پژوهش‌های نیزیولوژیک و عملکردهای دانه گندم زمستانه در پاسخ به تراکم بوته و تاریخ کاشت

فرهنگی‌های فنی‌شناختی و پیش‌بینی کردن

چکیده
در یک پژوهش مزرعه‌ای وسایل با استفاده از طرح کرت‌های خریداری در قابل بلوک‌های کامل تصویفی با چهار تکرار، در ایستگاه تحقیقات ایستگاه کشاورزی دانشگاه شیروی واقع در باکند، و پژوهش‌های رشد و عملکرد گندم زمستانه در واکنش به آب تاریخ کاشت و چهار تراکم بوته ورد بررسی شده. رابطه شیراز در واکنش به آب تاریخ کاشت و چهار تراکم بوته مورد بررسی قرار گرفته. تاریخ زمستانه کاشت (15 آبان، 15 آذر، 15 دی، 15 بهمن) با 4،5،7،8،10 و 12 نهایت داده که کاشت تأخیری با کاهش عملکرد دانه همراه بود. به نوبه‌ی آب تاریخ کاشت و در تاریخ کاشت 15 آبان و 15 آذر به‌طور مشابه کشت ایستگاه 15 آبان و 15 آذر بود. به گزارش، دی‌بار تأثیر
در کشت‌ها مراحل نمونه بوده‌ها با سرعت بیشتری در اپلیکی‌های رشد ناشک برخورد را سریع‌تر به پایان رساندند. روی آب تغییرات شاخص سطح برو و وزن شکل بوده‌ها نیز تحت تأثیر تیمارهای آزمایشی قرار گرفته. یک طوریه به تاریخ کاشت زودتر و تراکم کاشت زیادتر، شاخص سطح برو بیشتری در مرحله برداری به دست آمد. یا تأثیر به کشت تعداد نمونه بارور در واحدهای مرحله سطح مزرعه کاهش یافت. گرچه در برابر کشت زیادتر تعداد سالیان بیشتری در واحدهای مرحله سطح تولید شد، ولی در مرحله سطح و میر نسبت کاهش شدیدتری در تعداد سالیان در مرحله زیادتر به اندازه‌ی مشاهده‌گردد بررسی سرعت تغییرات وزن شکل بیشتری در طول فصل نشان داد که در تراکم کشت زیادتر و تاریخ کاشت زودتر. وزن شکل بیشتری تولید شد. این موضوع در ارتباط با زیست‌پوشی و رشد و بیشتر تغییرات بیشتری پایزی یافت. در مجموع، براب‌ساز تآمین پرورش حاضر در مناطق آب و هوا بیشتری با محل‌های آب از پژوهش، گندم زمستانه را می‌توان برای گذران مظلوم مرحله رشد و زمان حاضر تولید عملکرد قابل قبول، تنها آزمایش موثر با تراکم 200 بوته در مرحله کشت کرد.

واژه‌های کلیدی: تاریخ کاشت، تراکم بوته، شاخص سطح برو، وزن شکل، گندم زمستانه

1. به ترتیب دانشجوی سایه‌کارشناسی ارشد و استاد زراعت، دانشکده کشاورزی، دانشگاه شیراز
2. استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه شیراز

143
مقدمه
با استفاده بهینه از تهیه‌ها مانند کودهای شیمیایی، کودهای آلی و مدل‌بندی مطلوب زراعی شال و تهیه‌ها به موقع و مناسب زمین، کاشت به موقع تراکم کننده، اکتشاف و افزایش عملکرد گندم وجود دارد (۳۱). در این منطقه برای استفاده بهینه از عملکرد کاهشی یک زمان کاشت معین و چگونه وجود دارد که نشان می‌دهد، شرایط آب و هوایی، فرآیند بودن بسته کاشت، رطوبت، بذر، رقم مورد نظر و زمان محتمل برای شروع آب و بیماری‌ها، تعیین می‌شود (۳). هدف از تعیین یک زمان کاشت بهینه، تعیین دوره زمانی است که مجموعه عوامل محیطی حاکم در آن دوره برای جوانی زنی سیب گندم، استقرار و پایداری بهتره‌ها مناسب باید، به نحوی که عوامل موثر در مرحله از رشد در شرایط ملایم قرار گیرد و از بی‌خوردگی هر یک از مراحل نمونه‌ای شرایط نامساعدی احتمال شده باشد (۳۱، ۴۰ و ۷۱).

کشت زود هنگام در مناطقی که با محدودیت رطوبت خاک مواجه هستند باعث تخلیه سریع رطوبت خاک شده و ممکن است بار بهار گیاه با کمبود رطوبت مواجه شود (۴۲). همچنین کشت زود هنگام باعث می‌شود که نیاز سرمایی گیاه زودتر رفع شده و گیاه در اواخر زمان‌های ساقع نظر، به‌طوری که به نوبه خود، احتمال آلاینده سرمازدونگی را افزایش می‌دهد (۴۲ و ۷۴). به علاوه، کشت زود هنگام، با افزایش تعداد پنجه در هر بذر همراه است، که این نتیجه با بدکاری رقابت و بهبود تخلیه آب و عناصر غذایی خاک شده و ممکن است گیاه زراعی را در مراحل بعدی سهولت می‌کند که عملکرد دانه با کمبود موارد، منابع (Resources) می‌باشد.

منابع
از سوی دیگر، تأخیر در کاشت که با نمایه‌پذیری چون تأخیر در برداشت محصول قبلی با بی‌خوردگی و شرایط نامساعد آب و هوایی در زمان مناسب کاشت رخ می‌دهد، نتیجه بررسی عوارضی می‌گردد که منجر به کاهش عملکرد می‌شود (۱). بیاینگندم زمان‌های باعث به‌کار ماندن سازگاری به سرما، شدت سرما و دمای پایین بین پایه تا نواچهزدنی در خلال رشد و نمو پنجه‌ها بستگی دارد (۲۹). این عوامل را می‌توان نا‌حذوی
پوشه‌های فیزیولوژیک و عملکرد دانه گندم زمستان در پاییز به تراکم بونه... خواهد بود(30). کورنی و هگارتی (31) گزارش کردند که در یک آزمایش 5 ساله، اختلال معنی‌داری در عملکرد دانه در میزان‌های بذر 200-1000 کیلوگرم در هکتار مشاهده شد که در چین شرایطی استفاده از کرم‌میش، موجب سقوط جویی در مصرف بذر خواهند گردید. ولی با اعتماد‌های کم و بی‌خیال(22) اگر عملکرد دانه متنظر باشد، تراکم بونه مطلوبی وجود دارد که در آن، حداکثر عملکرد دانه حاصل می‌شود. در صورتی که تراکم بونه کم باشد، از پتانسیل تولید به نحو مطلوبی استفاده نشده و مواد فتوسنتزی به جای اینکه به مصرف تولید دانه برپرسند، صرف رشد رشته رشته‌ای با نانگی می‌شود(5).

نشان (Leaf Area Index)، تعدادی از گیاهان (Canopy) در داده‌های بزرگی که به دریای دست‌بپای به حداکثر فتوسنتز خاص، شامل صفحه بزرگی مطلوبی و وجود دارد(33). به عقیده اویان (16) در مراحل اویلی نمو گیاهی، همبستگی فتوسنتز سایه‌نشان با رشد برگ بیشتر است. ولی در مراحل نهایی نمو گیاه، نفوذی که در فتوسنتز سایه‌نشان گیاه زراعی مشاهده می‌شود. ممکن است به دلیل نفوذی در میزان نهایی برای مواد پرورده‌ای باشد (اندازه‌گیری).

شاخص سطح برگ گندم تا حدود جوش گل ده آفریش (می. باید (19)، افراشانی سطح سطح برگ، شدت در پایین سایه‌نشان کم شده و نه تنها آفریشی در وزن خشک برگ‌های پایینی مشاهده نخواهد شد. شدت 18، و (20)، بکه جنگلی برگ‌های وزن خود را به تدریج با قربانی رشد در میزان قبل موجود در آنها از داده‌های (30 متراً)

پوشه‌های فیزیولوژیک و عملکرد دانه گندم زمستان در پاییز به تراکم بونه... خواهد بود(30). کورنی و هگارتی (31) گزارش کردند که در یک آزمایش 5 ساله، اختلال معنی‌داری در عملکرد دانه در میزان‌های بذر 200-1000 کیلوگرم در هکتار مشاهده شد که در چین شرایطی استفاده از کرم‌میش، موجب سقوط جویی در مصرف بذر خواهد گردید. ولی با اعتماد‌های کم و بی‌خیال(22) اگر عملکرد دانه متنظر باشد، تراکم بونه مطلوبی وجود دارد که در آن، حداکثر عملکرد دانه حاصل می‌شود. در صورتی که تراکم بونه کم باشد، از پتانسیل تولید به نحو مطلوبی استفاده نشده و مواد فتوسنتزی به جای اینکه به مصرف تولید دانه برپرسند، صرف رشد رشته رشته‌ای با نانگی می‌شود(5).

نشان (Leaf Area Index)، تعدادی از گیاهان (Canopy) در داده‌های بزرگی که به دریای دست‌بپای به حداکثر فتوسنتز خاص، شامل صفحه بزرگی مطلوبی و وجود دارد(33). به عقیده اویان (16) در مراحل اویلی نمو گیاهی، همبستگی فتوسنتز سایه‌نشان با رشد برگ بیشتر است. ولی در مراحل نهایی نمو گیاه، نفوذی که در فتوسنتز سایه‌نشان گیاه زراعی مشاهده می‌شود. ممکن است به دلیل نفوذی در میزان نهایی برای مواد پرورده‌ای باشد (اندازه‌گیری).

شاخص سطح برگ گندم تا حدود جوش گل ده آفریش (می. باید (19)، افراشانی سطح سطح برگ، شدت در پایین سایه‌نشان کم شده و نه تنها آفریشی در وزن خشک برگ‌های پایینی مشاهده نخواهد شد. شدت 18، و (20)، بکه جنگلی برگ‌های وزن خود را به تدریج با قربانی رشد در میزان قبل موجود در آنها از داده‌های (30 متراً)
جدول 1. برخی اطلاعات هواشناسی منطقه آزمایش طی سال‌های 1380 تا 1382

<table>
<thead>
<tr>
<th>سال</th>
<th>میانگین دمای بیشتر دما (°C)</th>
<th>زراعی</th>
<th>کمیته دما (°C)</th>
<th>رطوبت نسبی (میلی‌متر)</th>
<th>بارندگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1380</td>
<td>20/26</td>
<td>12/44</td>
<td>20/26</td>
<td>64/62</td>
<td>4/0</td>
</tr>
<tr>
<td>1381</td>
<td>20/26</td>
<td>12/44</td>
<td>20/26</td>
<td>64/62</td>
<td>4/0</td>
</tr>
<tr>
<td>1382</td>
<td>20/26</td>
<td>12/44</td>
<td>20/26</td>
<td>64/62</td>
<td>4/0</td>
</tr>
</tbody>
</table>

کیهان‌زدتر به حداکثر شاخص سطح برق رسیدن. به عنوان مثال در سال آزمایش (81-85) در تراکم 500 بونه در متر مربع، شاخص سطح برق در 2 اردیبهشت (24 هفته پس از کاشت) به بیشینه رسید، در حالی که در تراکم 150 بونه در متر مربع حداکثر شاخص سطح برق در اول خرداد ماه (18 هفته پس از کاشت) حاصل شد. در سال دوم نیز حالتی به وضعیت قبل ماه‌های بود و حداکثر شاخص سطح برق در تراکم‌های 250 و 350 بونه در متر مربع به ترتیب در اردیبهشت و 8 خرداد به دست آمد (شکل 1 و 2). علاوه بر مقدار حداکثر شاخص سطح برق، طول دوره‌ای که شاخص سطح برق حداکثر است، نیز در اهمیت می‌باشد. (3) که طول این دوره در تراکم‌های 25 و 350 بونه در متر مربع، به ویژه در سال آزمایش بیشتر بود (شکل 2).

افزایش سریعی در شاخص سطح برق بسباس افزایش چند تابش پایین‌تر بود. در مراحل اولیه زندگی گیاه می‌شود (2). شاخص سطح برق، قبل از بسط شدن بیشتر شده، تأخیر زیادی (Crop Growth Rate (CGR)) بر سرعت رشد کیاوه گزینه‌ها دارد (13). بنابراین، هرچه سابهای کیاوه گزیده‌تر بهتر شود، نابش‌پردازی بیشتر باشد. بود بیشتر و دویان (15) کزارش کردن که با افزایش تراکم بونه، میزان شاخص سطح برق افزایش یافته و در نتیجه حداکثر شاخص سطح برق زودتر عملی گردید. در پژوهش آنال، در بیشترین تراکم (100 بونه در متر مربع) کیهان به بعد از 12 هفته، در کمترین تراکم (24 بونه در متر مربع) بعد از 17 هفته به حداکثر شاخص سطح برق رسیدند. همچنین، در پژوهش آنال در تراکم‌های زیادتر بونه، روغن کاهش شاخص سطح برق در انتهای فصل رشد سطح برق در هر نمونه، میانگین تعیین نمی‌شود و تعیین مراحل (Zadoks decimal code) رشد بونه‌ها از استفاده از کد زدکس (20) تهیه می‌گردد. مرحله رسیدن در تراکم کرتاهم‌زمان نیز به طوری که تایپ سری‌تکراری بین هفته دوم تا هفته سوم تهیه می‌شود. مدت نهایی بونه‌ها در هفته سوم تیماره از مanja به متر مربع یک بونه بالا رود. در مورد کردن بونه‌ها از سطح خاک انجام گرفت و عملکرد دانه و اجزای آن اندازه‌گیری شد.

MSTAT-C تجزیه واریانس داده‌ها با استفاده از نرم افزار C انجام شد. در تجزیه و تحلیل نتایج در مواردی که داده‌ها در سال با هم شاهد نبودند، میدان گری انجام شد و در غیر این صورت (مانند بررسی روند تغییرات شاخص سطح برق) ترتیب داده‌ای به صورت جداگانه بررسی گردید. در مورد عملکرد دانه پس از انجام آزمون دو نواده واریانس (آزمون بارتلت) و مشخص شدک که تکانه واریانس‌ها تجزیه مربوط انجام شد. مقایسه میانگین‌ها با استفاده از آزمون دانک انجام بود و برای رسم نمودارهای نرم افزار Excel استفاده قرار گرفت.

نتایج و بحث

روند تغییرات شاخص سطح برق (LAI)

روند تغییرات شاخص سطح برق تحت تأثیر تراکم بونه در دو سال آزمایش در شکل‌های 1 و 2 نشان داده شده است. در هر سال از ابتدا فصل رشد تراکم‌های کمتر بونه دارای سطح برق کم‌کننده بود. در مقابل با تراکم‌های زیادتر (350 و 450 بونه در متر مربع) بوده‌است. همچنین در تراکم‌های زیادتر بونه،
جدول ۲: زمان رسیدن به مرحله سبله دهی، گل دهی و رسیدن بیولوژیک بر حسب تاریخ (اعداد اصلی) و روز پس از کاشت (اعداد داخل پرانتز) در تاریخ‌های مختلف کاشت

<table>
<thead>
<tr>
<th>تاریخ کاشت</th>
<th>روز پس از کاشت</th>
<th>روز پس از کاشت (اعداد داخل پرانتز)</th>
<th>گل دهی</th>
<th>گل دهی (اعداد اصلی)</th>
<th>رسیدن بیولوژیک</th>
<th>رسیدن بیولوژیک (اعداد اصلی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 آبان</td>
<td>15 اردیبهشت</td>
<td>۱۳ اردیبهشت (۱۸۷)</td>
<td>۱۰ تیر (۹۷)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷ آذر</td>
<td>۲۰ اردیبهشت</td>
<td>۱۳ اردیبهشت (۱۸۸)</td>
<td>۱۷ تیر (۱۸۸)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۰ دی</td>
<td>۲۳ اردیبهشت</td>
<td>۱۳ اردیبهشت (۱۸۹)</td>
<td>۲۰ تیر (۱۹۰)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱: روند تغییرات شاخص سطح برج در تراکم‌های مختلف کاشت که نمودار شده است. سطح برج گم‌کوبی بود، بنابراین حداکثر شاخص سطح برج کاهش در نمونه برداری چهارم (۲۵ اردیبهشت) حاصل گردید، در تیمار تاریخ کاشت دوم (۱۵ آذر) از نظر تیمارها پیشتر بود و این بر تراکم و تاریخ کاشت تأثیر داشت (شکل ۳). تاریخ کاشت سوم دارای کمترین شاخص سطح برج، به ویژه در اواخر فصل شروع به تکرار آن را بود. این روند تا پایان فصل شرکت‌کننده برف (شکل های ۳ و ۴) جابجایی توجه است که کمترین برج سطح برج در تاریخ کاشت سوم تراکم گرم داده بود (مربوط به تراکم گرمی در شکل ۱۰.)

سریع تر بود (۴۰ که این امر را به افزایش یافته و کاهش دریافت ناتوان می‌باشد و در نتیجه افزایش سرعت منش شدن و از بین رفتن برج‌ها نسبت به داده‌ها. در پژوهش حاضر نیز این سریع تر شاخص سطح برج در تراکم ۱۵۰ بوته در متغیر در هر دو سال آزمایش مشهور بود (شکل های اول). اثر تاریخ کاشت بر روند تغییرات شاخص سطح برج در شکل های ۳ و ۴ نشان داده شده است. اگرچه در ابتدا فصل رشد، تیمار تاریخ کاشت اول (۱۵ آبان) دارای شاخص سطح برج بیشتر و تیمار تاریخ کاشت سوم (۱۵ دی) دارای شاخص سطح برج بیشتر بود.
شکل 2. روند تغییرات شاخص سطح برگ در تراکم‌های مختلف کاشت گندم رقم شیراز سال‌های 80-81

شکل 3. روند تغییرات شاخص سطح برگ در تاریخ‌های مختلف کاشت گندم رقم شیراز سال‌های 80-81

تغییرات وزن خشک

اثر تراکم بوته بر روند تغییرات وزن خشک در واحد سطح در سال آزمایش در شکل‌های 5 و 6 نشان داده شده است. با افزایش تراکم بوته وزن خشک بوته‌ها در متر مربع تقیبیاً در نوسان می‌باشد.
شکل ۴. روند تغییرات شاخه سطح برگ در تاریخ‌های مختلف کاشت گندم رقم شیراز سال‌های ۱۳۸۱-۸۲.

شکل ۵. روند تغییرات وزن خشک در تراکم‌های مختلف کاشت گندم رقم شیراز سال‌های ۱۳۸۱-۸۲.

سریع‌تری در وزن خشک در هر دو سال آزمایش مشاهده شد. در اواخر فصل رشد (بعد از گل‌دهی) تیمارها و وزن خشک بونه‌ها به حداقل مقدار رسیدند و تغییر چندانی در روند وزن خشک مشاهده نگردید (شکل‌های ۴ و ۵).

گره‌ها تراکم بونه‌ها، وزن خشک تک بونه کاهش
تأخر در کاشت، عملکرد بیولوژیک گندم کاهش یافته است. یک کاهش عملکرد بیولوژیک با تأخیر در کاشت در درجه اول به دلیل کاهش طول دوره رشد و کاهش طول دوره حفاظت (Ground cover) و در نتیجه کاهش دوباره درایف (Effective cover) دوره پوشش موثر از نتیجه اول یا اثرات خورشیدی توسط سطح بزرگ دریافت می‌شود. به ترتیب از تأخیر کاشت اول به چهارم ۱۳۷۵، ۱۳۷۴ و ۱۳۷۳ روز بود که این امر باعث کاهش مجموع نتایج درایفی توسط گیاه و کاهش عملکرد بیولوژیک گردید. در برخی پژوهش‌ها نیز کاهش عملکرد بیولوژیک در کاشتهای تأخیری به کاهش جمعیت بوده‌ها (۲۹). به دلیل کاهش تعداد نهال بذر به دست افتراق، پذیرش و یا کاهش تولید نهالها در پایین نسبت داده شده است، به طوری که در پژوهش‌های مورد مورد، میزان نهال کاهش گیاه‌ها در مورد افزایش تولید ماده خشک گیاهی نیز افزایش یافته است. این امر موجب به‌طور کلی، تأخیر در کاشت با کاهش تولید نهال همراه بوده است. از طرف دیگر، نجاح‌های تولید به دلیل استفاده از چاپ و میزان تولید نهالها در پایین نسبت داده شده در بهار خشک بیشتر نسبت به پنج‌های تولید شده در بهار به طور معمول تراکم‌های زیادتر بوده در طول فصل رسید از وزن خشک بیشتری در واحده سطح بزخودار می‌باشد.
تأثیر تأخیر کاشت بر روند تغییرات وزن خشک شاخص‌های در واحده سطح درک‌های و نشان داده شده است. تأثیر کاشت ۱۵ آبان از ایندندارهای واقع در بزرگ، وزن خشک بیشتری نسبت به تاریخ‌های کاشت ۱۵ به و ۱۵ دی و این موضوع به ویژه در سال‌های آزمایش مشهود بود (شكل‌۸). به نظر می‌رسد این امر به دلیل کاهش زودتر بزخودار با شرایط مساعدات محیطی، اولیه رشد بوده‌ها در این تاریخ کاشت بوده که موجب افزایش ماده خشک گیاهی گردیده است. اختلاف بین وزن خشک بوده‌ها در تاریخ کاشت دوم و سوم در اینجا به بود (شکل‌های و و) ویلی با بزخودار سریع بوده‌ها و تداوم آن این تفاوت‌ها زیادتر می‌شد. تأثیر کاشت زود هنگام با گسترش سریع تر بزرگ‌ها و در نتیجه دریافت میزان بیشتری از تابش خورشیدی همراه است (۲۹) و این امر موجب افزایش تولید ماده خشک گیاهی می‌شود. مکدونالد و گاردنر (۲۹) هم مشاهده کرده‌اند که با تأخیر در کاشت گندم عملکرد بیولوژیک کاهش می‌یابد. در پژوهش‌های کانتری و همکاران (۱۴) نیز با

شکل ۶: تغییرات وزن خشک در تراکم‌های مختلف کاشته‌بندی در سال‌های ۱۳۸۱-۸۲
کاشت، ثوابت زمان رسیدن به مراحل مهم نمودی در تیمارهای مختلف بسیار کمتر از یک ماه بود. به عنوان مثال، در تاریخ کاشت ۱۵ آبان ماه، بوته‌ها در دوم اردیبهشت وارد مرحله سنبله‌دهی شدند. در حالی که در تیمار تاریخ کاشت بعدی (۱۵ آذرماه) بوته‌ها با اختلاف ۱۱ روز در تاریخ ۳ اردیبهشت ماه وارد مرحله سنبله‌دهی شدند و در تیمار تاریخ کاشت سوم (۱۵ دی) با این که بوته‌ها در ماه دیترت کشت شده بودند، فقط بوده‌اند (۲۸). چون با تأخیر در کاشت تعداد نجات‌ها تولید شده در پاییز کاهش می‌یابد، این موضوع منجر به کاهش عملکرد بیولوژیک می‌شود (۸).

تعداد روز برای رسیدن به مراحل فنولوژیک
تعداد روز برای رسیدن به مراحل مختلف در جدول ۲ نشان داده شده است. با وجود اختلاف یک ماهه بین تاریخ‌های
وزن خشك بونه في نمط گل دهي
با تأخير در کاشت و وزن خشك بونه در واحده سطح هگام
کل ذه کمتر بود (جدول 3). به نظر مرسد در این آزمایش
استقرار سریعتر و رشد اولیه بیشتر به علاوه دوره پیش از
گل ذه طولانیتر باعث ازدیاد ماده خشک اولیه در واحد
سطح در زمان گل دهی در 15 آبان) شده
باشد. این در حالی که در تاریخ کاشت (سوم) (15 دی)، در
زمان کل ذه، وزن خشك بونه در واحده سطح کمتر
بود (جدول 3). مک دونالد و کارتر (28) هم معتقدند که
با تأخیر در کاشت کندم از 18 آوریل به 13 می، وزن خشك
بونه در زمان گرده افشانی از 960 گرم در مترمربع
کاهش یافت. آنچنان استدلال کردن که دریل ماده خشک
بیشتر قبل از کل ذه، با دریافت بیشتر تابش خورشیدی همراه
بوده است. به عقیده استر و فیشر (35) هم سایه‌انداز کننده
زمانی بسته می‌شود که میزان تولید ماده خشک بونه‌ها
حدود 150 گرم در مترمربع باشد. بیماری، گیاهی که زودتر
کشت شود، سریع‌تر به مرحله بیشتر شدن سایه اندام رشدی و
فصله به زمان کاشت کنا گل ذه از 19 روز کاشت
یافت.

به عقیده اسمیت و همکاران (33) در غایب نیاز به بهار،
اثر تأخیر کاشت بر فتوحات زیر کشت مخلوط بهار، بهبود صدی
طول مراحل نهایی اعمال و نتیجه آن رساندن همگام بونه‌ها
می‌باشد. در کشت گندم بهاری با تاریخ‌های متفاوت کاشت
پی این ماس و 17 آوریل، تاریخ‌های رسیدن به مرحله نهایی
امنیت به مزدیک بود. به نحوی که در همه حال پیدایش
سنبله در دو دوره روزه اتفاق افتادن و تاریخ‌های برداشت

روز دیترن (در تاریخ 13 درجه‌های ماه) به مرحله ساده دهی
رسیدن. برای تعداد روز تا مراحل گل ذه و رسیدن
فیوزولوژیک نرون مشاهده شد و با پیشرفت مراحل
نمون اخلاق زمانی رسیدن به مرحله مشخص در تاریخ‌های
مختلف کاشت، کاهش یافته. به طوری که در مراحل گل ذهی
اختلاف زمانی بین تاریخ کاشت اول و دوم مفهوم نرون بود (در
مقاومت با 11 روز بیشتر مرحله دهی). این نتایج حاکی از
آن است که با تأخیر در کاشت سرعت افزایش گیاه‌افزایش
می‌باشد و در راستای تأیید نتایج هزارش شده توسط
پژوهشگران مانند کریپی و فریس (26)، (21) و استم و
کریپی (36) می‌باشد.

چرا که کشیدن اول مراحل نموی، گیاهان کشت شده در
طول گیاه طولانی طی چند روز با چند هفته به بلع
رسیدند (3). (21) اثر تاریخ‌های مختلف کاشت بر مراحل
نمون کندم را بیشتر بررسی قرار داد و مشاهده کرد که تأخیر در
کاشت سبب کشیدن طول مراحل نموی (افزایش سرعت
نمون) می‌شود. در نزد طول بیشتری که در تاریخ‌های
9 و 5 سپتامبر و 21 گروه کشت شده بودند به ترتیب در
تاریخ‌های 29 زورین، 29 زورین و 5 زورین به مرحله گل ذهی
رسیدن که طول دوره کاشت کنا گل ذه در این سه تیمار به
ترتیب 265 و 265 و 265 روز است. همین طور با تأخیر در
کشت بونه‌ها از 6 سپتامبر (6 ماه تأخیر در کاشت)
بوت با فقط با اختلاف 16 روز به مرحله گل ذه رسیدند و
فصله به زمان کاشت کنا گل ذه دهی از 19 روز کاشت
یافت.

به عقیده اسمیت و همکاران (33) در غایب نیاز به بهار،
اثر تأخیر کاشت بر فتوحات زیر کشت غلظ بهار، بهبود صدی
طول مراحل نهایی اعمال و نتیجه آن رساندن همگام بونه‌ها
می‌باشد. در کشت گندم بهاری با تاریخ‌های متفاوت کاشت
پی این ماس و 17 آوریل، تاریخ‌های رسیدن به مرحله نهایی
امنیت به مزدیک بود. به نحوی که در همه حال پیدایش
سنبله در دو دوره روزه اتفاق افتادن و تاریخ‌های برداشت
جدول ۳ اثر تراکم بوته و تاریخ کاشت بر وزن خشک بوته های گند در زمان گلدهی

<table>
<thead>
<tr>
<th>تراکم</th>
<th>وزن خشک بوته هادر زمان گلدهی (گرم در مترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۳۸۲</td>
</tr>
<tr>
<td>۱۵۰۰</td>
<td>۵۱۳</td>
</tr>
<tr>
<td>۲۵۰۰</td>
<td>۴۸۲</td>
</tr>
<tr>
<td>۳۵۰۰</td>
<td>۴۹۶</td>
</tr>
<tr>
<td>۴۵۰۰</td>
<td>۱۲۵۶</td>
</tr>
<tr>
<td>۵۵۰۰</td>
<td>۱۱۴۵</td>
</tr>
<tr>
<td>۶۵۰۰</td>
<td>۱۰۸۱</td>
</tr>
<tr>
<td>۷۵۰۰</td>
<td>۹۱۱</td>
</tr>
<tr>
<td>۸۵۰۰</td>
<td>۶۸۶</td>
</tr>
</tbody>
</table>

در هر سنین میانگین های دارای جنوب می‌باشند.

تعداد پنجه در ده بهتر ۴۵ درصد کاهش یافته در آزمایش حاضر مشاهده شد که با افزایش تراکم از ۱۵۰ به ۲۵۰ بوته در مترمربع تعداد پنجه در هر بوته ۲۵ کاهش می‌یابد. جوزف و همکاران (۲۲) نیز گزارش کردند که با افزایش تراکم بوته، تعداد پنجه‌های نازک به بوته، کاهش یافته و در پیش‌ترین تراکم (۲۵۰ بوته در مترمربع) هر بوته به طور متوسط دارای یک پنجه بود، در حالی که در تراکم ۱۸۶ بوته در مترمربع هر بوته ۴ پنجه بارور و جدید داشت. در پژوهش پاکریچ و دونالد (۲۳۰) نیز مشاهده شد که با افزایش تراکم از ۱/۴ به ۱/۵ نیز افزایش یافته به طول فصل‌های پاییز و زمستان فرصت کمتری برای پنجه‌نیزی داشتند و به همین علت تعداد پنجه‌های خود را در اواخر بهار تولید کردند. برا یمنشال در تاریخ کاشت سوم (۱۵ دی)، مشاهده کردند.
شکل ۹. روند تغییرات پنجه زنی گندم در سه تاریخ کاشت ۱۵ آبان (الف) ۱۵ آذر (ب) و (ج) (اعداد سیاه‌گین در سال آزمایش می‌باشند).
در تاریخ‌های کاست زرد هنگام گندم در پاییز، بیشترین قیمت و شارایت مناسبی برای پنجه زنی دارند و بخشی از پنجه‌های خود را در این مره به انبار می‌رسانند. ولی در تاریخ‌های کاست بهترین فرصت گیری برای تولید پنجه در پاییز دارد (37). کاواتری و همکاران (14) هم نشان داده‌اند که تعداد پنجه در هر بونه در تاریخ کاست زرد هنگام گندم بیشتر بوده و با تأخیر در کاست، هر بونه پنجه کمتری تولید می‌کند. پنجه زنی در غلبه افزایش چهار یک صفت زنیکی است (19). ولی تا حد زیادی تحت تأثیر مدیریت‌های زراعی به ویژه تاریخ کاست و تراکم بونه فشار می‌گیرد (2). این عوامل ممکن است پنجه زنی را محدود نموده یا آن را تحریک کند. فرآیند بانج‌زدی بسته به پتانسیل زنیکی در این تاریخ‌های کاست است.
سافته این تیوجه چندان دور از انظار نمی‌باشد. با توجه و در نظر گرفتن ۳۰۳ همان نشان داده که در دامنه وسیعی از تراکم‌ها که در کنار (از ۱۷۴ تا ۱۹۸۸ بروز در متوسط) عملکرد داده به مقدار انگیزه که تاثیر قرار گرفت است، به طوری که در تراکم ۷ بروز در متوسط تغییر اولیت عملکرد معادل تراکم ۱۷۸ بروز در متوسط به دست آمده است. در واقع کنند و سایر غلات راهکاری برای تولید پنجه‌زی، از هم نظارت نمی‌توان نتایج به هم بروز نتیجه اینکه تراکم احتقان یافته‌شد. به نسبت به طوری که در تراکم ۷ بروز در متوسط که عملکرد دانه آنها چندان که تأثیر تراکم بروز نمی‌گیرد (۱ و ۶) باید به عقیده بخش از پژوهشگران (۱۲ و ۸) نتایج در شرایط محیطی مساعد از نظر رشد ممکن است افزایش تراکم بروز به افزایش عملکرد دانه دارد هم‌اکنون به برمکشن تاریخ کاشت، افزایش بروز به عملکرد دانه در جدول ۲ نشان داده شده است. این نتایج کاشت ۲۵ در ۰.۱ باید افزایش تراکم بروز عملکرد دانه روند که در کاشت سوم (۵۵دی ماه) و لی مشاهده شد (جدول ۵). در این نتایج کاشت، بیشترین عملکرد دانه در تراکم ۱۵۰ بروز در متوسط به دست آمده است. در حالی که در افزایش دانه به طوری که تراکم ۳۵۰ بروز در متوسط دارای بیشترین عملکرد دانه (۲۰۳ کرم در متوسط) بود (جدول ۵). این موضوع ممکن است دلیلی به این مقدار باشد که افزایش تراکم بروز به‌ناقص در شرایط سبک رشد مهی‌اند. تاریخ کاشت دوم به پژوهش حاضر، می‌تواند افزایش عملکرد هم‌اکنون (۸ و ۷) آلیه کورونی و ه‌گلیری (۲۳) کلوچ این شده که در افزایش دانه تراکم بروز در تاریخ کاشت برتر با افزایش عملکرد دانه هم‌اکنون در مراحل بعدی با کپکی بر سر آب، عنصر غذایی و تور رقابت کره و موجب اتفاقات مناسب سه (۲) در نهایت عملکرد دانه کاملاً به مسی که اثر تراکم در مصرف بر عملکرد دانه گذم از نظر آماری ممکن است. با توجه به ویژگی پنجه‌زی در کنار هم‌اکنون ۱۳۸۴ پاییز.
جدول ۲. برهمکش تاریخ کاشت و تراکم بونه بر عملکرد دانه غندم رقم شیراز

<table>
<thead>
<tr>
<th>عملکرد دانه(گرم در مترمربع)</th>
<th>تراکم (بوته در مترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ ذاری</td>
<td>۱۵ آبان</td>
</tr>
<tr>
<td>۵۲۵ Aa</td>
<td>۵۵۷ Aa</td>
</tr>
<tr>
<td>۵۰۱ Aa</td>
<td>۵۵۴ Aa</td>
</tr>
<tr>
<td>۴۷۲ Aa</td>
<td>۴۷۴ Bb</td>
</tr>
<tr>
<td>۴۵۸ Aa</td>
<td>۴۹۵ ABa</td>
</tr>
</tbody>
</table>

پژوهش دیده شده، همراه نخواهند بود (جدول ۲). از سوی دیگر، تاریخ کاشت زود هنگام هم باعث می‌شود شروع آغازگر سببک‌ها و تنش تعداد بیشتری برگ را سایه اصلی و پنجه‌های بسیار تمیز برای برداشت و پنجه‌های مساعد داده نشود و در نتیجه، در تراکم‌های کمتر بونه، زودتر قابل‌بیشتری برای عملکرد دانه خواهد داشت (۲۵).

در مجموع، نتایج پژوهش حاضر نشان داد که برای انطباق بهتر مراحل رشد و نمو با شرایط مساعد محیطی و دستیابی به بیشترین عملکرد دانه در غندم زمستانه رقم شیراز، کاشت گندم مطابق مورد استفاده

1. افیوئر، د.، اقدام و د. صادقی. ۱۳۸۰. بررسی الکترات تاریخ کاشت و میزان بذر بر عملکرد دانه و خصوصیات زراعی ارقام جدید غندم. کارشناسی. خریداری کوبه‌ای اصفهان. ۹ صفحه.
2. امام، م. ۱۳۸۲. زراعت گل. انتشارات مهندسی نشر دانشگاه شیراز.
3. خواص ویژه، ر. ۱۳۸۱. اصول و مبانی زراعت. انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان.
4. رادمهر، م. ۱۳۸۱. عملکرد بیشتری برگ نهاد که برداشت و پنجه‌های بسیار تمیز برای عملکرد دانه یافته نشود و در نتیجه، در تراکم‌های کمتر بونه، زودتر قابل‌بیشتری برای عملکرد دانه خواهد داشت (۵).
5. دانشجوی، د.، افیوئر و د. صادقی. ۱۳۸۰. بررسی الکترات تاریخ کاشت بر عملکرد دانه و اندازه مجدد مواد ذخیره‌ای جو. دانشگاه کشاورزی ۱۱: ۱۲-۱۳.