قسمت منحنی‌های حداکثر بارش محتمل ۲۴ ساعت‌های با روش‌های مختلف آماری و مقایسه آن با روش سینوپتیک برای ایران

مهدی خلیلی پربرلویی و علیرضا سلسل‌خواه

چکیده

حداکثر بارش محتمل مقدار بارشی است که امکان وقوع آن در یک ایستگاه، یک منطقه یا یک جوهر، آبی‌این و وجود دارد، یا حداکثر کردن منطقی عوامل هواشناسی به گونه‌ای که رگیار حداکثر تولید شود. حداکثر بارش‌های محتمل از این نظر حاصل است که تأثیرات نیرویی که می‌تواند منطقه‌ای یا محلی و جغرافیایی اقلیمی باشد، قبلاً آب را باز کاری از آب‌ها، آب‌های نورخور و دیگر عوامل نگهداری و حفظ می‌نماید. در این مقاله مقاله کلمی تخمین زده می‌شود که می‌تواند به‌منظور منطقه‌ای غرب کشور از روش‌های مختلف این بارش روزانه به دست آورده شود. در روش اصولی از عوامل مانند دمای نقطه شیب، سرعت باد و شدت باد در اینکه حاکم عوامل هواشناسی استفاده می‌شود. روش دوم بارش آماری است که در آن از بسط و تحلیل آمار بارندگی حداکثر در چند هفته از استفاده می‌گردد. در این بطور تخمین از حداکثر بارش ۲۴ ساعت جمع‌آوری شده از گزارش‌های ایستگاه‌های سازمان هواشناسی و وزارت نیرو در یک دوره ۱۵ ساله با پیش‌بینی حداکثر بارش محتمل ۲۴ ساعت‌های با روش‌های مختلف آماری، برای مناطقی از ایران که در آنها مقادیر حداکثر بارش محتمل ۲۴ ساعت‌های با روش سینوپتیک محاسبه شده بود، یک مورد گردید.

بررسی‌ها نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک دارای اختلاف‌های می‌باشند، ولی نشان داد که مقادیر حداکثر بارش محتمل با روش سینوپتیک دارای اختلاف‌های می‌باشند، ولی نشان داد که بررسی‌ها نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک دارای اختلاف‌های می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند. نشان داد که مقادیر حداکثر بارش محتمل بین ۲۴ ساعت محاسبه شده با روش سینوپتیک با روش‌های آماری اختلافات به سمت بالا و سمت پایین می‌باشند.
مقدمه

هنگام بررسی رویدادهای نادر هیدرولوژی، ممکن است این پرسش مطرح شود که یا حداکثر سیلاب محتمل PMF (Probable Maximum Flood) بررسی‌های احتمالی گویای بی‌نشانی بودن مقدار حداکثر سیلاب محتمل است، زیرا با کاهش احتمال وقوع، بر سرتقاء افزوده می‌شود و همچنین که احتمال وقوع سیلاب به سمت صفر می‌نماید، شدت آن به پیشامان می‌خواهد دردست. ولی چون سیلاب محصول مستقیم بارش است، می‌توان پایداریت محدودیت‌های فیزیکی سبب کنید شدت بارش، و در نتیجه سیلاب خواهد شد. بنابراین، می‌توان ادعای کرد که شدت بارش‌های یک حد نهایی منطقه‌ای است، که به PMP (Probable Maximum Precipitation) یا حداکثر بارش محتمل معروف می‌باشد (23). پارس و همکاران (11) سقف بارشی را که به لحاظ فیزیکی و منطقی در یک دوام معین از سال در محدودیت مشخص قابل وقوع باشد، عنوان حداکثر بارش محتمل تعیین نموده‌اند. کاریکان و همکاران (12) در سال 1998 شرایط جغرافیایی را نیز به تعیین فواید از دست نمی‌دهند.

حداکثر بارش‌های محتمل از این نظر حائز اهمیت است که تأسیسات هیدرولوژی بر اساس آن طراحی می‌شود. بنابراین، چنین تأسیساتی نیازی به هیچ گاه از تغییر بارش‌ها و سیلاب‌ها در معرض خطر قرار نگیرند. ازجمله این تأسیسات اینه می‌توان سرریزه‌های استراتیکی سه‌ا که توسط ۷ می‌تواند خراب شدن شماری از سده‌های ساخته شده، مانند سد‌‌ها و دیگر ابعاد گذرانده شده است، و سد جانستون در ابتدای پنج‌سال‌های آمریکا (۲۱)، و همچنین دیگر جهت‌های ایندازه، توجه بیشتری به استانداردهای طراحی برای بارش‌های پارسیان به عمل آمده است.

تخصیص هر مورد نیاز در طراحی سده‌های زیرگر از میزان موردبرد در پیشرفت محتمل و گریز از استانداردهای پیش‌زمینه (Standard Project Storm) رگیر استانداردپژوه به وگرایی گفته می‌شود که در مراحلی شرایط هوایشان و

مواد و روش‌ها

حداکثر بارش‌های محتمل را می‌توان به دو روش آماری و سینوتیکی برمود ارور خویشن. یکی از شرح نتایج روش‌های آماری مورد استفاده در این پژوهش و روش سینوتیکی پرداخته می‌شود.

روش‌های آماری

روش هرشفلد (۱۴)

در این روش حداکثر بارش محتمل با توجه به معاونه عمومی فرکانس، ارائه شده توسط جایا (۱۰) به صورت زیر محاسبه می‌شود:

\[
X = \bar{X} + KS
\]

که در آن:
\[
\bar{X} = \text{میانگین توزیع شده داده‌ها}
\]
\[
K = \text{ضریب فرکانس}
\]
\[
S = \text{انحراف میانگین توزیع شده داده‌ها}
\]

این مقادیر در پایه منحنی‌های مربوط به دست می‌آید (۲۱).

روش پیشنهادی (۸)

بتلاهی برای کاستن مشکل کمبود آمار و کم کردن تأثیر زیاد

۲
مشاهدات استنباطی، رویکرد ترسری محاسبه برای تعیین یک
واقعه هیدرولوژی، با دو روش برگشتی به مراتب بیشتر از تعداد
سالهای آماری پیشنهاد کرده است. در این روش، برای مقایسه با
مشکلات کمی مدل ویلیی، می‌توان از مقدار میانه آمار
موجودی که توصیف خویش از تراکم مرکزی جمع‌یایی ریزمان و
جمعیت‌های مدل ویلیی ارائه می‌دهد، به‌هنو دریافت. در این
روش مربیه و شمار مشاهدات به شرح زیر، به صورت بدون
بعد تعیین می‌شود:

\[M = \frac{(N+1)}{2} \]

\[q_i = \left(Q_i \right)^{1/2} / \left(Q_i + Q_M \right)^{1/2} \]

\[n_i = \left(N_i \right)^{1/2} / \left(N_i + N_M \right)^{1/2} \]

که در آن:

شماره میانه داده‌ها = M

شمار کلی داده‌های موجود = N

مقدار نیم‌پایه به‌شماره N/2 هنگامی که مقدار ن
به شکل مقیاس آماری Q، مقیاس نیم‌پایه، N/2 به

افزایش می‌زند، به‌شکل بالا شده باشد.

مقدار آماری = Q، هنگامی که مقدار Q به ترتیب

کاهش می‌یابد. به‌شکل زیر نوشته شود:

\[n_T = 1 / \left(1 + \left((T + 1) / 2 \right) \right) \]

که در آن:

مقدار پست داده شده N برای دوره برگشت T سال

شمار سن آماری گسترش داده شده = T

\[n_T = n_i / n_1 \]

ولی این که نسبت T/n و تیزی نسبت T/n

نوقیت باقی مانده به طور منظم، می‌توان انتظار داشت که با

افزایش بدون حد می‌شود.
استفاده در محاسبه حداکثر بارش محتمل 24 ساعت به روش سیونیکی در حوزه‌های کرخه، مارون، شافیرود و سد 15 خرداد 1391 (30 و 31 خرداد) نماید، به دلیل سختی محاسبه بارش فشردهی برا یکه‌به-کار و پیچیدگی اعمال نشان دهنده شده است. (Surfer).

۱. مقایسه حداکثر بارش محتمل 24 ساعت به روش سیونیکی، بی‌لامه‌ی و بین‌لامه‌ی اصلاح شده ترسیم می‌گردد. نمونه‌های آزمایش زمینی از ناحیه‌های تراز و حوزه مارون به روش فشردهی بارش در شکل ۲ ارائه شده است. (5).

با مختصات ناحیه حداکثر بارش محتمل و مقایسه نتایج حداکثر بارش محتمل 24 ساعت به روش سیونیکی و روشهای مختلف آماری برای حوزه‌های مطالعاتی در جدول ۲ ارائه شده است. مجموعه‌ی نشان دهنده که: ۱. هیچ نکاتی از مقایسه حداکثر بارش محتمل 24 ساعت در روشهای مختلف آماری و سیونیکی به هم هم‌وامن ندارند. که غیر معقول نیز به نظر نمی‌رسد. زیرا، اگر این‌گونه انتخاب شده به روشهای آماری، دقیقاً همان ایستگاه‌های انتخاب شده در روشهای آماری، تأثیر سیونیکی برای تحلیل نیست باشد، و طول دوره آماری نیز دقیقاً برابر بوده تأثیر. نتیجتاً که در روشهای مختلف آماری و سیونیکی یکسان است، محاسبه بارش از آنها استفاده می‌شود و بر است. (6).

۲. مقایسه حداکثر بارش محتمل 24 ساعت محاسبه شده روش بین‌لامه‌ی نسبت به روشهای آماری نیز به مقایسه نظر روش سیونیکی نزدیک‌تر است.

روش کوهستانی

مقدار بارش با توجه به سهولت و سرعت جریان هوای مرطوب، ارتقاء و گچ‌بری برگرفته‌شده کوهستان تغییر می‌پذیرد. با اردو حداکثر بارش محتمل در نواحی کوهستانی به ترتیبی از دو عامل زیر، بستگی دارد (۸ و ۱۸): ۱. بارشهای کوهستانی که تحت تأثیر کوهستانی می‌باشد ۲. بارشهای هم‌گرا ناشی از جریان انتقال، که مستقل از تأثیر کوهستان است، به‌طور دقیق بوده در تخمین حداکثر بارش محتمل در این نواحی مورد استفاده قرار گرفته.

داده‌های ارسالی

در این پژوهش، امار لازم در مورد حداکثر بارش 24 ساعت است. ایستگاه‌های سازمان هوشمندی و بارشهای نقش‌برداری و نمی‌توانند (۱۳۷۰) تهیه گردد. سپس ایستگاه‌های دارای خلو آماری مشخص، و با توجه به موقوفات جغرافیایی ایستگاه‌های مجاور آنها، و از طریق رگرسیون‌گردیده، عملاً برآوردها آمار انجام و انتخاب ایستگاه‌های نهایی با آمار حداکثر ۱۵ سال پیش‌تر صورت یافته است. این اثر بر ارزش‌های آماری داده‌های ارسالی، بزرگ‌تر ۱۳۴ آماری است. ایستگاه‌های هوشمندی و ۴۱۱ ایستگاه واردات نیروی انتخاب شده و در تحلیل‌ها مورد استفاده قرار گرفته‌اند. موضعی این ایستگاه‌ها در شکل ۱ ارائه شده است. مقایسه حداکثر بارش محتمل 24 ساعت با روشهای مختلف آماری فشردهی، بی‌لامه‌ی و بین‌لامه‌ی اصلی‌شده برای این ایستگاه‌ها با صورت مشاهده است. این نتایج به تهیه (Fox Pro) برای این ایستگاه‌ها با صورت ناظری با استفاده از برنامه‌های کامپیوتر که به زبان فاکس پرو شده بود، محاسبه گردیده (۴). سپس کلبه ایستگاه‌های مورد
نمودار هیمالیه هم‌تعداد حداکثر بارش محلول در ۲۴ ساعت، با روش هواشناسی مورد استفاده در پژوهش به پرده‌ای استگاه‌های باران‌سنجی وزارت نیرو و سازمان هواشناسی مورد استفاده در پژوهش

نمودار ۲. هیمالیه هم‌تعداد حداکثر بارش محلول در ۲۴ ساعت به روش هواشناسی برای حوزه‌های مارون (میلی‌متر)
جدول 1. مساحت و حجم بارش با توجه به شکل 2 برای حوزه مارون به روش هرشتیلد

<table>
<thead>
<tr>
<th>حجم بارش (متر مکعب)</th>
<th>سطح جغرافیایی (کیلومتر مربع)</th>
<th>سطح تجمعی</th>
<th>میانگین بارش محتمل (کیلومتر مربع)</th>
<th>مقدار بارش (میلیمتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44381/12</td>
<td>1577/90</td>
<td>1577/90</td>
<td>280</td>
<td>< 280</td>
</tr>
<tr>
<td>710/05</td>
<td>3796/85</td>
<td>3796/85</td>
<td>300</td>
<td>320-380</td>
</tr>
<tr>
<td>29424/10/0</td>
<td>2051/77</td>
<td>2051/77</td>
<td>345</td>
<td>380-420</td>
</tr>
<tr>
<td>13871/08</td>
<td>4842/15</td>
<td>4842/15</td>
<td>480</td>
<td>480-520</td>
</tr>
<tr>
<td>950/08</td>
<td>1087/90</td>
<td>1087/90</td>
<td>480</td>
<td>520-560</td>
</tr>
<tr>
<td>400/08</td>
<td>598/39</td>
<td>598/39</td>
<td>480</td>
<td>500-540</td>
</tr>
<tr>
<td>337/21</td>
<td>337/21</td>
<td>337/21</td>
<td>480</td>
<td>520-560</td>
</tr>
<tr>
<td>620/02</td>
<td>328/6</td>
<td>328/6</td>
<td>480</td>
<td>560-600</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. میانگین حداکثر بارش محتمل 24 ساعت به روش‌های مختلف آماری و سیستمیسکی برای حوزه‌های مورد بررسی

<table>
<thead>
<tr>
<th>حوزه</th>
<th>میانگین حداکثر بارش محتمل (میلی‌متر)</th>
<th>میانگین بارش محاسبه شده (کیلومتر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روستای سیستانی</td>
<td>474/184</td>
<td>115/111</td>
</tr>
<tr>
<td>روستای شفافود</td>
<td>141/41</td>
<td>115/111</td>
</tr>
<tr>
<td>روستای ماورون</td>
<td>140/40</td>
<td>115/111</td>
</tr>
</tbody>
</table>

مقدار بارش محتمل 24 ساعت به روش‌های:
1. بدون پنجره اصلاح شده و بدون شیفتی هم نزدیک می‌باشد.
2. بدین‌کdere از قائم منطقه‌ای و وضعیت جهیه‌ای مختصات ورود به مناطق مورد مطالعه، نهایتی عاملی که به نظر می‌رسید می‌تواند بیش‌تر از مقدار حداکثر بارش محتمل به روش سیستمیسکی دخالت نموده و احتمالاً اثر اثر آن در محاسبه‌ها بر روی حداکثر بارش محتمل 24 ساعت به روش‌های مختلف آماری و سیستمیسکی بوده باشد، عامل ویژه‌ای ها است. به همین دلیل، مقدار میانگین حداکثر محاسبه روش‌های سیستمیسکی برای حوزه‌های مورد مطالعه عامل آماده‌سازی سیستمیسکی و میانگین حداکثر محاسبه سیستمیسکی در استدلال‌های معرف برای حوزه‌های مربوط به سایر مشابهاتی که در محاسبات حداکثر بارش محتمل نقش داشته‌اند، برای دوره پایه 20 ساله‌ای
چند معیار حداکثر سالانه میانگین حداکثر به میانگین متوسط رطوبت نسبی و حوزه‌های مورد بررسی

<table>
<thead>
<tr>
<th>حوزه‌های مورد بررسی</th>
<th>میانگین حداکثر رطوبت نسبی</th>
<th>میانگین حداکثر به میانگین متوسط رطوبت نسبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرخه تا پای پل</td>
<td>5/100</td>
<td>4/64</td>
</tr>
<tr>
<td>سد ۱۵ خرداد</td>
<td>4/78</td>
<td>4/78</td>
</tr>
<tr>
<td>شفا رود</td>
<td>4/398</td>
<td>4/398</td>
</tr>
<tr>
<td>مارون</td>
<td>4/380</td>
<td>4/380</td>
</tr>
</tbody>
</table>

ساعت‌های وامشی سه‌ماهه مورد استفاده قرار گرفت. پس از انجام محاسبات برای ایستگاه‌های هم‌دیت که در حوزه رسم و میانگین حداکثر بارش محاسبه گردید، مقدار بستimation حداکثر بارش محاسبه گردید. نشان دهنده حداکثر بود، نتایج آن مبنای بارش حوزه‌های مورد استفاده در پژوهش، در جدول ۴ ارائه گردید.

همان‌گونه که دیده می‌شود، مقدار حداکثر بارش محاسبه ۲۴ ساعت روش وامشی شده بعنوان نسبت به روش‌های دیگر آماری، به اعداد حاصل از روش سپونشیکی نزدیک‌تر است. بنابراین، ضریب رطوبت برای کلیه ایستگاه‌های سامانه‌های هواشناسی با طول دوره آماری حداقل ۱۰ سال، که موافقین آنها در شکل مشخص شده است، محاسبه و مقبول حداکثر بارش محاسبه ۲۴ ساعت وامشی شده برای این ایستگاه‌ها که جمعاً ۱۱ ایستگاه بوده، به دست آمده. این نتایج تعمیم گرفته‌اند به کلیه ایستگاه‌های سامانه‌های هواشناسی و وزارت نیرو و پویش کامل‌تر ایران، رابطه میان مقدار حداکثر بارش محاسبه ۲۴ ساعت به دست آمده با روش وامشی شده بعنوان یکی از روش‌های آماری برای ۱۷۱ ایستگاه بررسی گردید. این معادلات با جریان‌های مربوط به ۵ راه آمد است.

چنان که دیده می‌شود، کلیه روش‌های آماری محاسبه حداکثر بارش محاسبه ۲۴ ساعت هسته‌سازی خودی با روش به‌معنی وامشی شده دارند. ولی معادله‌های دیگر دارای کمترین خطای معیار و بیشتر ضریب تخمین مورد و محاسبه با نم‌بی‌بی سیار ساده است. بنابراین، در محاسبه حداکثر بارش محاسبه ۲۴ ساعت، داده‌های منطقه‌ای و ایستگاه‌های موجود در منطقه و مناطق مجاور آن، محاسبه‌های هم‌دیت به حداکثر بارش محاسبه ۲۴ ساعت تریسمی و با استفاده از تجربی‌های گیری برای محاسبه حداکثر بارش محاسبه ۲۴ ساعته به همراه است.
جدول 4: حداکثر بارش محتمل 24 ساعت برای حوزه‌های مورد بررسی به روش‌های مختلف آماری

<table>
<thead>
<tr>
<th>حوزه</th>
<th>مقدار حداکثر بارش محتمل 24 ساعت (میلی‌متر)</th>
<th>سینوپتیکی</th>
<th>پلاهمی</th>
<th>پلاهمی اصلاح شده</th>
<th>هرشفلد</th>
<th>پلاهمی</th>
<th>پلاهمی اصلاح شده</th>
<th>هرشفلد</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرخه تا پای بیل</td>
<td>190</td>
<td>270</td>
<td>300</td>
<td>110</td>
<td>160</td>
<td>130</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>مارون</td>
<td>250</td>
<td>300</td>
<td>345</td>
<td>115</td>
<td>160</td>
<td>130</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>سد 15 خرداد</td>
<td>100</td>
<td>330</td>
<td>340</td>
<td>130</td>
<td>170</td>
<td>140</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>شفارود</td>
<td>190</td>
<td>330</td>
<td>330</td>
<td>130</td>
<td>170</td>
<td>140</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

جدول 5: معادله‌های به دست آمده بین مقادیر حداکثر بارش محتمل 24 ساعت حاصل از روش پلاهمی و پلاهمی اصلاح شده و روش‌های دیگر آماری محاسبه حداکثر بارش محتمل 24 ساعت

<table>
<thead>
<tr>
<th>معادله به دست آمده</th>
<th>ضریب تعیین</th>
<th>سطح معنی‌دار</th>
<th>معیار خطای متوسط</th>
<th>شمار مشاهده‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig-level</td>
<td></td>
<td>SE</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Pm = 1/9Pb</td>
<td>0/80</td>
<td>0/0000001</td>
<td>3/23</td>
<td>171</td>
</tr>
<tr>
<td>Pm = 27/1 + 1/0/93Pb</td>
<td>0/89</td>
<td>0/0000001</td>
<td>3/93</td>
<td>171</td>
</tr>
<tr>
<td>Pm = 41/4 + 1/0/47Ps</td>
<td>0/50</td>
<td>0/0000001</td>
<td>3/50</td>
<td>171</td>
</tr>
<tr>
<td>Pm = 10/0 + 1/0/49Ps</td>
<td>0/77</td>
<td>0/0000001</td>
<td>5/77</td>
<td>171</td>
</tr>
</tbody>
</table>

روش پلاهمی PMP = Pm
روش پلاهمی اصلاح شده PMP = Pm
روش هرشفلد PMP = Pm
روش پلاهمی Ps
روش پلاهمی اصلاح شده Ps

شکل 3: ایستگاه‌های سازمان هوشمند با آمار رطوبت سال‌های بیشتر
شکل ۴. منحنی‌های حداکثر بارش محتمل ۲۴ ساعت و استنجش شده (میلی‌متر) با استفاده از آمار رطوبت ایستگاه‌های سازمان هواشناسی

روش میانگین وری و با توجه به مساحت سطوح محصور بین منحنی‌های هم‌مدار، مقادیر میانگین منطقه‌ای محاسبه شد.

دکتر قدسی، رئیس وزارت نیرو، سازمان آب و برق خوزستان.

۱. بیانیه. ۱۳۶۴. بررسی حداکثر بارندگی محتمل (PMP) و رودخانه‌های مارون-الله و جراحی. شرکت مهندسی مشاور مهاب قهدری مشاور مهاب قهدری، وزارت نیرو، سازمان آب و برق خوزستان.

۲. بیانیه. ۱۳۶۴. بررسی حداکثر بارندگی محتمل (PMP) و رودخانه شفرود. شرکت مهندسی مشاور مهاب قهدری، وزارت نیرو، سازمان آب و برق خوزستان.

۳. بیانیه. ۱۳۶۴. بررسی حداکثر بارندگی محتمل (PMP) و رودخانه کرخه. شرکت مهندسی مشاور مهاب قهدری، وزارت نیرو، سازمان آب و برق خوزستان.

۴. بیانیه. ۱۳۶۴. بررسی حداکثر بارندگی محتمل (PMP) و رودخانه کرخه. شرکت مهندسی مشاور مهاب قهدری، وزارت نیرو، سازمان آب و برق خوزستان.

۵. خلیج پریلوطی. م.۱۳۷۴. تخمین حداکثر بارش محتمل ۲۴ ساعت برای ایستگاه‌های باران‌سنجی ایران با روش‌های آماری و مقایسه با روش سیونیکی، بیشترین کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شیراز.
6. غلیظی، ا. 1387. اصول مبودوزی کاربردی. انتشارات بنیاد فرهنگی پژوهشی، مشهد.
7. رضوی، ز. 1371. برآورد حداکثر بارش محتمل به روش‌های مختلف. مطالعه موردی برای حوزه آبریز طلیقان. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه تهران.
8. فهرمان، ب. و. س. سپاسخواه. 1369. تعیین مقادیر حدی پارنگی (PMP) در نقاط جنوبی ایران. اولین سمینار مهندسی رودخانه، اهواز، 5 – 8 آبان 1369.