شیب‌سازی روان‌های سطحی و تبیه‌ترکی حوزه آب‌خیز معرف رود زرد با مدل استانفورد-۴

سیف الله امین و عبدالملک هفروی روزبهانی

چکیده
پیشینه رفتار هیدرولوژی حوزه‌های آب‌خیز و تخمین دی و حجم سیلاب، برای طراحی و ارزیابی پیش‌رزمی‌های آبی، جغرافیایی و فرسایش شناور و حفاظت منابع آب مورد نیاز است. برای تعیین واکنش حوزه‌های آب‌خیز در شرایط مختلف آب و هوایی، معمولاً از روش‌های هیدرولوژی و تبیه‌ترکی مختلف ریاضی استفاده می‌شود که شیب‌سازی رگ‌سازی بر اساس روش‌های نوین و ویژه سال‌های مطالعی را انجام می‌دهد. در این پژوهش از مدل پوسته استانفورد (SWM-IV) برای شیب‌سازی دیگر رونه تبیه‌ترکی، حجم سیلاب ماهیانه و سالیانه و تبیه‌ترکی سالیانه در حوزه معرف رود زرد با وسعت ۸۴۲ کیلومتر مربع، واقع در جنوب غربی ایران استفاده شده است. به منظور کنترل دقیق شیب‌سازی مدل، تحلیل حساسیت با مدل‌های ورودی تبیه‌ترکی در مدل استانفورد و استانفورد-۴ مدل‌های اطمینان‌آوره و مورد استفاده در مدل‌های آب‌رسانی ۵۵-۳۳۷۱۲۴ استفاده شد.

در این تحقیق، شیب‌سازی توانایی داد که حجم سیلاب‌های ماهیانه و سالیانه، حجم آب زیرزمینی، جریان نیروی سطحی و قطعیت سیلاب و تبیه‌ترکی رونه‌های آب‌خیز بررسی می‌گردد. در این تحقیق، شیب‌سازی حوزه‌های آب‌خیز معرف رود زرد، مدل ریاضی مدل استانفورد-۴

واژه‌های کلیدی: روان‌های سطحی و تبیه‌ترکی حوزه آب‌خیز رود زرد، مدل ریاضی مدل استانفورد-۴

۱. به ترتیب استاد و دانشجوی سابق کارشناسی ارشد آیاری، دانشکده کشاورزی، دانشگاه شیراز
مقدمه
روند صعودی رشد جمعیت جهان، پیشرفت صنعت، آلودگی محیط زیست و ارتقای سطح بهداشت باعث صرف روزافزون آب شده است. با توجه به نتایج بودن نسبی منابع آب تجدید شونده، باید جایگاه این منابع به خوبی شناخته شود و امکان بررسی دقیق کمی و کیفی آنها برای کاربرای بیشتر مصرف، مشخص گردد (۳). بنابراین چهار روش داده‌ها در مورد واکنش
جوههای آبخیز منابع برگری در رژیم ذیق وضعیت منابع آب یک منطقه کاهش است (۳) و ۵ یکی از راههای بر طرف
تنومند این نقش به تعمیق جویهای منطقه (watersheds)
و پژوهش در مورد واقعیت آبخیز مصرف جویه (۱۵ و ۲۴) گریزه این جویه به گونه‌گونی صورت می‌گیرد که هر جویه نمایندگی اراضی پهناوری از منطقه مورد
بررسی باید. در این صورت، این گونه جویه‌ها، به عنوان
زمین‌کشاورزان آبخیزی هیدرولوژی، کمک مهمی در شناخت مؤلفه‌های
جویه، آب و تحلیل نتایج حاصله از آنها خواهند بود (۶).
به علت تغییرات زمانی و مکانی عوامل مؤثر در جریان آب
جویهای آبخیز طبیعی، شناخت همه اجزای جریان آب آنها از
طرح تحلیلی توسعه، و فضایی و اغلب غیر ممکن است (۵).۲۷ و ۲۸.
مدل‌های هیدرولوژی برای غله بر این مشکل به
وجود آمدند. در سطح جویه‌های آبخیز دنیا به کار گرفته
شد. توصیه این تغییرات مؤلفه‌های زیادی از جریان پیدا می‌آورد، بررسی شده است (۳۴.۸.۶ و ۲۹) در این زمینه، مدل‌های
زاویه در مورد ایجاد (۱۶) جریان‌های آبخیزی (Generation)
از راه‌های دیگر شده است (۱۱) و ۱۶ و ۱۷. از انجام
USDAHL-۷۴ USML۷۴ SWM-IV USML۷۴ SSARR USML۷۴ (۱۶) و مدل
SEAMOD-۴ (۱۷) RA می‌توان نام برد. برخی از گونه‌های
مشکل به کارگیری این مدل‌ها اطلاعات زیادی است که برای
ایجاد برنامه‌ریزی (نهاد) لازم است. Stanford در این پژوهش، مدل استنفورد-۴ (۴)
برای هوشمندی حجم جریان (Watershed Model- IV
تخریب‌تعریق، و بررسی وضعیت جریان آب حوضه‌های مصرف

مواد و روش‌ها

ساختار کلی مدل استنفورد-۴
رابطه‌های ریاضی و فیزیکی مورد استفاده در این مدل بیشتر
ترویج بوده و از تحلیل داده‌های مربوط به ۴۰ حوضه آبخیز
آمریکا به دست آمده است (۷) در حال حاضر. هیدرولوژی آن،
برگرفته پذیرفته سطحی خاک‌های حوضه آبخیز ، رویند سیالاب و...
مد نظر قرار می‌گیرد (شکل ۱). تمام آب ذخیره شده در حوضه
شیب‌سازی روی‌های سطحی و تبخیرتعرق حوزه آبخیر معرف روژه با مدل اسٹانفورد-4

\[P = E + R + \Delta S \]

که \(P \) به کلیه ریز‌های جوی تبخیرتعرق از سطح حوزه آب‌انبار \(E \) تغییرات کلی در میانه‌های بالایی و پایین‌های خاک و آب \(\Delta S \) زیرزمینی حوزهٔ آب‌انبار

کلیه‌های فراخوانده‌ای هیدرولوژی، بجای برق‌گاه و رود سیل (که بر اساس فاصله زمانی یک ساعت برسی‌های می‌شود)، با فاصله زمانی 15 دقیقه‌ای در معاون این بار ابی محسوب می‌گردد (1 و 2).

برگه‌ای این عامل نخستین پارامتری است که به وسیله مدل استانفورد-4 شیب‌سازی می‌شود. اگرچه در بررسی سیل‌های ناشی از رگبارهای برگ و طولانی مدت، غالباً از مدل به‌طور کلی مفهومی برای تغییرات این ناحیه گرفته شده، ولی در بیان آب‌انبار حوزه آب‌انبار عامل مهمی است (26). مدل در مورد برق‌گاه‌های دیگر تغییرات عمل
تغییرات کلی رطوبت در مناطق بالایی و پایینی خاک: تغییرات کلی رطوبت در این قسمت نتایج نقش پاییز و بروزدی و بخش تغییرات کلی حوزه آبخیز است. تغییرات بالایی بخش بزرگی را در هنگام آغاز یک رگبار دریافت می‌کند. و جنوبی بخش می‌تواند تغییرات قابل توجه در جریان سطحی زیر سطحی، تغییرات عمیق وارد می‌شود. تغییرات بالایی خاک رطوبت خود را از نفس خالی آب و فرورشت عمیق دریافت می‌نماید. درصد از رطوبت که به حوزه آب زیرزمینی می‌رسد بستگی به رطوبت موجود خاک دارد.

روش‌های جریان در رودخانه در مدل، این روند از معادله زیر پیروی می‌کند.

\[
O_2 = I - KS \times (I - O_1) \tag{4}
\]

که:

- شدت جریان خروجی در انتهای فاصله زمانی انتخاب شده \(O_2\) \(\text{m}^3/\text{s}\)
- شدت جریان خروجی در انتهای فاصله زمانی انتخاب شده \(O_1\) \(\text{m}^3/\text{s}\)
- \(I\) میانگین شدت جریان ورودی در خلال فاصله زمانی انتخاب شده \(\text{m}^3/\text{s}\)
- \(K\) عامل افت جریان سطحی که از طریق تحلیل آینده‌های رواناپ جریان آبخیز و با روش ترسره‌ی برآورد می‌شود.

dاده‌های ورودی مدل استاندارد-۴:

برای نیروفرماندهان از روش‌های هیدروژنی از حوزه آبخیز، مدل استاندارد-۴ به پارامترها و هیچی‌های زیر نیازمند است:

- \(n\) عوامل دیگر در مدول ۲ تعیین شده است.

- \(K\) شدت بارندگی \((\text{mm}^{-1})\)

- \(D_e\) مقدار تغییرات سطحی در حالت تعادل در واحد عرض \(\text{m}^3/\text{m})

جدول ۱ حداکثر مقدار برگاب با پوشش‌های مختلف (EPXM)

<table>
<thead>
<tr>
<th>نوع پوشش</th>
<th>فرمول</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرتبه</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>جنگل</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>جنگل انبوه</td>
<td>5/0</td>
<td></td>
</tr>
</tbody>
</table>

جریان سطحی در مدل: به طور کلی، حربه‌ای شده در (Overland flow) سطح حوزه آبخیز به صورت جریان سطحی (Overland flow) و جریان کانالیزه (Chanalized) در نظر گرفته شده است.

دیسپریسیون جریان سطحی به عنوان تغییری از حوزه نیویستنی سطحی (Surface detention storage) با مدل زیر در مدل محاسبه می‌گردد.

\[
q = \frac{1}{n} \times S^{1/2} \times (D/L)^{5/3} \times (1 + 0.6 \times \frac{D}{L})^{3/5} \tag{5}
\]

که:

- \(D\) میانگین جریان سطحی \((\text{m}^3/\text{m})\)
- \(S\) میانگین ضریب حوزه آبخیز \((\text{mm})\)
- \(n\) ضریب زیستنی
- \(L\) میانگین طول جریان سطحی در حوزه آبخیز \((\text{m})\)
- \(D_e\) مقدار تغییرات سطحی در حالت تعادل در واحد عرض \((\text{m}^3/\text{m})\)

مقدار \(D_e\) از مدل زیر قابل محاسبه است:

\[
D_e = \frac{0.000818 \times 0.5 \times L^{1.6}}{S^{0.3}} \tag{6}
\]

که:

- \(i\) شدت بارندگی \((\text{mm}^{1/2})\)

- \(S\) عوامل دیگر در مدل ۲ تعیین شده است.

- \(L\) طول جریان سطحی \((\text{km})\)

جریان کانالیزه: این روند در مدل از طریق تجربی محاسبه و ارائه می‌شود (۹). در این روش از هیستگرام زمان رصدی جریان به خروجی آبخیز، به‌دست آمده در نظر گرفته شده که این مقدار به خروجی آبخیز، به‌دست آمده در کانال استفاده می‌شود.
حوزه معرف رود زرده

حوزه معرف رود زرده با توجه به برنامه ده ساله بین‌المللی هیدرولوژی (International Hydrological Decade) جهانی پوتسوک در بخش کشورهای عضو از جمله ایران، با اهداف تجهیز به بهره‌برداری از داده‌های برداشت شده از این حوزه آبخیز انجام شده است (1 و 2). بنابراین، در این مقاله در ایام یافته‌ها از حوزه آبخیز که فاقد آمار و اطلاعات هوشمندی و هیدرولوژی بوده، با این که داده‌های آنها محدود است، از اطلاعات این حوزه معرف برای اجرای پژوهش‌های آینده، مانند پژوهش‌های احتمالاتی آب، رود و زرده‌ها و تأسیسات انتقال آب استفاده نمود. برای حوزه‌ها با مناطقی که دارای آمار و اطلاعات طولانی می‌باشند، می‌توان به کمک‌مدل استاندارد پژوهش‌های عملی را کریک داده، در حالی که برای آب‌ریزی‌های دیگری را واسطه و ارزیابی نموده و کاربرد آنها را بررسی کرده.

حوزه معرف رود زرده با دانش‌های تغییرات ارتقاء حدود ۴۵۰ تا ۷۱۰۰ متر از سطح دریا در جنوب غربی ایران و در مریب رشته‌کوه‌های زاگرس، بین طول‌های شریف‌کی ۴۹°۲۶´ تا ۵۰° و عرض‌های شمالی ۳۲°۳۷´ و ۳۲°۴۶´ واقع شده است. روستایه زرده رود زرده یکی از مهم‌ترین مناطق روستاهای جراحی است. که با رودخانه‌ها به طبیعت گردیده و داشته‌اند باکری زرده و درختانی روستاهای جراحی را داده، به خلیج فارس می‌رسد. ویژگی‌های فیزیکی حوزه، با توجه به مسئله جریان رودخانه‌ها، به صورت زیر است (1 و 2):

سطح حوزه ۸۸۹۸۰ هکتار (۸۸۹۸/۰ کیلومتر مربع) با شبیه‌سازی متوسط ۵۷ کیلومتری در ساعت و تراکم اکسیژن ۱/۵۰

طبقاتی از از سطح دریا برای با به درجه ۱/۵۸۰ m/m

ظرفیت افزایش حوزه سطحی، زیست‌محیطی، و آب‌زی‌محیطی به ترتیب برابر با ۸۷۰، ۳۸۰ و ۸۷۰/۸ متری و ۳۴۵ متری از سطح دریا قرار دارد، مجهز به باران‌گیر‌ها، تهیه‌نگر نیز ۴۸ درصد.
شکل ۲. موقعیت جغرافیایی، توبوگرافی و محل باران سنگ‌های حوزه آبخیز رود زرد (برگرفته از گفته‌های روزبه‌نیا، ۱۳۶۶).
نتایج و استنتاج نشان داد که مقادیر حجم خروجی سیالانه 90/99 نشان دهنده توانایی مدله در پیشینه دی جلوه‌های آبخیر با بهینه‌تری است. مقادیر دی متوسط روزنامه و لحظه‌ای اوج سیالانه بیشتر شده و پیشینه شده در جدول 2 آورده شده است. ضریب تبین حجم ماهیانه از 7/6 به 7/6 متغیر بهره و واقع می‌باشد برآورد بین و 17 واقع شده است.

شیب‌سازی

جدول 3 نتایج شیب‌سازی حداکثر دیج روزنامه و دیج اوج لحظه‌ای سیالانه را نشان می‌دهد. با توجه به مقادیر جدول 3 حداکثر دی متوسط روزنامه در سال آمیزه (1760) اتفاق افتاده و مقادیر آن 0.2 بهره است. مقادیر شیب‌سازی شده آن 119 m³/s می‌باشد. که 7/6 درصد کمتر پیشینه شده است. اگرچه با کم کردن ضریب فنود سطحی (CB) مقدار این در سیل را به هم نزدیک نموده و سیالانه 11 دیج همان سال و سالهای بعد مشترک از این تغییرات شده، سرانجام اختلاف مقادیر شیب‌سازی شده و ثبت شده سیالانه زیاد می‌گردد. به‌حال حداکش و حداکش خطای بیش مقدادیر مشاهده شده و ثبت شده بر تبین برای 2/6-1/4 و 5/13 درصد است. حداکش تبین به زمان وقوع مسیله مدل 2 ساعته و حداکش آن 8 ساعته به دست آمده است. مدل برخی از سیالانه کرج که نوشتاری شده است پیشینه نموده. با توجه به کم بودن مقادیر آنها تبین زیادی بر دیج روزنامه و مقدار ضریب تبین برای دیج حداکشر دی متوسط روزنامه و مقدار پیشینی شده سال آمیزه (1760) بر تبین برای 1/7-1/9 بهره‌ای برای 2/6-1/4 و 5/13 درصد به رفتاری با شرایط داده شده است. نتایج شیب‌سازی دی متوسط روزنامه برای مقدار حداکشر در سطح کرج و حداکشر R² در شکل‌های 3 و 4 نمایش داده شده است. زمان وقوع سیالانه پیشینی شده و مشاهده شده با هم اندازه نزدیکی دارد. به‌هر حال، نتایج شیب‌سازی در حد قابل

واستنی مدل استنفورد

با توجه به نتایج تحلیل حساسیت مدل، واستنی و ارزیابی مدل با آمار و اطلاعات یک دوره بین سالهای متوالی از 1355 تا 1370 با گذشته آن، مقدار اولیه پارامترهای هم‌سازنی برگزاری تکنیک‌های سطحی نگهدارش زیر سطحی و مقادیر رطوبت ذخیره شده در لایه‌های بالایی و پایینی ایجاد به دست داده شد. مقدار اغلب پارامترهای تا یک هفته پیش از تحسین بستگی کیفیت سطحی خشک در نظر گرفته شد. برای واستنی مدل، اطلاعات سال آمیزه 1355-1370 که کار رفت، نتایج واستنی در جدول 1 نشان داده شده است.
جدول ۲. حجم سالانه پیش‌بینی شده و ثبت شده رودخانه رود در سال‌های ۱۳۵۵-۶۰.

<table>
<thead>
<tr>
<th>سال آبی</th>
<th>ثبت شده</th>
<th>پیش‌بینی شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۵۵-۶۰</td>
<td>۱۳۶۵</td>
<td>۲۹۵/۷</td>
</tr>
<tr>
<td>۱۹۵۶-۵۷</td>
<td>۲۷۹/۰</td>
<td>۲۹۵/۷</td>
</tr>
<tr>
<td>۱۹۵۷-۵۸</td>
<td>۲۷۵/۱</td>
<td>۳۲۷/۳</td>
</tr>
<tr>
<td>۱۹۵۸-۵۹</td>
<td>۵۱۶/۹</td>
<td>۵۸۸/۹</td>
</tr>
<tr>
<td>۱۹۵۹-۶۰</td>
<td>۵۹۶/۰</td>
<td>۲۴۶/۳</td>
</tr>
<tr>
<td>۱۹۶۰-۶۱</td>
<td>۳۲۸/۶</td>
<td>میانگین</td>
</tr>
</tbody>
</table>

(مقدار مشاهده شده - مقدار پیش‌بینی شده) × ۱۰۰

مقدار مشاهده شده.

جدول ۳. دی‌بی اوج لحظه‌ای و متوسط اوج سالانه مشاهده شده و شیب‌سازی شده در سال‌های مورد بررسی در حوزه آبخیز رود زرد.

<table>
<thead>
<tr>
<th>زمان تأخیر دبی لحظه‌ای (h)</th>
<th>دبی (m³/s)</th>
<th>متوسط اوج سالانا</th>
<th>خطای اوج سالانه</th>
<th>لحظه‌ای اوج سالانه</th>
<th>شیب‌سازی اوج سالانه</th>
<th>شیب‌سازی سده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۴۳/۰</td>
<td>۳۴۲</td>
<td>۲۱/۸</td>
<td>۱۱۹</td>
<td>۴/۰۲-۴/۲</td>
<td>۵۱۴</td>
</tr>
<tr>
<td>۴</td>
<td>۴۵/۷</td>
<td>۳۴۲</td>
<td>۲۱/۸</td>
<td>۱۱۹</td>
<td>۲/۰۷-۳/۲</td>
<td>۷۷۲</td>
</tr>
<tr>
<td>۲</td>
<td>۳۱۴</td>
<td>۳۱۴</td>
<td>۲/۶</td>
<td>۸۲</td>
<td>۷۵۰</td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td>۴۰/۷</td>
<td>۴۷۶</td>
<td>۲۱/۵</td>
<td>۷۵۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>۵۵/۳</td>
<td>۱۷۵</td>
<td>۶۸</td>
<td>۴۴۳</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۱. به تزیین نوسی جدول ۱ مراجعه شود.

شکل ۳. مقدار رواناب مشاهده شده و شیب‌سازی شده رود زرد، سال آبی ۱۳۵۶-۶۰.
شیب‌سازی رواناب سطحی و تبخیر‌ترک حوزه آبخیز معروف رود زر در مدل استانفورد-۴

شکل ۴. مقدار تبخیر رواناب مشاهده شده و شیب‌سازی شده و مدل زرده سال آی‌بی ۱۳۵۸-۵۹.

قبولی است و نشان می‌دهد که مدل توانایی شیب‌سازی سیلاب از حوزه‌های آبخیز بزرگ را دارد. با توجه به شکل ۵، نتایج درصد موقعیت بینی شده و تب شده بر هم منطقی می‌باشند. عدم انطباق در دی‌های بین ۱۰ و ۲۰۰ m۳/s و حدود ۳ و ۸ m۳/s را در بر می‌گیرد.

مؤلفه غالب جریان رود زر و ضریب رواناب سالانه تحلیل رودخانه‌ای سال‌های آبی ۱۳۵۰-۵۰۰۰ حوزه آبخیز رود زر نشان می‌دهد که نسبت به جریان‌های سطحی، جریان زیر سطحی داخلی و جریان‌های زیرزمینی بیشترین مقدار را دارا می‌باشند. با توجه به سابقه تحلیل جریان مورد اشاره و مقایسه آنها با مقدار کل بارندگی سالانه، مقدار ضریب هرزآب در حوزه رود زر بین ۱۴ تا ۲۱ درصد با میانگین ۱۷ درصد است.

تبخیر ترک حفظی

مدل استانفورد-۴ برای شبیه‌سازی دی‌بی‌متوسط لحظه‌ای، ماهیانه، سالانه، و جریان‌های سطحی، زیر سطحی و زیرزمینی، تبخیر ترک بالقوه و محاسبه برای هرزآب سطحی در حوزه‌های آبخیز استفاده می‌کند. مقادیر است. مقدار بارندگی (PP) و تبخیر ترک (ET)

خلایص و نتیجه‌گیری

مدل استانفورد-۴ برای شبیه‌سازی دی‌بی‌متوسط لحظه‌ای، ماهیانه، سالانه، و جریان‌های سطحی، زیر سطحی و زیرزمینی، تبخیر ترک بالقوه و محاسبه برای هرزآب سطحی در حوزه‌های آبخیز استهای می‌باشد. با توجه به سابقه تحلیل جریان مورد اشاره و مقایسه آنها با مقدار کل بارندگی سالانه، مقدار ضریب هرزآب در حوزه رود زر بین ۱۴ تا ۲۱ درصد با میانگین ۱۷ درصد است.
جدول 4. مقدار تبخیر تعرق حقيقی و شبیه‌سازی شده در سال‌های آبی 1355-1356 در حوزه آبخیز مورد بررسی.

<table>
<thead>
<tr>
<th>سال آبی</th>
<th>1RC (%)</th>
<th>1RO (mm)</th>
<th>1IF (mm)</th>
<th>1GW (mm)</th>
<th>1TRO (mm)</th>
<th>ETa/P (Pt)</th>
<th>PPt (mm)</th>
<th>ETP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1355</td>
<td>13.3</td>
<td>29</td>
<td>31.5</td>
<td>190</td>
<td>238.9</td>
<td>245</td>
<td>221</td>
<td>87.6</td>
</tr>
<tr>
<td>1356</td>
<td>14</td>
<td>30</td>
<td>33</td>
<td>229</td>
<td>238.9</td>
<td>244</td>
<td>221</td>
<td>87.6</td>
</tr>
<tr>
<td>1357</td>
<td>13</td>
<td>22</td>
<td>231</td>
<td>198</td>
<td>232.1</td>
<td>231</td>
<td>213</td>
<td>77.6</td>
</tr>
<tr>
<td>1358</td>
<td>1.5</td>
<td>98</td>
<td>300</td>
<td>19.2</td>
<td>7.9</td>
<td>7.9</td>
<td>221</td>
<td>87.6</td>
</tr>
<tr>
<td>1359</td>
<td>86</td>
<td>9.2</td>
<td>25</td>
<td>14.2</td>
<td>246</td>
<td>244</td>
<td>221</td>
<td>87.6</td>
</tr>
<tr>
<td>1360</td>
<td>14.7</td>
<td>82</td>
<td>42</td>
<td>44</td>
<td>103</td>
<td>100</td>
<td>505</td>
<td>82</td>
</tr>
</tbody>
</table>

پیش‌بینی نسبت تبخیر تعرق حقيقی به پارامتری سالانه حوزه رود زرد، سال آبی 1355-1356.
شیخه‌سازی روان‌پیمایی و تیخرت مرز حوزه آخرین معرف رود زرد با مدل استفاده‌های

زیرسطحی بیشترین مقدار را نسبت به جریان سطحی به خود اختصاص می‌دهد.

می‌گویند
از سرگار خانم مهندس ضیمانی که در استخراج آمار دی مصرف
آخیر رود زرد و تهیه نکرد یا این مقاله همکاری نموداند.
نتایج می‌گردند.

منابع مورد استفاده

1. غفوری روزبهانی، ع. م. ۱۳۶۶. شبیه‌سازی سیکل هیدرولوژی در حوزه مصرف و آزمایش رود زرد. پایان‌نامه کارشناسی ارشد
آب‌و-هوایی (منتشر شده). دانشگاه کاشان. دانشگاه شیراز.

2. غفوری روزبهانی، ع. م. س. امین سیسیان و گ. طالب بیدختی. ۱۳۷۸. شبیه‌سازی سیکل هیدرولوژی در حوزه مصرف و آزمایش
رود زرد. مجموعه مقالات سومین کنگره بین‌المللی مهندسی راه و ساختمان ایران، ۲۴ تا ۲۸ اردیبهشت، دانشگاه مهندسی,
دانشگاه شیراز.

Thesis unpublished, Purdue Univ., W. Laf., IN., USA.

Dept. of Civil Eng., Ohio State Univ., USA.

Application of Geographic Information Systems in Hydrology and Water Resources. Proceeding of the Vienna
Conference, April 1990, Austria.

Report No. 39, Civil Eng. Dept., Stanford Univ., USA.

8. Duan, Q., S. Sorooshian and V. Gupta. 1992. Effective and efficient global optimization for conceptual rainfall -

model. J. Hydrol. 89: 121-133.

In Environmetric. John Wiley and Sons, New York.