لاينهای گندم دوروم در مدل اصفهان و تهیه گنبد آمفی بولیود. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
3. رضایی، ع. و. طارمی. 1377. مقایسه‌ای بر تخلیل رگرسیون کاربردی. مرکز نشر دانشگاه صنعتی اصفهان.
5. طالبی‌نژاد، ع. و. ب. بهرامی‌نژاد. 1378. بررسی تنویع زنبیلکی وجود در گندم‌های بومی غرب کشور با استفاده از تجزیه کلاستر و تجزیه به مؤلفه‌های اصلی. علوم کشاورزی ایران 20(4): 78-97.