مقاومت در برابر جریان در رودخانه‌های با بستر شنی

حسین افستی مهر، موتچر حیدری و سیدحسین نژاد

چکیده
در این پژوهش با توجه به نظر گرفتن پارامترهای کلی هم‌جنس سرعت متوسط جریان در اطراف نهان‌های جریان و توزیع سرعت جریان در اطراف نهان‌های جریان و توزیع سرعت بر اساس نظریه م.ser لی، مقایسه‌ی بین رودخانه‌های با وعده‌ی مرتز و عوامل مؤثر بر آن با استفاده از داده‌های اندازه‌گیری شده برای جریان‌های یک‌واخت ایجاد بررسی شده است.

نتایج پژوهش نشان می‌دهد که هر گونه تغییر در شکل تابع گرمایشی توزیع جهانی سرعت با مظاهر کردن فاکتور مشکل سطح مقطع رودخانه و یا ضریب تعادل زیری مواد بستر برای فشار مشخصه رودخانه تاثیری لازمی به بخشی مقاومت در مقابل جریان دارد. در حقیقت که ارائه مقدار ثابت گرمایشی (عرض از میدان) در حالی توزیع جهانی سرعت به صورت ثابت از پارامترهای عدد فرد و پارامتر شاخص مزوند، با این حال، مقدار توزیع مقاومت در برابر جریان را به‌طور خاص آمیخته، معمولاً در نظر گرفتن شامل وقایعی در برابر زیری تعادل از منابع محلی نمی‌پذیرد. به‌طور کلی، در مزینه‌های مزینه‌های نهان در افتاده‌گریه‌های جریان سرعت جریان غیر یک‌واخت از رودخانه‌ها که شناخته شده است، چنین می‌تواند در بدکن مقدار سرعت جریان واقع در سطح آب و شیب خط از اثری از عوامل مؤثر بر مقاومت در برابر جریان می‌باشد.

واژه‌های کلیدی: فاکتور، شکل، ضریب تعادل زیری، ضخامت و اندازه حرکت لاپ مرزی، رودخانه‌های شنی

1. به ترتیب استادیاران و دانشجوی سابق کارشناسی ارشد آماری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
همان یستربی و دیوارهای کانال است انتقال می‌دهند. بنابراین، مقاومت در برابر جریان به همان اندازه که همیشه کف کانال و دیواره‌ای استنگی در آن تیر وابسته است. از آن جا که هدف این پژوهش بررسی رودخانه‌های مناطق کوهستانی که در اطراف تالاب هستند است. به پیش‌بینی مقاومت در برابر جریان با خطای زیادی راه‌رسی می‌شود. طبق قاعده هیدرولیک، رویکرد به خشکی بنیانی شده است. مقاومت در برابر جریان محاسبه شده در هیچ‌کدام از این روش‌ها موجود نبوده است. بنابراین، تحقیق یک روش جدید برای توزیع سرعت می‌باشد.

\[
\frac{u_m}{u*} = \frac{1}{K} \ln \frac{h}{B} + B
\]

که در آن \(K \) ثابت جهانی، \(u_m \) و \(u* \) می‌باشد. در نظر گرفتن \(h > B \) زیری معادله سطح‌رسوب و ثابت می‌باشد. معادله است \(u_m \) به صورت پارامتر تعریف می‌شود.

\[
\psi = \frac{f}{w}\sqrt{\frac{w}{g}} + \frac{u_m}{u*>}
\]

در این رابطه، \(\psi \) سرعت متوسط جریان در سطح مقطع رودخانه‌ای است. \(u* \) سرعت بر نیست که به صورت \(u* = \sqrt{ghS_f} \) به شیب خط اریزی در کانال می‌شود. \(g \) شتاب ثالث، \(S_f \) به نظر نادرسون (1897) برای جریان در کانال‌های باز، نشان می‌دهد (Turbulent shear)

\[
\text{مقدار}
\]
مواد و روش‌ها

برای رسیدن به اهداف این پژوهش از دو دسته داده‌های انداده‌گیری شده استفاده شده است. دسته اول داده‌های گزارش شده از ۱۴۰ رودخانه دشتی در چهار محدوده مورد بررسی قرار گرفته است. دسته دوم به داده‌های ۲۱ نمونه سرعت انداده‌گیری شده در شرایط جریان دانی مورد انتخاب قرار گرفته است. در مجموع ۵۰ نمونه رودخانه دشتی در اطراف نهآوند مرکزی چهار بازه رودخانه‌ها و می‌باشد.

در دسته اول جریان در رودخانه‌ها کنونی در نظر گرفته شده است. نمایشگرین، مشخصات هیدرولیک، همیج سرعت جریان، عرض رودخانه و عمق جریان از یک سطح مقطع به وسیله عکاسی به‌صورت تصویری گرفته شده است. جدول ۱ دامنه داده‌های انداده‌گیری شده در ۱۴۰ رودخانه دشتی در شرایط جریان سرعتی با نمایشگرینی می‌باشد. لازم به یادآوری است، رودخانه‌های اولیه یکی از اصلی‌ترین رود‌های در دریا است. که دارای بستری چوب‌دار با قطر متوسط ۲۳.۳ mm شیب تندتا هسته‌ای با مشخصات تصویری مشابه می‌باشد. جدول دوم دامنه داده‌های انداده‌گیری شده و محاسبه شده در چهار باره مورد بررسی در رودخانه‌های گاماسیاب را نشان می‌دهد.

در دسته دوم جریان در رودخانه‌ها کنونی در نظر گرفته شده است. نمایشگرین، مشخصات هیدرولیک، همیج سرعت جریان، عرض رودخانه و عمق جریان از یک سطح مقطع به وسیله عکاسی به‌صورت تصویری گرفته شده است. جدول ۱ دامنه داده‌های انداده‌گیری شده در ۱۴۰ رودخانه دشتی در شرایط جریان سرعتی با نمایشگرینی می‌باشد. لازم به یادآوری است، رودخانه‌های اولیه یکی از اصلی‌ترین رود‌های در دریا است. که دارای بستری چوب‌دار با قطر متوسط ۲۳.۳ mm شیب تندتا هسته‌ای با مشخصات تصویری مشابه می‌باشد. جدول دوم دامنه داده‌های انداده‌گیری شده و محاسبه شده در چهار باره مورد بررسی در رودخانه‌های گاماسیاب را نشان می‌دهد.

به‌طور کلی در این پژوهش برای ارائه انداده‌گیری سرعت نقطه‌ای و تعیین تعداد سرعت، از یک دستگاه مولیتن کپچیک در مکان‌های مختلف و بر اساس روش‌گزاری در حوزه‌های مختلف و در هنگام ارائه سرعت به طور مداوم گیری از ۱۵ سرعت نقطه‌ای در کف رودخانه تا سطح آب در ۲۴ سطح مقطع استفاده گردید. همچنین، در طول جریان ۵۰ متری شش تیتر سرعت به فواصل ثابت به شکل متناوب در انداده محور اصلی رودخانه انداده‌گیری شد. برای بررسی شیب بانه‌ها و

سطح مقطع رودخانه به دستگاه ترایزبایپ به کار رفته.

اندازه قطر مشخصه مواد روسی در رودخانه توسط روشنایی ۳۳ (۱۳) درجات گردیده به‌کار آمده است. طول الکترود می‌باشد، در پرسی مستشه متقابل در برابر جریان و در دو زاویه مهندسین را دارد.

پارامترهای قابل ملاحظه در این پژوهش از این منظره گردیده است. علاوه بر جریان و عمق رودخانه در حوزه‌های مختلف و در هنگام ارائه سرعت به طور مداوم گیری از ۱۵ سرعت نقطه‌ای در کف رودخانه تا سطح آب در ۲۴ سطح مقطع استفاده گردید. همچنین، در طول جریان ۵۰ متری شش تیتر سرعت به فواصل ثابت به شکل متناوب در انداده محور اصلی رودخانه انداده‌گیری شد. برای بررسی شیب بانه‌ها و

سطح مقطع رودخانه به دستگاه ترایزبایپ به کار رفته.
جدول 1. دامنه پارامترهای انداده‌گیری شده برای 140 رودخانه شی از ایران در شرایط جریان یکنویخت

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>دامنه تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_m) (m/s)</td>
<td>30/20-3/8</td>
</tr>
<tr>
<td>(W) (m)</td>
<td>3/7-8</td>
</tr>
<tr>
<td>(h) (m)</td>
<td>0/2-5/7</td>
</tr>
<tr>
<td>(d_{50}) (mm)</td>
<td>3/7-180</td>
</tr>
<tr>
<td>(S)</td>
<td>0/0001-0/052</td>
</tr>
</tbody>
</table>

جدول 2. دامنه پارامترهای انداده‌گیری شده در چهار پازه از رودخانه گاماسیب (\(d_{84} = 0/34 \) mm) در شرایط جریان غیر یکنویخت

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>دامنه تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h) (m)</td>
<td>0/183-0/532</td>
</tr>
<tr>
<td>(u_m) (m)</td>
<td>0/01-0/19</td>
</tr>
<tr>
<td>(W) (m)</td>
<td>0/5/12</td>
</tr>
<tr>
<td>(A) (m²)</td>
<td>0/3/76</td>
</tr>
<tr>
<td>(Q) (m³/s)</td>
<td>0/1/3/6</td>
</tr>
<tr>
<td>(Fr)</td>
<td>0/01/0/77</td>
</tr>
<tr>
<td>(S)</td>
<td>0/01/0/159</td>
</tr>
<tr>
<td>(S_f)</td>
<td>0/01/0/054</td>
</tr>
<tr>
<td>(u_{max}) (m/s)</td>
<td>0/17-0/615</td>
</tr>
</tbody>
</table>

در این پژوهش، فرض می‌شود تغییر می‌کند. بنابراین، \(C \) یک‌سانی به پراکندگی داده‌های آزمایشگاهی دارد، که به نوع جریان (تند شونده یا کند شونده) واپسین است. (3 مقدار \(C \) در جریان توسه‌ای یافته می‌باشد.) مستقل از عدد ریبنژرد و عدد فرود است. بنابراین، سرعت بررسی را می‌توان با استفاده از مشخصات لایه مرزی با توجه به رابطه 3 به صورت زیر تعیین کرد:

\[
 u_s = \frac{(\delta_s - 0) u_{max}}{4.48}
\]

که در این جا ضخامت‌های چگال‌یا جایی به جایی 0.8 و انداده حركت \(\delta_s \) لایه مرزی به صورت زیر تعیین می‌شود:

\[
\delta_s = \int_0^h \left(1 - \frac{u}{u_{max}}\right)dy
\]

\[
\theta = \int_0^h \left(1 - \frac{u}{u_{max}}\right)dy
\]
سیستم در برای جریان در رودخانه‌های با سرعت شنی

فاکتور شکل (h) اعمال شده است. در حالت که تأثیر فاکتور تعیین زیر (7/8) در نظر گرفته شده است. در معادلات ارائه شده ریف 2 تأمین می‌شود. بعضی از فاکتور برخی و ضریب تعیین زیر محوطه شده است. معادله دیگر ریف 3 بندان در نظر گرفته دو عامل فاکتور شکل و ضریب تعیین زیر بوده. نهایتاً از معنی نسبی (h)

همان گونه را در نتیجه جدید 3 دریافت می‌شود. در هر چند معادله ضریب نسبی تقریباً یکسان است، و عرض از مبداً چهار معادله تقاضای باکس‌گیری نشان دهنده، اگرچه تأثیر فاکتور شکل در شبیه‌سازی ریف 1 نشان داده شده است. تأثیر ضریب تعیین زیر در معادله تعیین 4 است (این موضوع

می‌تواند به شرایط حذف آبریز رودخانه به مورد نظر و تأثیر برخی عوامل ادامه‌گیری نسبت داده شود. ولی به طور کلی

می‌توان نتیجه گیری کرد که اثر فاکتور شکل (h) و ضریب تعیین زیر (7/8) در پیش‌بینی معادلات در برای جریان در معادله‌های نسبی قابل گذشته است.

در ادامه، نتایج شبیه‌سازی معادله‌های نسبی که در آنها افزون بر

معنی نسبی (h)

عدد فرود به عنوان پارامتر مستقل و جدول دارد. در پیش‌بینی معادلات در برای جریان تجربه و تحلیل گردد. جدول 4 و تاپیه آمری آن نشان می‌دهد که با در نظر گرفتن عدد فرود به عنوان یک پارامتر مستقل، علائم بر عمق نسبی پیشرو برمی‌گردد در پیش‌بینی معادلات در برای جریان ایجاد نمی‌شود. به علاوه، شدت هسته‌سازی داخلی بین طرف‌چپ و راست معادله، که در از سرعت متوسط جریان به صورت صریح استفاده می‌گردد، وجود دارد.

ب) معادله‌های نسبی گرادیئت

معادله‌های توسعه بافت نسبی (T) معادلات در برای جریان در مهندسی رودخانه شکل کلی معادله 2 را دارند. در این

شیلدز و فاکتور شکل به منظور گسترش و بروز معادله‌های معادله‌های در برای جریان به کار می‌رود. پارامتر شیلدز به صورت (4ρδ) تعیین می‌شود که در حالت جریان یکنواخت نش برای

برای معادله می‌باشد. پارامترهای دیگر قبل تعیین شده‌اند. معیار خوبی برای این هر معادله مورد بررسی استفاده از معادله رگرسیون به صورت زیر است:

\[\hat{F} = bF + a \]

که در آن \(\hat{F} \) مقدار پیش‌پیش شده می‌باشد، \(F \) توان یک معادله گردانی، \(a \) مقدار معادله معادله در برای جریان توان یک معادله 0.1 و \(b \) شیپ خصوصی رگرسیون از مبداً معادله رگرسیون است. به‌دنبال این روش می‌باشد.

دارای \(a = 0 \), \(b = 1 \) (2)

نتایج و بحث

بحث درباره معادله‌های معادلات در برای جریان و مدل‌های توسعه آنها را به شکل زیر دسته‌بندی کرد:

1. معادله‌های پیش‌بینی

الف) معادله‌های نسبی

معادله‌های که در آنها معادلات در برای جریان نشان داده می‌باشد. جدول 3 معادله‌های نسبی مختلف به

۲۳
جدول 3. معادلات نمایی پیشنهادی برای مقاوت در برای جریان و ضرایب خوبی برای شانه آنها

<table>
<thead>
<tr>
<th>معادلات</th>
<th>(b)</th>
<th>(a)</th>
<th>(R^2)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{I} \sqrt{f} = 1.563 \left[\frac{\psi h}{d_{50}} \right]^{-0.182})</td>
<td>0.53</td>
<td>0.103</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{I} \sqrt{f} = 2.218 \left[\frac{\psi h}{6.8d_{50}} \right]^{-0.182})</td>
<td>0.53</td>
<td>0.103</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{I} \sqrt{f} = 1.553 \left[\frac{h}{d_{50}} \right]^{-0.182})</td>
<td>0.617</td>
<td>0.102</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{I} \sqrt{f} = 2.228 \left[\frac{h}{6.8d_{50}} \right]^{-0.188})</td>
<td>0.617</td>
<td>0.102</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. معادلات توانی پیشنهادی برای مقاوت در برای جریان با در نظر گرفتن عدد فرود و ضرایب خوبی برای شانه آنها

<table>
<thead>
<tr>
<th>معادلات</th>
<th>(b)</th>
<th>(a)</th>
<th>(R^2)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{I} \sqrt{f} = 2.0 \left[\frac{\psi h}{d_{50}} \right]^{-0.192} F_r^{0.376})</td>
<td>0.274</td>
<td>0.126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{I} \sqrt{f} = 2.864 \left[\frac{\psi h}{6.8d_{50}} \right]^{-0.192} F_r^{0.376})</td>
<td>0.274</td>
<td>0.126</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{I} \sqrt{f} = 1.99 \left[\frac{h}{d_{50}} \right]^{-0.198} F_r^{0.377})</td>
<td>0.277</td>
<td>0.130</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{I} \sqrt{f} = 2.9 \left[\frac{h}{6.8d_{50}} \right]^{-0.198} F_r^{0.377})</td>
<td>0.277</td>
<td>0.130</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

لگاریتمی متغیر می‌باشد. برای این اساس، معادله زیر برای جریانی که اثر فاکتور شکل، ضریب تغییر زیری و تغییر عرض از مبدا (ثابت تابع لگاریتمی) در پیشنهادی مقاوت در برای جریان بررسی می‌شود. همچنین معادله‌های نمایی، در اینجا نیز چهار معادله با ملاحظه ضریب فوریه کارمن (0.4 = k) (4)، و پارامتر شیلدز و مقادیر حاصلی آن (0.03 = m) در نظر گرفته شد. این مقادیر پارامتر شیلدز و حاصلی (به‌طور میانگین) برای تهویه و انجمان مهندسین عمران آمریکا (ASCE) (2) یک‌تایی شده است.

\[R^2=0.54 \] (A)

لازم به یادآوری است که مقاوت در برای جریان را نمی‌توان از دیدگاه گیری کرد، بلکه آن را می‌توان از دیدگاه روابطی مانند معادله 1 محاسبه نمود. با توجه، ضریب تبیین 45/54 مانند معادله 1 محاسبه نمود. بنابراین، ضریب تبیین 45/54 نشان دهنده ارتباط بین مقاوت در برای جریان پیشنهادی شده توسط معادله 1 و محاسبه شده توسط معادله 1 است. در حالی که شیب خط رگرسیون (b) و عرض از مبدا خط

به‌طور مشابه در برای جریان در هنگام کاربرد قانون نیمه

24
مقدمات در پرتاب جریان در رودخانه‌های با پشت سین

رگرسیون (2001) با استفاده از معادله ۷ می‌باشد.

سپس تلاق شد تا اثر فاکتور مشابه، که معمولاً به صورت
یک ضریب برای h در معادله‌های نیمه لگاریتمی ارائه می‌شود.
بررسی گردید. ضریب تینی به دست آمده در این حالت هیچ
تغییری نسبت به معادله ۸ نشان نداد. همچنین در تغییر
其他 همزمان فاکتور شکل به صورت ضریب با h، مقدار ۷/۸ به
عنوان ضریب برای 0.004 در معادله ۷۸ هیچ تغییری در مقدار
ضریب تینی نشان داد. بنابراین، معادله گیری کرد که
فاکتور شکل و ضریب تغییر در زیر هیچ تأثیری در پیش‌بینی
مقدار در پرتاب جریان در معادله نیمه لگاریتمی ندارند.

از نظر فیزیکی، عدد ضریب معادله در پرتاب جریان را
از طریق توناسه‌های آزاد تحت تأثیر قرار می‌دهد. این مسئله
می‌تواند در رژیم زیر بهینه و فوک به بیرجا ملاحظه شود.
برای عدد فرد و کمتر از یک در سرشانه جریان پیک‌وپیناکیkt،
تغییرات معادله در پرتاب جریان می‌توانند ناشی از دامنه تغییرات
تینی نسبی کوچک (۱۵/۵) و بزرگ (۴/۵) باشد.

با ملاحظه معادله ۸ و ضریب تینی آن (۵۰/۵۴)
مشخص

می‌شود که این معادله فقط ۵۴٪ از تغییرات معادله در پرتاب
جریان را نشان می‌دهد. علت عدم پیش‌بینی بهتر از
۵۴٪ مقدار در پرتاب جریان را می‌توان در عوامل زیر جستجو کرد:
1. در رودخانه‌های با شبکه تنید (شکل گیاهی ۲۰۰۲)، با
توجیه به داده‌های احتمال استفاده، تمام عوامل مؤثر بر تغییرات
آتربی قابل شناسایی و تینی نیستند (۱۰).
2. در نظر کنید که در رودخانه‌های با شبکه تنید در
فرآینده بالا به دلیل تغییرات در مقیاس زیری و
شدت جریان قابل دسترسی نیست.
3. روش‌های موجود برای برآورد سرعت متوسط جریان در
یک مقطع قائم رودخانه برای شرایط معک ممکن
و شبکه
زاویه که از ویژگی‌های رودخانه‌های کوهستانی درشت داشته
است، توسط نیافتنی کرده‌اند. بنابراین، کاربرد آنها به طور
چشمگیر در خطای تخمین و پیش‌بینی مقدار مکانی در پرتاب
جریان مؤثر است.
با هیچ‌کدام از گرفتن نهایی عندد فروند برای تعیین

ثابت تابع لگاریتمی، نویسندگان می‌توانند مقدار مشتاق در برای جریان کاهش می‌یابد. بنابراین، تابع یکسانی از لگاریتمی بر اساس معادله یک برای حرکت، کاربرد آن برای حدود به دست آمده در جدول می‌باشد.

2. مقادیر جریان غیر یکنواخت

در این بخش با استفاده از تابعی با نام وابستگی یکنواخت، سرعتهای اندازه‌گیری شده در رودخانه‌ها گاماسب شده است. اختلاف مقادیر سرعتهای سطحی و روش سطحی گاماسب شده در رودخانه‌ها بین دو نوع تأثیر می‌گذارند. ضریب تعیین برای سرعت بررسی می‌شود.

برای محاسبه سرعت بررسی، برای محاسبه سرعت بررسی به مقدار جا به جایی خسته بررسی چنین حساسیت نسیم و هر تغییر در ضریب فقط در تغییر محاسبه سرعت بررسی ایجاد نمی‌کند. بنابراین می‌توان یک سیستمی از تنش بررسی بسته، در مقایسه با حضور‌های تغییر در کنترل هیدرولیک، به‌طور یکسان گاماسبی به‌طور پیش‌بینی دیده‌های مانند مقدار سرعت در برای جریان و انقلاب روابط عملیاتی و هوش‌های اقتصادی برخی را توجه نماید.

برای پایه‌های باز، دقیقه در حالت خستگی سرعت در حالت طبیعی را گرفته می‌شود.

رودها گاماسب، با استفاده از فرآیند استفاده پراحی‌شناسی در ترمینال SAS، عدد فرود و نسبت $\frac{v_c}{v_j}$ به باتری شیلدز.
جدول ۵. اثر ضریب تغییر زیستی بر سرعت برشی (بر حسب متر بر ثانیه) بدون دو نظر گرفتن فاکتور شکل (نیم‌برخه‌ای ۱۲ تا ۱۴) و با دو نظر گرفتن فاکتور شکل (نیم‌برخه‌ای ۱۳ تا ۲۴)

<table>
<thead>
<tr>
<th>نیم‌برخه</th>
<th>d_{84}</th>
<th>2d_{84}</th>
<th>2/d_{84}</th>
<th>0.33d_{84}</th>
<th>5/1d_{84}</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰.۷۲</td>
<td>۰.۷۲</td>
<td>۰.۷۲</td>
<td>۰.۷۲</td>
<td>۰.۷۲</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۶۷</td>
<td>۰.۶۷</td>
<td>۰.۶۷</td>
<td>۰.۶۷</td>
<td>۰.۶۷</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
<td>۰.۸۳</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
<td>۰.۹۴</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۹۶</td>
<td>۰.۹۶</td>
<td>۰.۹۶</td>
<td>۰.۹۶</td>
<td>۰.۹۶</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۸۹</td>
<td>۰.۸۹</td>
<td>۰.۸۹</td>
<td>۰.۸۹</td>
<td>۰.۸۹</td>
</tr>
<tr>
<td>۷</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
<td>۰.۷۴</td>
</tr>
<tr>
<td>۸</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>۹</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
</tr>
<tr>
<td>۱۱</td>
<td>۰.۸۷</td>
<td>۰.۸۷</td>
<td>۰.۸۷</td>
<td>۰.۸۷</td>
<td>۰.۸۷</td>
</tr>
<tr>
<td>۱۲</td>
<td>۰.۴۷</td>
<td>۰.۴۷</td>
<td>۰.۴۷</td>
<td>۰.۴۷</td>
<td>۰.۴۷</td>
</tr>
<tr>
<td>۱۳</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>۱۴</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>۱۵</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
<td>۰.۱۲</td>
</tr>
<tr>
<td>۱۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
</tr>
<tr>
<td>۱۷</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
<td>۰.۵۰</td>
</tr>
<tr>
<td>۱۸</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
</tr>
<tr>
<td>۱۹</td>
<td>۰.۳۳</td>
<td>۰.۳۳</td>
<td>۰.۳۳</td>
<td>۰.۳۳</td>
<td>۰.۳۳</td>
</tr>
<tr>
<td>۲۰</td>
<td>۰.۵۲</td>
<td>۰.۵۲</td>
<td>۰.۵۲</td>
<td>۰.۵۲</td>
<td>۰.۵۲</td>
</tr>
<tr>
<td>۲۱</td>
<td>۰.۰۵</td>
<td>۰.۰۵</td>
<td>۰.۰۵</td>
<td>۰.۰۵</td>
<td>۰.۰۵</td>
</tr>
<tr>
<td>۲۲</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
</tr>
<tr>
<td>۲۳</td>
<td>۰.۰۶</td>
<td>۰.۰۶</td>
<td>۰.۰۶</td>
<td>۰.۰۶</td>
<td>۰.۰۶</td>
</tr>
<tr>
<td>۲۴</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
<td>۰.۴۵</td>
</tr>
</tbody>
</table>
جدول 2. ویژگی‌های پارامترهای هیدرولوژیکی اندوزه‌گیری و محاسبه شده در رودخانه گام‌سیاب

<table>
<thead>
<tr>
<th>h (m)</th>
<th>um (m/s)</th>
<th>W (m)</th>
<th>A (m²)</th>
<th>Q (m³/s)</th>
<th>Fr</th>
<th>(u^*) (m/s)</th>
<th>(u^*) (m/s)</th>
<th>(u^*) (m/s)</th>
<th>S</th>
<th>Sf</th>
<th>umax</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.02</td>
<td>0.1</td>
<td>0.14</td>
<td>0.06</td>
<td>0.02</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.39</td>
<td>0.64</td>
<td>1</td>
</tr>
<tr>
<td>0.04</td>
<td>0.02</td>
<td>0.1</td>
<td>0.14</td>
<td>0.06</td>
<td>0.02</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.39</td>
<td>0.64</td>
<td>2</td>
</tr>
<tr>
<td>0.05</td>
<td>0.02</td>
<td>0.1</td>
<td>0.14</td>
<td>0.06</td>
<td>0.02</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.39</td>
<td>0.64</td>
<td>3</td>
</tr>
<tr>
<td>0.06</td>
<td>0.02</td>
<td>0.1</td>
<td>0.14</td>
<td>0.06</td>
<td>0.02</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.39</td>
<td>0.64</td>
<td>4</td>
</tr>
</tbody>
</table>

\[Fr = \frac{umax}{\sqrt{gh}} \]

در معادله 11 سرعت حداقل جریان واقع در سطح آب \(u_{max} \) و شتاب نقلی می‌باشد. همچنین مقدار میزان غیر处分ی در طرف چپ معادله فوق از طریق روش مشخصات لایه مرزی تعیین شده است و یکی اصل معادله 9 استفاده از متغیرها کلی در سمت راست، برای تعیین پارامترهای موضوعی سمت چپ است. یادآوری می‌نماید که کاربرد معادله 9 محدود به دامنه داده‌های اندوزه‌گیری شده در جدول 2 می‌باشد. بنابراین، برای استفاده از آن در خارج از این دامنه لازم است معادله 9 توسط مجموعه داده‌های اندوزه‌گیری شده دیگری و استنیجی شود. به مقدار بحرانی آن از عوامل مؤثر بر عرض از مبدأ مقاومت در باربر جریان می‌باشد. با در نظر گرفتن این ملاحظات، معادله مقاومت در باربر جریان غیر یکنواخت زیر پیشنهاد می‌شود:

\[\frac{d}{d_s} = \frac{h}{g} \ln \frac{h}{d_s} + 6.894Fr - 4.837 \frac{\tau}{\tau_c} + 2.248 \]

ضریب بتنی این معادله \(R^2 = 0.79 \) است. لازم به یادآوری است یک جلوگیری از حشره‌های ساختاری بین طرف چپ و راست معادله فوق، مقادیر \(\tau \) به ترتیب به صورت زیر تعیین شد:

\[\tau = \frac{hS_f}{\left(\frac{\rho_s}{\rho} - 1 \right)d_s} \]

\[100 \]
مقایسه در برابر جریان در رودخانه‌های با پشت شنی

3 – معادله‌های نمایا نویسایی لازم را باید پیش‌بینی مقاومت در برابر جریان ندارند و این ضعف نمی‌تواند با کاربرد فاکتور شکل و ضریب تغییر بهبود بیابد.

4 – بر اساس بررسی موضوعی توزیع سرعت جریان غیر یکنواخت با استفاده از توئری لاگریمی، تأثیر فاکتور شکل و ضریب تغییر زیر در محاسبه سرعت بررسی و در نتیجه مقاومت در برابر جریان قابل جهت پوشش می‌باشد.

5 – تعیین سرعت بررسی با استفاده از مشخصات لاگریمی، به دلیل وابستگی ناشی از سطح مرفع، مناسب‌تر از روش لگاریمی است.

6 – پیش‌بینی نامناسب مقاومت در برابر جریان توسط معادله‌های نمایا و ویژه لگاریمی در وضع موجود، توجه پیش‌بینی و پژوهش برای شناخت پارامترهای مؤثر در رودخانه‌های شنی را می‌طلبد.

نتیجه‌گیری

1. معادله‌های پیشنهادی مقاومت در برابر جریان غیر یکنواخت (8) و غیریکنواخت (9) نشان می‌دهد که نیازی به تغییر عبارت داخل لگاریم معادله توزیع جهانی سرعت توسط فاکتور شکل و یا ضریب تغییر زیر نیست.

2. عدد فرود و نسبت پارامتر شیلدز به مقدار حراجی آن از پارامترهای مؤثر تغییر تابث لگاریمی توزیع سرعت، معادله 8 و معادله 9 می‌باشد.

منابع مورد استفاده

1. فری، س. ح. 1380. برآورد مقاومت جریان غیر یکنواخت در رودخانه‌های با پشت شنی حالت خاص: رودخانه‌های گاماسیاب.

