چکیده
فرآورده‌های گوشی‌کشی کی از پر مصرف ترین محصولات غذایی می‌باشد. یکی از مشکلاتی که در این نوع مواد غذایی ممکن است مطرح شود، تغییرات فیزیکی و شیمیایی آن می‌باشد. خاصیت‌های مختلف مایعات در محیط سطحی یا در اثر برخورداری آن‌ها با الکتریکی و گازهای به‌صورت منفعلی در مواد غذایی موجود نمی‌باشد. محصولات غذایی در طول مدت استهلاک، تغییرات شیمیایی و غلامحس شکل به شکل مختلفی می‌پذیرد. در این پژوهش، تأثیر دو درصد مایعات آلفا توكوفول و گرگ، بر روی سوسیس مورد بررسی قرار گرفت. ذهن تیمار سوسیس آلمنیه هر که وزن 30 کیلوگرم تهی شده که تیمارها به ترتیب نمونه‌های بدون 200 ppm آلفا توكوفول و تیمار 200 ppm آلفا توكوفول به مقدار 400 و 600 ppm تغذیه نشده و هر کیلوگرم در پوشش‌های سلولاری و 12 کیلوگرم در به‌ثبت‌های بالی آمپیست بدند تهیه و پختن شدند و از هر این سبب از این نمونه‌ها یک در دو درجه سانتی‌گراد به مدت 10 روز و بقیه در دمای 18– درجه سانتی‌گراد به مدت 4 تا 6 ساعت شدند. برای سنجش میزان پیشرفت اکسیداسیون نمونه‌ها از روش تیمارالهای فرا قابل استفاده شد. در طی مدت استهلاک به‌طور مشابه میزان اکسیداسیون در نمونه‌های مشابه شد. پروپیل گلات دارای تغییرات اندازه‌گیری شده در طول مدت استهلاک شد. ثابت گردید که پروپیل گلات باید در نمونه‌های به قدر همانی شده ذهن در دمای 4 درجه سانتی‌گراد به مدت 10 روز مشخص شد که پیشرفت مقادیر بیشتر و حالت نمونه‌های سلولاری دیده‌شده سیروند. نتایج مشابه در مورد نمونه‌های به‌ثبت‌های بالی در دمای 18– درجه سانتی‌گراد به مدت 4 تا 6 ساعت به دست آمد.

واژه‌های کلیدی: سوسیس، اکسیداسیون خود به خودی چربی، آلفا توكوفول، پروپیل گلات. ضد اکسیدان

1. مریم علی و صنایع غذا. دانشگاه کشاورزی. دانشگاه آزاد اسلامی خوراسان
2. به ترتیب استاد و دانش‌پژوهان علی و صنایع غذا. دانشگاه کشاورزی. دانشگاه صنعتی اصفهان

217
مقدمه

اکسیداسیون پیشگام در مقایسه با شاهد بدون تحقیقات ۷۶۰ ppm انجام شده نشان داده است که غلظت های بیش از اثر برو-اکسیداسیون روي لیپولیک اسید اشتهای در غلظت های کمتر از ۳۸۰۰ ppm به عنوان یک ضد اکسیدان عمل می کند (۱۶).

و همکاران (Whang) و (Heme) هم اکسیداسیون چربی ها تولید هیدرو پراکسیم. می‌کند که این ترکیبات طی مرحله بعدی اکسیداسیون تجزیه و تبدیل به آلدهیدها، کتونها، اسیدها و الكه‌ها می‌شود (۲۳ و ۴۲). آلدهیدها به علت فعالیت بالا با داشتن بیوت بدین از شعله امیجاد طعم و بوی نامطبوع هستند. در حالی که کتونها و الکه‌ها آسانتر طعمی بالایی دارند و کمتر موجب امیجاد طعم‌های نامطبوع تبدیل می‌شوند (۳۲). انجام اکسیداسیون روی خودی، کاملی نمی‌تواند جلوگیری کرده ولی می‌توان آن را به تأخیر اندک راند. باید به تأثیر ایجاد این فرآیند از ابتدا آگاهی داشته باشیم.

بنا به تحقیق همکاران (۱۲) استفاده می‌شود. با توجه به آثار سوء ضد اکسیدان‌ها مصنوعی، حساسیت مصرف کننده‌ها نسبت به این ضد اکسیدان‌ها بیشتر شده و برای اندازه‌گیری به میزان مقدار ضد اکسیدان‌های طبیعی که نیازی جایگزین ضد اکسیدان‌های مصنوعی کرده می‌باشد (۴).

مهم‌ترین ضد اکسیدان‌های طبیعی، توقیف‌وراها هستند که در بیشتر گیاهان بافت می‌شوند (۴). در بررسی‌های انجام شده در رابطه با اثر ویتابیمین E روی اکسیداسیون چربی‌های مشخص شده است که ازودن ویتابیمین E باعث جلوگیری از اکسیداسیون (Steak) چربی در غوشت چرب کردگه گزار (۵). در استیک هجیس، گوشت گزار (۱۸) و در غوشت حلوی (۱۶ و ۱۵) می‌شود. نشان دادن که ماهوني و گرک دماغ (Mahoney and Graf) فعالیت‌های خیلی بالای ویتابیمین E در پرو-اکسیدان (Pro - Oxidant) روی اکسیداسیون لیپولیک اسید دارد (۱۳).

افزودن بیش از حد و ویتابیمین E به غوشت چرب کردگه باعث
مطالعه تأثیر آنتی اکسیدان و پروپیل گالات بر میزان اکسیداسیون خود به خودی...

قانون داشته‌اند.

آزمون‌های شیمیایی سویس
نمونه‌های لگه‌داری شده در دمای 4 درجه سانتی‌گراد در روزهای 20/01 اثرات ایمنی مورد آزمایش قرار گرفتند و روی نمونه‌های لگه‌داری شده در دمای 4-0 درجه سانتی‌گراد در روز اول و در ماه‌های 2001، 5 و 6 آزمایش‌ها انجام شد.

برای اندازه‌گیری درصد رطوبت نمونه‌ها از روش استاندارد با محلول کردن نمونه و شن استفاده شد. درصد نرم یا مشکی نمونه‌ها با استفاده از روش اندازه‌گیری خشک و توسط سوکسم تغییر گردید. سپس روی استاندارد AOCS (americance oil and chemical society) به کار برده شد. عدد پراکسید نمونه‌ها در اینجا و در ماه‌های 2 و 4 با استاندارد SHN شناخته شد.

آزمایش اسید تیو باربیتریک بر میان تاکش نگردی در اثر واکنش سیستم تیو باربیتریک با مولکول آنتی‌کانسیون غنی شد که این تأثیر آنها در نوع ضد اکسیدان‌ها کاربرد به دارد. در روی‌های فیزیکی 30 کیلوگرم سویس تولید شد. به‌طور گسترده می‌تواند از نمونه‌های دانشگاهی به دست خالصه ضد اکسیدان و نمونه‌های حاوی 000 ppm و با 500 ppm پروپیل گالات (Propyl gallate) به نور نشر که دارای 000 ppm نمونه‌ها می‌تواند به دست آید.

روش تهی نمونه‌ها
برای این آزمایش چهار فرمول سویس آلمانی تهیه شد که تفاوت آنها در نوع ضد اکسیدان‌ها کاربرد به دارد. در روی‌های فیزیکی 30 کیلوگرم سویس تولید شد. به‌طور گسترده می‌تواند از نمونه‌های دانشگاهی به دست خالصه ضد اکسیدان و نمونه‌های حاوی 000 ppm و با 500 ppm پروپیل گالات (Propyl gallate) به نور نشر که دارای 000 ppm نمونه‌ها می‌تواند به دست آید.

تأثیرات آزمایش
برای ارزیابی مقاومت بافت نمونه‌ها از دستگاه انسترون (Intron) یا ارزیابی مقاومت بافت نمونه‌ها از دستگاه انسترون استفاده شد. میزان مقاومت رشته‌ای (Shear strength) اسلاژها با استفاده از دو روش استوانه توزر و تغییر واریانس (Warner bratzeler) در 6 تکرار انجام گرفت. در روش استوانه توزر، بافت داخلی نمونه‌ها با هم مقایسه شد و در روش استوانه از تغییر واریانس بافت بدون مدل معنا می‌باشد. مقایسه مقدار مسطح نمونه‌ها با هم بود. باید منظور در نمونه‌های بیشتر بندی شده در پوشش‌های سلولزی بگویم سویس کامل به عنوان نمونه انتخاب شد.

![آزمایش‌های اندازه‌گیری](image)

11. در نظر گرفته شد.
روش‌های آماری تحلیل نتایج
در این پژوهش برای بررسی و تجزیه و تحلیل آماری داده‌های حاصل از آزمون‌ها، طرح استنادی اساسی‌سازی و تجزیه اعمال شده است. مقایسه میانگین‌ها نیز از طریق آزمون‌های تصادفی انجام گرفته است.

تأیید بررسی میزان پیشرفت اکسپداسیون (اعsemble پراکسید TBA و سوسیسیوس های تولید شده، اثر تولید و زمان بر میزان اکسپداسیون نیز تأثیر ضعیف اکسپداسیون مورد بررسی قرار گرفت. با توجه به نتایج تحقیقی، تأثیر تحلیل تصادفی بررسی شده، نتایج چندگانه بررسی شده، لازم به ذکر است میزان چربی کلی Sوسیسیوس های تولید شده به 12 درصد محاسبه شد. درصد و میزان پروتئین آنها 12 درصد بوده است.

بررسی میزان اکسپداسیون سوسسیوس های تولید شده طی 6 ماه نگهداری در دمای 18 درجه سانتی‌گراد نتایج تجزیه واریانس مربوط به جفت‌پوشین تأثیر TBA و پروتئین برای هر دو دمای 18 درجه سانتی‌گراد و 4 درجه سانتی‌گراد
جدول ۲: تجزیه واریانس داده‌های مربوط به صفات مورد بررسی

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>بافت</th>
<th>ترکیب</th>
<th>تبا</th>
<th>درجه آزادی میانگین مربعات</th>
<th>درجه آزادی میانگین مربعات</th>
<th>درجه آزادی میانگین مربعات</th>
</tr>
</thead>
<tbody>
<tr>
<td>بسته‌بندی</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>خطا (a)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>آنتی‌اکسیدان</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>بسته‌بندی</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>آنتی‌اکسیدان</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>خطا (b)</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>زمان</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>بسته‌بندی</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>آنتی‌اکسیدان</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>خطا (c)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>زمان</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>آنتی‌اکسیدان</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>خطا (d)</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>زمان</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>آنتی‌اکسیدان</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
</tbody>
</table>

**: معنی‌دار در سطح احتمال ۰.۰۱
جدول ۳. مقایسه تأثیر نوع بسته بر میزان اکسیداسیون خود به خودی (اعداد TBA و پراکسید) نمونه‌های سوسیس نگهداری شده در دمای ۶۸ درجه سانتی‌گراد به مدت ۶ ماه

<table>
<thead>
<tr>
<th>نوع بسته بندی</th>
<th>عدد پراکسید **</th>
<th>عدد TBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>سلولزی</td>
<td>۴/۴۷ ± ۴/۸۸ ۶۸/۸۹ ± ۴/۰۰ ۶۶/۱۹ ۶۸/۸۵</td>
<td>۰/۱۹ ۰/۷۶</td>
</tr>
<tr>
<td>پل امیدی</td>
<td>۶۸/۹۰ ± ۶۸/۸۶ ۶۸/۹۰ ± ۶۸/۸۶ ۶۸/۹۰ ۶۸/۸۶</td>
<td>۰/۱۹ ۰/۷۶</td>
</tr>
</tbody>
</table>

ماندگی‌هایی که در یک ستون دارای حرف مشترک هستند در سطح احتمال ۱ درصد فاقد اختلاف معنی‌داری می‌باشند. **: میلی‌گرم مالون آلدئید در کیلوگرم ماده خشک سوسیس

شکل ۱. تأثیر ضد اکسیدان‌های مختلف و نوع پوشش سوسیس بر میزان اکسیداسیون خودی‌ به خودی

(عدد پراکسید) نمونه‌های نگهداری شده در دمای ۱۸-۶ درجه سانتی‌گراد به مدت ۶ ماه

- پوشش‌های سلولزی دیده می‌شود.
- پوشش سوسیس‌های سروسیس‌های تولید شده طی ۱۰ روز نگهداری در دمای ۴ درجه سانتی‌گراد برسی‌های انجام شده نشان داد که پس از ۱۰ روز نگهداری نمونه‌ها در دمای ۴ درجه سانتی‌گراد، این نوع بسته بندی بر

۲۲۲
جدول 6: میانگین تغییرات درصد رطوبت سوسپسیس های یک بندی شده در پوشش سولولوی طی ۶ ماه نگهداری در دمای ۱۸ درجه سانتی‌گراد

| نوع ماده افزودنی | فرمول | مقدار مولکولی | تعداد میانگین | تعداد میانمیدانی | تعداد میانمیدانی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون ماده افزودنی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ویتامین E (200 ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ویتامین E (500 ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پروفیل کالس (200 ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 7: مقایسه اثر مدت انباری - نوع بسته بهدی روز مقاومت بریشی یافته + تیونه‌های سوسپسیس تگهداری شده در دمای ۴ درجه سانتی‌گراد به مدت ۱۰ روز

<table>
<thead>
<tr>
<th>روش استون‌تپر</th>
<th>مدت انباری (روز)</th>
<th>پلی آمیدی</th>
<th>سولولوی</th>
<th>پلی آمیدی</th>
<th>سولولوی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۹/۸۵</td>
<td>۱۰۲/۲</td>
<td>۱۲۰/۲</td>
<td>۱۴۶/۴</td>
<td>۱</td>
<td>1</td>
</tr>
<tr>
<td>۹۰/۹۱</td>
<td>۱۱۵/۴</td>
<td>۱۴۴/۰</td>
<td>۱۷۸/۶</td>
<td>۲</td>
<td>2</td>
</tr>
<tr>
<td>۹۵/۷۲</td>
<td>۱۲۵/۰</td>
<td>۱۴۸/۱</td>
<td>۱۸۷/۴</td>
<td>۷</td>
<td>۷</td>
</tr>
<tr>
<td>۹۸/۲۸</td>
<td>۱۳۳/۲</td>
<td>۱۵۲/۴</td>
<td>۱۹۲/۳</td>
<td>۱۰</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

در هر یک از روش‌های اندازه‌گیری مقاومت بریشی یافته میانگین‌های که دارای یک حرف مشترک هستند در سطح احتمال ۵ درصد قادف اختلاف معنی‌داری می‌باشند.

*: غرم نیور بر سانتی‌متر دوم

244
روی عدد پراکندگی در سطح احتمال ۵ درصد معنی‌دار بوده است (جدول ۴). پیش‌ترین عدد پراکندگی در سوسیس‌های شاهد بست‌شده در پوشش سئولویا و کمترین عدد پراکندگی در سوسیس‌های حاوی PG بسته بندی‌هایی در پوشش‌های پلی‌آمید پایین داده شده (شکل ۳).

ولی نوع بسته بندی، ارتباط معنی‌داری روي عدد TBA نداشت (جدول ۴). البته در هر دو نوع بسته بندی، عدد TBA در طی ۱۰ روز تغییر ناپذیر فرضی کرد ولی روند تغییر در این دو نوع پوشش مشابه بود و در نهایت بین میانگین اعداد TBA آنها طی ۱۰ روز ناوت می‌دارد. دیده می‌شود.

در مورد تأثیر پرینت اکسیداسیون در جلوگیری از اکسیداسیون چربی می‌باشد، این فیزیّت که هم‌زمان با داشته است. هم‌زمان با TBA راهنمایی شده و PG کمترین عدد TBA را نمونه‌هایی حاوی نشان داده. نمونه‌های حاوی Alfa Tocopherol نسبت به شاهد اعداد TBA کمتری داشته و با افزایش غلظت Alfa Tocopherol تأثیر بدن در پوشش سئولویا چربی افزایش پیدا کرد (شکل ۴).

مقاومت برشی بالاتر سوسیس‌های نگهداری شده در مداوم ۴ درجه سانتی‌گراد نیز به دو روش استفاده از استوانه نیو و استفاده از تیغه وران برای انتخاب کرده شد. بر اساس جدول ۷ مشخص شد که بعد از ۱۰ روز نگهداری در دمای ۴ درجه سانتی‌گراد پرینتی مشابه بیشتر پایبند در نمونه‌های گلTERS در پوشش سئولویا دیده می‌شود.

لازم به ذکر است که در نمونه‌های تیغه عایق شده در دمای ۴ درجه سانتی‌گراد هر دو روش استوانه نیو و تیغه وران تفاوت نداشت و برای انتخاب گامی مقاومت برشی بالاتر کاسپیان شامل سوسیس‌ها به کار برده شد.

بحث

طی مدت انباریانی در دمای ۸-۱۸ درجه سانتی‌گراد و ۴ درجه سانتی‌گراد برای انتخاب گامی مقاومت برشی بالاتر کاسپیان شامل سوسیس‌ها به کار برده شد.

مواد و تأثیر Alfa Tocopherol و پروپیل گالات بر میزان اکسیداسیون خوذ به خودی...
شکل ۳. تأثیر ضد اکسیدانهای مختلف و نوع پوشش سوسپس بر میزان اکسیداسیون خود به خودی (عدد پراکسید) نمونه‌های نگهداری شده در دمای ۴ درجه سانتی‌گراد به مدت ۱۰ روز

شکل ۴. تأثیر ضد اکسیدانهای مختلف بر میزان اکسیداسیون خود به خودی (عدد TBA) نمونه‌های سوسپس نگهداری شده در دمای ۴ درجه سانتی‌گراد به مدت ۱۰ روز
جدول 8. میانگین تغییرات درصد رطوبت نمونه‌های سوسیس بسته برده در پوشش سولیولی طی 10 روز نگهداری در دمای 4 درجه سانتی‌گراد.

<table>
<thead>
<tr>
<th>نوع ماده افزودنی</th>
<th>دورة البارمانی (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>28/8</td>
<td>-</td>
</tr>
<tr>
<td>27/9</td>
<td>-</td>
</tr>
<tr>
<td>26/9</td>
<td>-</td>
</tr>
<tr>
<td>25/9</td>
<td>-</td>
</tr>
<tr>
<td>24/9</td>
<td>-</td>
</tr>
<tr>
<td>23/9</td>
<td>-</td>
</tr>
<tr>
<td>22/9</td>
<td>-</td>
</tr>
</tbody>
</table>

هانگ (Hwang) و همکاران (1990) این بسته‌دهی در منگوشت گوشت گاو یک میکروگری نگهداری شده در دمای 20 درجه سانتی‌گراد به مدت 11 هفته را بررسی کردند. نتایج نشان داد که هوا و تحت خلاء روی دانی اکسیداسیون جری جری در نمونه‌های گوشت گاو برای نگهداری شده در دمای 20 درجه سانتی‌گراد به مدت 11 هفته را بررسی کردند. نتایج نشان داد که نمونه‌های بسته بندی شده در مجاورت هوا، بعد TBA بیشترین مقدار بود (10). در آزمایش ما نیز به نظر بسته شده در پوشش سولیولی نسبت به باکسیون و رطوبت نفوذپذیری می‌باشد. بنابراین انتظار می‌رفت که اکسیداسیون در نمونه‌های بسته‌بندی شده در پوشش سولیولی بیشتر باشد.

میزان جدول 5 و 8 نفوذپذیر بودن پوشش سولیولی نسبت به رطوبت موجب می‌شود نمونه‌های طی مدت نگهداری، آب از دست داده با اندازه‌گیری تغییرات آب‌پذیری می‌باشد. میزان ردپد کاهش رطوبت، با آب‌پذیری زمان نگهداری کم می‌شود. بدیل این که یک طرف نمونه‌ها با محیط اطراف به تعادل رسیده و میزان آب آزاد نمونه‌ها نسبت به روز اول کمتر شده، از طرف دیگر لایه خشک روی سطح نمونه‌ها تشكل شده است.

طبق جدول 4 در دمای 18 درجه سانتی‌گراد میانگین اعداد به استفاده در زمان‌های مختلف نشان می‌دهد که در نمونه‌های بسته بندی شده در پوشش سولیولی با انبارسازی زمان انبارسازی، مقاومت برخی بافت نیز افزایش می‌یابد. ولی در متابع مورد استفاده.