کاربرد تئوری گشتاورهای خطی در تحلیل تناوب سیل حوزه‌های آبخز مرکزی ایران

سیدسعید اسلامیان¹ و ستار چاوشی بروجی‌نه ²

چکیده

روش‌های بیماری برای بررسی سیلاب حوزه‌های آبخز وجود دارد. چکیده: از جمله می‌توان به تحلیل منطقه‌ای سیلاب اشاره کرد. روش‌های تحلیل منطقه‌ای سیلاب ممکن بر پایه گروه‌های نسبیکی اصلی و اکولوژیک حوزه‌های آبخز وجود دارد. از روش‌های آماری در بررسی داده‌های مشاهده‌ای چهار استفاده می‌کنند. این روش‌ها به عنوان راهکاری جدید در تحلیل تناوب سیل حوزه‌های آبخز ارائه شده است. روش گشتاورهای خطی اساس پذیرش حاضر را تشکیل می‌دهد. در این پژوهش ۷۷ بستگی هیدرومتری واقع در منطقه مرکزی ایران بررسی گردید.

با استفاده از نرم‌افزار گشتاور خطی، منحنی چراغ‌گیری خطی در برابر کشیدگی خطي و مناسب‌ترین توزیعی که بالا برای شرایطی هر یک از اینکه حجم مطالعاتی تعیین شده، سپس به منظور حل اینکه این‌ها غیر معنی‌دار، آزمون‌های هم‌ارزی نسبی بر بار گذاری‌های ناهنجاری و ناهنجاری‌های نبوده و گذاری پر از اینکه حجم مطالعاتی تعیین شده، سپس به منظور حل اینکه این‌ها غیر معنی‌دار، آزمون‌های هم‌ارزی نسبی بر بار گذاری‌های ناهنجاری و ناهنجاری‌های نبوده و گذاری پر از اینکه حجم مطالعاتی تعیین شده، سپس به منظور حل اینکه این‌ها غیر معنی‌دار، آزمون‌های هم‌ارزی نسبی بر بار گذاری‌های ناهنجاری و ناهنجاری‌های نبوده و گذاری پر ۷۷ بستگی هیدرومتری واقع در منطقه مرکزی ایران بررسی گردید.

واژه‌های کلیدی: گشتاور خطي، گشتاور ورژنی، تحلیل منطقه‌ای سیلاب

¹. دانش‌آموز آبیاری، دانشگاه شهید چمران
². عضو هیات علمی، مرکز تحقیقات منابع طبیعی و امر دام، سازمان جهاد کشاورزی اصفهان

Downloaded from jstnar.iut.ac.ir at 16:10 IRST on Friday November 8th 2019
مقیده

تحلیل منطقه‌ای سیال‌های مایع از بوط‌های گیاه‌پزشکی

موضوعات در هیدرولوژی سیال‌های مایع، و سال‌های توجه پژوهشگران بسیاری را به خود جلب کرده است. به علت چند اگرده اقتصادی و زیست‌محیطی، تحمل منطقه‌ای سیال‌های احتمال ورود و پرورش این گونه به بهره‌وری رخ می‌دهد.

روش‌های تخمین سیال‌های هنگام ادامه داده شد.

در این مطالعه و هشدار پیشنهالی گذاران تلاش شده است.

گسترش روش‌های کارآمد، تحلیل تناوب سیال در ایستگاه‌های هیدرولوژی گردید. توزیع های چندپارامتری و روش‌های تخمین کارآمدی در مبانی مختلف هیدرولوژی معرفی شد که بر اساس آنها مخصوص تحلیل تناوب سیال می‌باشد. به نحوی که این رویداد تا حدودی در آغاز دهه نیز آن‌ها رشد گردیده است.

تحلیل منطقه‌ای شاید پایدارترین روش به پژوهش‌های تخمین تناوب سیال باشد. به نحوی که تلاح در این زمینه مورد توجه پژوهشگران دارای قرار گرفته است.

هدف از تحلیل منطقه‌ای سیال‌های تخمین مقدار جریان و تناوب وقوع آن در یک حوزه مورد نظر است. به این ترتیب، که فواصل احتمالی وقوع نیز تامین می‌شود، پیش‌بینی به طبقه‌بندی پروژه و پایان‌های سیالهای مورد است. به عنوان مثال، سداها و پنهه‌ها مهار سیال را مربوط به برای سیالهای یا به‌طور گسترده ترین 10 هزار و 50 سال در طول عمر می‌شود. دریابه در جدول مجموعه آمار و قدر مورد وقوع آن به عنوان نشانگر هر سیاله هستند. به‌طور مثال نشانگر سیاله شده، و می‌تواند برای اهداف مهندسی، همچون طراحی پل‌ها، سدکه‌ها احتراف آب و سازه‌های کنترل سیاله استفاده شود.

آدامفیسکی (1) از پژوهشی به مقابله روش‌های غیر پارامتری (Non-parametric procedures) و کشتار خطی (Linear moment) در تحلیل منطقه‌ای سیال بهره‌مندی 752 ایستگاه در نیوزیلند برداشت. ایستگاه‌های مورد بررسی دارای حداکثر 10 سال داده مشاهده‌ای بوده و به طوری که میانگین طول عمر مشاهده‌ای منطقه‌ای سیال گزارش شده.
کاربرد توزیع گشتاورهای خطی در تحلیل تناوب سیل حوزه‌های آبخز مرکزی ایران

همانند هر تحلیل آماری نخستین گام در تحلیل تناوب سیل بررسی دقیق داده‌های مشاهده‌ای و رفع خطاهای بهره‌مند و ناهنجاری‌های داده‌هاست. این چنین اطلاعاتی در جهت بهبود پیش‌بینی روزهای ناگهانی و جمع‌آوری داده‌ها و همچنین به کنترل توزیع در کاربری اراضی بر جریان سیلاب در حوزه‌های آبخز تأثیر گذاشته است. می‌تواند سودمند باشد.

گام بعد در تحلیل منطقه‌ای سیلاب، تخصصی است، که مورد بررسی به یک ناحیه محدود مجموعه‌ای از حوزه‌های آبخز است که دارای توزیع بی‌غیره با هم می‌باشند. در این مورد، تحلیل تناوب سیل حاصله‌ای شناخته می‌شود در این مورد، تصمیم در مورد بازیابی ناحیه‌ایی روی این ناحیه‌ها است که ناحیه‌ای باشد که از لحاظ ریزگردها مؤثر بر رفتار سیلاب پیش‌بینی می‌شود. بیش از این، وقتی یک شرکت از جغرافیایی، ماهیان و بارش سالانه، سطح حوزه، نوع خاک و ظرفیت خزه دریاچه‌ها و مرزهای آن است، در برنامه‌های شناخته می‌شود. در حال حاضر، روش‌های رگرسیون و سیل شاخص بیش از دیگر روش‌های دیگر رایج است. در حالی که روش رگرسیون به‌طور گسترده‌ای در ابزارهای مختلف استفاده می‌شود، روش سیل شاخص نیز مورد توجه زیادی گذاشته شده است.

مواد و روش‌ها

مدل‌های منطقه‌ای تناوب سیل

بیشتر شرایط منطقه‌ای تحلیل تناوب سیل بستگی بر استفاده از دیگر اجزای سالانه با سری‌های سالانه است. در حالی که در برخی دیگر از روش‌ها از سری‌های جزئی استفاده می‌شود، در حال حاضر، روش‌های رگرسیون و سیل شاخص بیش از دیگر روش‌های دیگر رایج است. در حالی که روش رگرسیون به‌طور گسترده‌ای در ابزارهای مختلف استفاده می‌شود، روش سیل شاخص نیز مورد توجه زیادی گذاشته شده است.

واقع شده است:

عمل‌آمیزی تحلیل منطقه‌ای سیلاب شامل پنج مرحله زیر است:

1. تهیه داده‌های مشاهداتی

2. تعیین مناطق همگن

3. انتخاب یک توزیع تناوب منطقه‌ای

4. تخمین پارامترهای توزیع تناوب منطقه‌ای

5. بررسی سیل در منطقه بدون استفاده
احتمال می‌باشد (5): \[\beta = E[X_i^{2}] \]

که در آن \(X_i \) تابع توزیع تجمعی \(X \) می‌باشد. تخمین‌های نمونه

ناریب از برای \(\beta \) توزیع از روابط زیر به دست می‌آید:

\[\beta_0 = \frac{1}{n} \sum_{j=1}^{n} X_j \]

\[\beta_1 = \frac{1}{n} \sum_{j=1}^{n} \frac{X_j}{n(n-1)} \]

\[\beta_2 = \frac{1}{n} \sum_{j=1}^{n} \frac{(X_j - \beta_0)^2}{n(n-1)(n-2)} \]

\[\beta_3 = \frac{1}{n} \sum_{j=1}^{n} \frac{(X_j - \beta_0)^3}{n(n-1)(n-2)(n-3)} \]

که در آن \(x \) داده‌های مرتب شده جریان به عنوان

برداری‌های داده‌های مشاهده‌ای و \(n \) به عنوان کشکتی‌های داده

می‌باشد. در بررسی گشادار خصیت نتایج که به عنوان ترکیبات

گشاداری وزنی احتمال بین می‌شوند غیرت‌دان (4):

\[\lambda_1 = \beta_0 \]

\[\lambda_2 = 2 \beta_1 - \beta_0 \]

\[\lambda_3 = 6 \beta_2 - 6 \beta_1 + \beta_0 \]

\[\lambda_4 = 20 \beta_3 - 30 \beta_2 + 12 \beta_1 - \beta_0 \]

در روابط فوق میانگین گشادار خصیت با \(\lambda_0 \) معنایی از یک‌جمله به

مرکز، و انحراف معیار گشادار خصیت با \(\lambda_2 \) معنایی از پراکندگی

است. نتیجه داده‌ها به عنوان \(\lambda_1 \) توسط ضریب تغییرات گشادار

کشیدگی گشادار خصیت (L-kurtosis) با نام \(\lambda_4 \) نیز به عنوان

برای ایجاد نشاندهای خصیت (Discordancy test) و آزمون ناهماهنگی

(Homogeneity test) است. این‌ها مورد بررسی را انجام داد.

منطقه حساس ناب‌بال. تخمین توزیع توابع سیل منطقه‌ای را

می‌توان با تخمین‌های استاندارد به طور معنی‌داری و ترکیب

تخمین‌های استانداردی که انتقال منطقه‌ای اجاق داد. یکی

از شیوه‌های موثر در تولیدهای این هدف، روش گشاداری خصیت

منطقه‌ای است. که در ترکیب خواهد آمد.

گشاداری خصیت

گشاداری خصیت ترکیبات خصیت از آماره‌های ترتیبی (Order statistics)

و برای نمونه‌های کورک-کورک داده‌های مشاهده‌ای غیر اربی

می‌باشد. یکی از این برای تحلیل توابع سیل (بعنین

توزیع مناسب و تخمین پارامترهای توزیع) مناسب است (5) و

(7).

گشاداری خصیت از لحاظ نظری مربوط به گشاداری

معروف دارند. از جمله آن که می‌تواند دامنه گستردگی از

توابع توزیع رزا مشخص کند، و هنگامی که از یک نمونه

مشاهده‌ای تخمین زده می‌شوند نسبت به داده‌های پر موجود

در آن نمونه حساسیت تدارند. به سختی دیگر، برآوردگرها

گشاداری مشابه وایانس و ضریب کولکه نموده،

داده‌های مشاهده‌ای را به ترتیب به توان‌ها 2 و 3 در نظر می‌رسانند.

که بدين ترتيب وزن بیشتری به داده‌های پر ته داده می‌شود.

نهايتاً مشیر به اربی و درباری زبان‌ها Mỗi گردید (14).

در بررسی برآوردگرها گشاداری خصیت، توابع خصیت از

مقدار میانگین مشاهده‌های مسکن، و از این رو کلمت بوده،

نتیجه به داده‌های پر حساسیت است. همچنین برتری دیگر

گشاداری خصیت نسبت به گشاداری وزنی احتمال، توافقات

آنها در خلاصه کردن یک توزیع آماری به شیوهای معنی‌دار

است.

به طور کلی، مهلت‌های کاربردهای گشاداری خصیت را

می‌توان در حل مسائل مربوط به تخمین پارامترهای توزیع،

معنی‌دار تولید خلاصه کردن توزیع آماری منطقه‌ای کرد نام

برد. گشاداری خصیت، ترکیبات خصیت گشاداری وزنی و البته

5
آزمون همان‌گی

اگر تغییرپذیری ایستگاه‌ها با فضای پراکنش ایستگاه‌ها بزرگ باشد، احتمال تعلق این ایستگاه‌ها به یک مجموعه واحد را می‌توان سیله‌آزمون همان‌گی کشانی‌های خطی بررسی کرد. آزمون‌های همان‌گی کشانی‌های خطی به توزیع چپ/پراکنده کارگر کاهت نسبی این در مورد بررسی مقدار میانگین پراکنده یا مقدار پراکنده مدیان به توزیع نیز تغییرپذیری آنها پرامون مقدار میانگین مربوطه است.

بله آزمون ناهماهنگی

اگر یک ایستگاه منفرد در نمودار کشانی‌های خطي در محدوده فضای دو بعدی μ و انحراف نسبی σ آزمون ناهماهنگی مبتنی بر کشانی‌های خطي به منظور پراکنده‌نورد شد، استفاده از مجموعه ایستگاه‌های مورد بررسی انجام می‌گردد. این آزمون با محاسبه آماره D انجام می‌شود. فرض کنید که باعث برای در برپذیری نسبت‌های کشانی‌های خطي برای D بنابراین:

$$\text{H} = \frac{(V_{\text{obs}} - \mu)}{\sigma}$$

به طوری که μ و σ به ترتیب میانگین و انحراف معیار مقدار شیب‌سازی شده تغییر مورد نظر، و V_{obs} مقدار محاسبه شده تغییر مورد نظر با استفاده از داده‌های منطقه‌ای است، و به آن H می‌گوییم. به ترتیب V آماره است که، به‌طوری که برای H به صورت نزدیک به 0 است و به صورت زیر تعریف می‌شود:

$$V_1 = \sum_{i=1}^{N} \left(n_i (L_{\text{cv}} - L_{\text{cv}}) \right)$$

$$V_2 = \sum_{i=1}^{N} \left(\frac{n_i \left((L_{\text{cv}} - L_{\text{cv}})^2 + (\xi_i - \bar{\xi}_i)^2 \right)^{1/2}}{\sum_{i=1}^{N} n_i} \right)$$

$$V_3 = \sum_{i=1}^{N} \left(\frac{n_i \left(\xi_i - \bar{\xi}_i \right)^2 + \left(\xi_i - \bar{\xi}_i \right)^2 \right)^{1/2}}{\sum_{i=1}^{N} n_i}$$

طبق تعریف، در صورتی که $H < 1$ باشد منطقه همگن، و در صورتی که $H \geq 2$ باشد منطقه ناهماهنگ، و هنگامی که $H = 1$ باشد منطقه احتمالاً ناهماهنگ، و هنگامی که $H = 0$ باشد منطقه غیر همگن است. (7) یا (8)
آزمون نکویی برازش (Goodness of fit test)

توزیع‌های اولیه

هنگامی که داده‌های موجود در یک ناحیه همگن بوده و متعلق به یک توزیع مزدیسی متغیر باشنده، آزمون برازندگی می‌تواند بر گشتاورهای خطر انجام می‌کند. این بکی از توزیع‌های رایج انتخاب و پارامترهای آن تعیین می‌شود. سپس نتایج سیال در دیک و ناحیه برازندگی این توزیع منطقه‌ای مختص تیعین می‌شود. معیار برازندگی که در زیر بر اساس توزیع تیعین بر اساس گشتاورهای خطی تیعین و آماره Z نام می‌گیرد (7).

\[
Z_{\text{DIST}} = \left(\frac{\bar{X} - \mu}{\sigma} \right)
\]

به آنکه این توزیع منطقه‌ای می‌کند. \(\beta_4 \) به ترتیب

مقدار ارزیابی و انحراف از معیار \(\bar{X} \) توسط ضریب کشیدگی خطي

با دادن به معنی زیر تعریف می‌شوند:

\[
\beta_4 = 1 - \frac{1}{N \sum_{m=1}^{N} (\bar{X}_m - \bar{X})^4}
\]

\[
\sigma_4 = \left[\frac{1}{N \sum_{m=1}^{N} (\bar{X}_m - \bar{X})^4} \right]^{1/4}
\]

به زبان سری داده‌های منطقه‌ای نسبت‌هایی که با این توزیع کاپان و ماهنامه احتمال همگن تولید گردیدگی این نمایش‌ها به این ناحیه نسبت‌هایی که با دادن به می‌تواند روش اینستیتیو دارد که برای شرایت بر اساس می‌تواند.

فرم (نمایشات) استفاده

برای انجام یک روش پژوهش از زمینه‌های استفاده شده

XFIT استفاده شده است. (5) به ویژه ایرانیان خودروی توزیع تینگی گردیدگی این روش می‌تواند به عنوان یک روش نوعی که در زمینه آماری بوده است. این بررسی توانایی بررسی 10 توزیع آماری متشکل با یک، مقادیر جدید تیعین

یافته، لجستیک تیعین باخته، نرمال، پارتین تیعین باخته، گامبیل.
<table>
<thead>
<tr>
<th>جدول 1 ایستگاه‌های هیدرومتری مورد بررسی</th>
<th>عرض جغرافیایی</th>
<th>طول جغرافیایی</th>
<th>استگاه</th>
<th>رپیدها</th>
<th>رده</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>پلاسجان</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>اسکندری</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>گل‌زای</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>قلعه‌شاهرخ</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>سواران</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>سمندگان</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>مدرجان</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>تپه‌آباد</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>بهشت‌آباد</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>گیلانی‌گان</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>وانک</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>کارون</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>اردکان</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>نکد درکش</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>کوه‌رود</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>گدار بیک</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>کتی</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>ماربین</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>حنا</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>سراب هندی</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>مرغک</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>بارز</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>نردگان</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>چشمه‌لردگان</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>گیرآباد</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>قمصر</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>پل هنجر</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>پیا رود</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>هستیجان</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>شور</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>نک‌پنج</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>زاینده‌رود</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>پل زمان‌خان</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>گل‌بی‌گان</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-47</td>
<td>50-00</td>
<td>سد گیلانی‌گان</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 1. منطقه مورد بررسی در ایران مرکزی

شکل 2. ایستگاه‌های مورد بررسی در حوزه‌های آبخیز زاینده‌رود و قم

زیر حوزه آب‌های زاینده‌رود، از شمال غرب به حوزه رودخانه در، از جنوب به حوزه آب‌های رسوبی خرسان و از جنوب و غرب به بخش‌هایی از حوزه آب‌های کارون بزرگ محدود می‌گردد (شکل 2).

نتیجه‌گیری و بحث

 مقادیر مشاهدات جریان و دی‌های اوج لحظه‌ای در طول پژوهش XFIT استفاده گردید و در چارچوب فایل ورودی برنامه XFIT

از پنج زیر حوزه به نام‌های شهر، قم‌رود، قرچاق، کویبر اراک و میغان، کویبر کاشان و قم یا دریاچه نمک است (شکل 2).

ج) حوزه آب‌های کارون شمالي

حوزه آب‌های کارون شمالی بخشی از حوزه آب‌های بزرگ کارون است. و با بهره‌وری ۱۴۷۵ پیلو، مربع در محدوده جغرافیایی ۴۳° ۴۹' تا ۴۵° ۵۰' طول شرقی و ۱۶° ۳۱' تا ۱۸° ۳۰' عرض شمالی قرار دارد. این حوزه از سمت شمال و شمال شرق به
شکل ۳ ایستگاه‌های مورد برسی در حوزه آبگیر کارون شمالی

منحنی‌های توزیع‌های دارای چهار یا پنج پارامتر نظر ویژه‌ای به صورت ناحیه نشان داده است (۱). برای با این نمودار، مناسب‌ترین توزیع برای ایستگاه‌های مورد برسی به دست آمده است (جدول۴).

آزمون ناهماهنگی

به منظور تعیین ایستگاه‌هایی که در فضاهای ۲ و ۳ نسبت به ایستگاه‌های دیگر پرتر می‌باشند، امکان ناهماهنگی که توسط هاسکینگ و ولپس (۷) پیشنهاد گردیده است برای کلیه ایستگاه‌های مورد برسی به دست آمده، که نتایج حاصله در جدول ۵ نشان داده شده است. با بر ترکیف، ایستگاه‌هایی که دارای آماره‌های ناهماهنگی بیش از ۲ باشد به عنوان ایستگاه پرتر شناخته شده و از مجموعه ایستگاه‌های مطالعاتی کنار گذاشته می‌شوند. بدین ترتیب، ایستگاه‌های شماره ۴ و ۲۴، یعنی بارز و گیرنده‌ای، ایستگاه‌های پرتر بوده و از دیگر مراحل پژوهش کارت گذشته شد.

آزمون هم‌گینی

همان منحنی که پیشتر ذکر شد، اگر تغییرپذیری فضایی ۴ و ۱/۳ شده است. جداول ۲ و ۳ خروجی برنامه فوق را نشان می‌دهد. همان‌گونه که در جدول ۲ دیده می‌شود، ستون نخست شماره ایستگاه، ستون سوم سال‌های آماری و ستون چهارم ایستگاه‌های مورد برسی را نشان می‌دهد. همچنین، نسبت‌های میانگین گشتاورهای خطي منطقه‌ای در انتهای جدول آورده شده است. از مقادیر گشتاورهای خطي نوع دوم، سوم و چهارم ایستگاه‌های مورد برسی برای ترسیم منحنی‌های گشتاورهای خطي (عموماً منحنی ضریب چوگنی خطي در پرتاب ضریب کشیدگی خطي) استفاده می‌شود.

منحنی گشتاور خطي ابراري مناسب در تعیین توزیع‌های آماری مناسب بر ایستگاه‌های هیدرومتری است. نمودار ۱ مقادیر گشتاورهای خطي نوع سوم و چهارم ایستگاه‌های مطالعاتی را به صورت ناقص پرآورده نشان می‌دهد. در این نمودار منحنی‌های مربط به هر یک از توزیع‌های آماری مورد برسی سوم شده است. لازم به یادآوری است که گشتاورهای آماری دارای پیک یک در پارامتر نظر گامل، نرمال، مقادیر حد نوع اول و یک‌نواخت به صورت نقطه‌ای و توزیع‌های دارای سه پارامتر به صورت
جدول 2. گشتوارهای خطی نوع اول تا چهارم استگاه‌های مورد بررسی

<table>
<thead>
<tr>
<th>Lkurt</th>
<th>Lskew</th>
<th>Lev</th>
<th>L1</th>
<th>تعداد سال</th>
<th>شماره استگاه</th>
<th>استگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>167</td>
<td>0.28</td>
<td>0.54</td>
<td>۱</td>
<td>گدارکیچ</td>
<td>۱</td>
</tr>
<tr>
<td>549</td>
<td>0.598</td>
<td>0.29</td>
<td>0.48</td>
<td>۲</td>
<td>تگ سولگان</td>
<td>۲</td>
</tr>
<tr>
<td>0.38</td>
<td>0.33</td>
<td>0.13</td>
<td>0.11</td>
<td>۳</td>
<td>تگ زردارلو</td>
<td>۳</td>
</tr>
<tr>
<td>0.48</td>
<td>0.315</td>
<td>0.28</td>
<td>0.29</td>
<td>۴</td>
<td>یارز</td>
<td>۴</td>
</tr>
<tr>
<td>0.146</td>
<td>0.191</td>
<td>0.19</td>
<td>0.14</td>
<td>۵</td>
<td>ماربران</td>
<td>۵</td>
</tr>
<tr>
<td>0.229</td>
<td>0.305</td>
<td>0.28</td>
<td>0.36</td>
<td>۶</td>
<td>مرغک</td>
<td>۶</td>
</tr>
<tr>
<td>0.285</td>
<td>0.438</td>
<td>0.29</td>
<td>0.37</td>
<td>۷</td>
<td>ارمدن</td>
<td>۷</td>
</tr>
<tr>
<td>0.279</td>
<td>0.40</td>
<td>0.02</td>
<td>0.40</td>
<td>۸</td>
<td>لردگان</td>
<td>۸</td>
</tr>
<tr>
<td>0.201</td>
<td>0.22</td>
<td>0.27</td>
<td>0.27</td>
<td>۹</td>
<td>کتا</td>
<td>۹</td>
</tr>
<tr>
<td>0.127</td>
<td>0.053</td>
<td>0.05</td>
<td>0.23</td>
<td>۱۰</td>
<td>تگ نیچه</td>
<td>۱۰</td>
</tr>
<tr>
<td>0.211</td>
<td>0.426</td>
<td>0.42</td>
<td>0.24</td>
<td>۱۱</td>
<td>حنا</td>
<td>۱۱</td>
</tr>
<tr>
<td>0.196</td>
<td>0.062</td>
<td>0.06</td>
<td>0.15</td>
<td>۱۲</td>
<td>تگ اسفرجان</td>
<td>۱۲</td>
</tr>
<tr>
<td>0.325</td>
<td>0.079</td>
<td>0.08</td>
<td>0.14</td>
<td>۱۳</td>
<td>سواران</td>
<td>۱۳</td>
</tr>
<tr>
<td>0.392</td>
<td>0.477</td>
<td>0.48</td>
<td>0.44</td>
<td>۱۴</td>
<td>اسکندری</td>
<td>۱۴</td>
</tr>
<tr>
<td>0.286</td>
<td>0.093</td>
<td>0.09</td>
<td>0.16</td>
<td>۱۵</td>
<td>ماندزاپان</td>
<td>۱۵</td>
</tr>
<tr>
<td>0.217</td>
<td>0.394</td>
<td>0.39</td>
<td>0.45</td>
<td>۱۶</td>
<td>پل زمان‌خان</td>
<td>۱۶</td>
</tr>
<tr>
<td>0.250</td>
<td>0.477</td>
<td>0.48</td>
<td>0.46</td>
<td>۱۷</td>
<td>سراب هنده</td>
<td>۱۷</td>
</tr>
<tr>
<td>0.297</td>
<td>0.33</td>
<td>0.33</td>
<td>0.36</td>
<td>۱۸</td>
<td>سد کلایپان</td>
<td>۱۸</td>
</tr>
<tr>
<td>0.111</td>
<td>0.08</td>
<td>0.08</td>
<td>0.11</td>
<td>۱۹</td>
<td>تگ درکش</td>
<td>۱۹</td>
</tr>
<tr>
<td>0.386</td>
<td>0.108</td>
<td>0.11</td>
<td>0.19</td>
<td>۲۰</td>
<td>وانشاب</td>
<td>۲۰</td>
</tr>
<tr>
<td>0.106</td>
<td>0.111</td>
<td>0.11</td>
<td>0.19</td>
<td>۲۱</td>
<td>بهشت آباد</td>
<td>۲۱</td>
</tr>
<tr>
<td>0.379</td>
<td>0.34</td>
<td>0.34</td>
<td>0.17</td>
<td>۲۲</td>
<td>چنگرد</td>
<td>۲۲</td>
</tr>
<tr>
<td>0.214</td>
<td>0.28</td>
<td>0.28</td>
<td>0.27</td>
<td>۲۳</td>
<td>فلله شاهرخ</td>
<td>۲۳</td>
</tr>
<tr>
<td>0.733</td>
<td>0.858</td>
<td>0.86</td>
<td>۱۰</td>
<td>۲۴</td>
<td>گیرآباد</td>
<td>۲۴</td>
</tr>
<tr>
<td>0.367</td>
<td>0.04</td>
<td>0.04</td>
<td>۱۵</td>
<td>۲۵</td>
<td>قصر</td>
<td>۲۵</td>
</tr>
<tr>
<td>0.624</td>
<td>0.702</td>
<td>0.7</td>
<td>۱۰</td>
<td>۲۶</td>
<td>پل هنجه</td>
<td>۲۶</td>
</tr>
<tr>
<td>0.142</td>
<td>0.234</td>
<td>0.23</td>
<td>۹</td>
<td>۲۷</td>
<td>هستینجه</td>
<td>۲۷</td>
</tr>
</tbody>
</table>

میانگین‌های منطقه‌ای نسبت‌های گشتوار خطی
جدول 3. مقدار تخمینی دیگ لحظه‌ای ایستگاه‌ها و منطقه در دوره مورد بررسی (متر مکعب بر ثانیه)

<table>
<thead>
<tr>
<th>شماره</th>
<th>ایستگاه</th>
<th>احتمال وقوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0999</td>
<td>0999</td>
<td>0999</td>
</tr>
<tr>
<td>903</td>
<td>491-07</td>
<td>224-22</td>
</tr>
<tr>
<td>906</td>
<td>444-06</td>
<td>339-07</td>
</tr>
<tr>
<td>908</td>
<td>175-05</td>
<td>800-08</td>
</tr>
<tr>
<td>906</td>
<td>174-07</td>
<td>930-03</td>
</tr>
<tr>
<td>906</td>
<td>193-32</td>
<td>900-05</td>
</tr>
<tr>
<td>906</td>
<td>183-07</td>
<td>800-07</td>
</tr>
<tr>
<td>906</td>
<td>183-07</td>
<td>800-07</td>
</tr>
<tr>
<td>1040</td>
<td>198-32</td>
<td>900-07</td>
</tr>
</tbody>
</table>

زیاد باشد، می‌توان احتمال این که مجموعه ایستگاه‌های مورد بررسی متعلق به یک یا یک گروه روشن‌تر باشد. به این ترتیب هر یک از آزمون‌های H، H2 و H3 در منطقه به ترتیب 0/25، 0/14 و 0/14 است. این یک طبقه‌بندی شده می‌باشد.
نمودار ۱. نمودارهای گشتاور خطی برای چند توزیع آماری متداول

جدول ۴. انتخاب مناسب ترین توزیع برای ویژگی‌های مورد بررسی

<table>
<thead>
<tr>
<th>توزیع مناسب</th>
<th>استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL</td>
<td>پارامتری نرم (GPA)</td>
</tr>
<tr>
<td>LN3</td>
<td>(بهترین) نرم (GL)</td>
</tr>
<tr>
<td>GEV</td>
<td>مقدار حد تعمیم (lnLN3)</td>
</tr>
<tr>
<td>WAK</td>
<td>(عوامل شخصی)</td>
</tr>
<tr>
<td>EXP</td>
<td>(نمایی)</td>
</tr>
<tr>
<td>UNF</td>
<td>(یک نمایی)</td>
</tr>
<tr>
<td>GUM, EV1</td>
<td>(گامبل، مقدار حد نوع اول)</td>
</tr>
</tbody>
</table>

آزمون نیکوئی برازش به منظور تعیین مناسب‌ترین تابع توزیع

منطقه

پس از اطمینان از همگنی بودن منطقه، انتخاب مناسب‌ترین تابع توزیع برای منطقه انجام می‌شود. روش مورد استفاده در انتخاب مناسب‌ترین تابع توزیع باید بر اساس Z مشابه که توسط...
جدول 5. آزمون غیر یکنوغرضه‌ای استگاه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شماره استگاه</th>
<th>استگاه</th>
<th>شماره استگاه</th>
<th>شماره استگاه</th>
<th>شماره استگاه</th>
<th>شماره استگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>گدارکیک</td>
<td>17/28</td>
<td>0/77</td>
<td>0/13</td>
<td>0/37</td>
</tr>
<tr>
<td>2</td>
<td>تنگ سولگان</td>
<td>175/629</td>
<td>0/598</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>3</td>
<td>تنگ زردآلو</td>
<td>0/633</td>
<td>0/12</td>
<td>0/37</td>
<td>0/13</td>
</tr>
<tr>
<td>4</td>
<td>پاراز</td>
<td>387/387</td>
<td>0/135</td>
<td>0/13</td>
<td>0/37</td>
</tr>
<tr>
<td>5</td>
<td>مارپار</td>
<td>0/79</td>
<td>0/11</td>
<td>0/13</td>
<td>0/37</td>
</tr>
<tr>
<td>6</td>
<td>مرکز</td>
<td>179/677</td>
<td>0/438</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>7</td>
<td>امامد</td>
<td>233/389</td>
<td>0/438</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>8</td>
<td>لردگان</td>
<td>0/103</td>
<td>0/12</td>
<td>0/37</td>
<td>0/13</td>
</tr>
<tr>
<td>9</td>
<td>کشا</td>
<td>73/361</td>
<td>0/882</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>10</td>
<td>تنگ پنج</td>
<td>272/71</td>
<td>0/133</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>11</td>
<td>حنه</td>
<td>2/887</td>
<td>0/253</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>12</td>
<td>تنگ استفرجان</td>
<td>4/349</td>
<td>0/622</td>
<td>0/21</td>
<td>0/13</td>
</tr>
<tr>
<td>13</td>
<td>سواران</td>
<td>7/199</td>
<td>0/577</td>
<td>0/21</td>
<td>0/13</td>
</tr>
<tr>
<td>14</td>
<td>اسکندلی</td>
<td>12/268</td>
<td>0/477</td>
<td>0/21</td>
<td>0/13</td>
</tr>
<tr>
<td>15</td>
<td>میرترشاخ</td>
<td>0/933</td>
<td>4/958</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>16</td>
<td>بدل زمانخان</td>
<td>0/934</td>
<td>4/958</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>17</td>
<td>سراب هنده</td>
<td>36/334</td>
<td>0/672</td>
<td>0/12</td>
<td>0/37</td>
</tr>
<tr>
<td>18</td>
<td>سد گلپایگان</td>
<td>17/804</td>
<td>0/250</td>
<td>0/29</td>
<td>0/13</td>
</tr>
<tr>
<td>19</td>
<td>تنگ دریغ</td>
<td>28/821</td>
<td>0/58</td>
<td>0/12</td>
<td>0/13</td>
</tr>
<tr>
<td>20</td>
<td>وانشان</td>
<td>16/259</td>
<td>0/608</td>
<td>0/12</td>
<td>0/13</td>
</tr>
<tr>
<td>21</td>
<td>بهشتآباد</td>
<td>0/553</td>
<td>0/563</td>
<td>0/10</td>
<td>0/13</td>
</tr>
<tr>
<td>22</td>
<td>چهلگرد</td>
<td>0/439</td>
<td>3/04</td>
<td>0/13</td>
<td>0/13</td>
</tr>
<tr>
<td>23</td>
<td>قله شاهرخ</td>
<td>82/04</td>
<td>2/80</td>
<td>0/21</td>
<td>0/13</td>
</tr>
<tr>
<td>24</td>
<td>کیوانآباد</td>
<td>1/049</td>
<td>0/262</td>
<td>0/23</td>
<td>0/13</td>
</tr>
<tr>
<td>25</td>
<td>فقمصر</td>
<td>0/337</td>
<td>0/262</td>
<td>0/23</td>
<td>0/13</td>
</tr>
<tr>
<td>26</td>
<td>بل هنجه</td>
<td>0/713</td>
<td>0/262</td>
<td>0/23</td>
<td>0/13</td>
</tr>
<tr>
<td>27</td>
<td>هسنهجان</td>
<td>0/113</td>
<td>0/262</td>
<td>0/23</td>
<td>0/13</td>
</tr>
<tr>
<td>میانگین وزنی</td>
<td>0/259</td>
<td>0/127</td>
<td>0/359</td>
<td>0/137</td>
<td>0/259</td>
</tr>
</tbody>
</table>
جدول ۶. آزمون‌های همگنی و نیکویی بر اساس استاندارد مورد پروری

<table>
<thead>
<tr>
<th>آزمون همگنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF SIMULATIONS = 500</td>
</tr>
<tr>
<td>OBSERVED S. D. OF GROUP L-CV = 114.4848</td>
</tr>
<tr>
<td>SIM. MEAN OF S. D. OF GROUP L-CV = 59.2535</td>
</tr>
<tr>
<td>SIM. S. D. OF AVE. L-CV / L-SKEW DISTANCE = 95.3109</td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H1 = 0.25</td>
</tr>
<tr>
<td>OBSERVED AVE. OF L-CV/L-SKEW DISTANCE = 90.7641</td>
</tr>
<tr>
<td>SIM. MEAN OF AVE. LCV/L-SKEW DISTANCE = 27.5529</td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H2 = 0.66</td>
</tr>
<tr>
<td>0BSERVED AVE. OF L-SKEW/L-KURT DISTANCE = 0.1941</td>
</tr>
<tr>
<td>SIM. MEAN OF AVE. L-SKEW/L-KURT DISTANCE = 0.240</td>
</tr>
<tr>
<td>STANDARDIZED TEST VALUE, H3 = 1.14</td>
</tr>
<tr>
<td>آزمون براوندگی</td>
</tr>
<tr>
<td>GEN. LOGISTIC L-KURTOSIS = 0.274</td>
</tr>
<tr>
<td>Z VALUE = 0.44</td>
</tr>
<tr>
<td>GEN. EXTREME VALUE L-KURTOSIS = 0.253</td>
</tr>
<tr>
<td>Z VALUE = -0.3</td>
</tr>
<tr>
<td>GEN. NORMAL L-KURTOSIS = 0.225</td>
</tr>
<tr>
<td>Z VALUE = -1.31</td>
</tr>
<tr>
<td>PEARSON TYPE III L-KURTOSIS = 0.176</td>
</tr>
<tr>
<td>Z VALUE = -3.03</td>
</tr>
<tr>
<td>GEN. PARETO L-KURTOSIS = 0.188</td>
</tr>
<tr>
<td>Z VALUE = -2.62</td>
</tr>
</tbody>
</table>

شناخته شدهان. لازم به یادآوری است که توزیع‌هایی که به علامت‌های مشخص شدهان به عنوان توزیع مناسب انتخاب شدهان.

مدیریت نمی‌دهد بر اساس توزیع‌های مناسب

آمده‌ها گام در تحلیل منطقه‌ای سیلاب، تخمین مقادیر جریان با توزیع‌های مختلف در منطقه مورد بررسی است. جدول ۷ برای توزیع‌های لجستیک تعمیم یافته، مقادیر حد تعمیم یافته، نرمال تعمیم یافته و ریکی مقادیر تخمینی در دوره‌های زیادگست مختلف را نشان می‌دهد. همچنین، پارامترهای نمایش‌دهنده توزیع‌های مناسب توسط روش گشتاور خطي تخمین گردیده است (جدول ۸).

یپشنهادها

همان‌گونه که گفته شد، نسبت‌های گشتاور چند نمونه‌یませんی، ضریب تغییرات (Lskew) و کشیدگی (Lev) توزیع با استفاده از روش پیشنهادی هاسکینگ و والیس (8) به دست می‌آید. مانگی ضرایب جولگی و کشیدگی خطی منطقه‌ی به ترتیب ۳۸۳۷۰ و ۲/۳۷۰ است. با توجه به این که این ضرایب...
جدول 7 توزیع‌های منتخب و مقادیر تخمینی این برای دوره‌های پاژش‌گذشت مختلف

| دوره پاژش‌گذشت | توزیع
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/31</td>
<td>GL</td>
</tr>
<tr>
<td>2008/71</td>
<td>GL</td>
</tr>
<tr>
<td>2000/31</td>
<td>GEV</td>
</tr>
</tbody>
</table>

جدول 8 پارامترهای منطقه‌ای تخمین‌یابی توزیع‌های منتخب

| پارامتر | توزیع
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>GL</td>
</tr>
<tr>
<td>-</td>
<td>GEV</td>
</tr>
<tr>
<td>0/507</td>
<td>WAK</td>
</tr>
</tbody>
</table>

بین استگاه‌های را در گشتاورهای خطي نمونه مورد بررسی، با آنچه جهت تأخیر منطقه‌ای مورد مطالعه سیر ردیابی و تغییرات بین استگاه‌های مرزی انتقال از شبیه‌سازی مونت‌کارت بر توزیع چهار پارامتری کمی با دست می‌آید. سیاستگذاری این پژوهش با استفاده از اعتبارات معاونت پژوهشی دانشگاه صنعتی اصفهان به اجرا در آمد است، که به‌دین وسیله نشکر و قدردانی می‌گردد.

همچنین، یکی از موارد استفاده، در تحلیل منطقه‌ای سیلاب به کار می‌رود. درجه ناهمگنی در داخل یک گروه از استگاه‌ها به وسیله معیار ناهمگنی، که به وسیله هاسکینگ و والپس (1980) پیشنهاد شده، به دست می‌آید. اساساً معیار ناهمگنی تغییرات منابع مورد استفاده