اثر چرای دراز مدت بر پویایی کربن لاشیرگ در اکوسیستم مرتعی سیزکوه
استان چهارمحال و بختیاری

فايز رئیسي، اسمايل اسدی، و جهانگرد محمدی

چکیده
در اکوسیستم‌های مرتعی، چرای مفرط باعث تغییراتی در پویایی کربن و یکپارچگی گیاهی و ماده آلی خاک می‌شود. هدف این پژوهش بررسی کیفیت شیمیایی پویایی سیزکوه غنی و محدود و ارتباط آن با پویایی کربن لاشیرگ تحت مدیریت‌های مختلف چرا و فرق در میزان سیزکوه می‌باشد. این بررسی در مرتع مشجر منطقه سیزکوه (استان چهارمحال و بختیاری) صورت گرفت. نمونه پزشکی از گیاهان مرتعی غالب و چگن (Agropyron intermedium) و چگن (Juncus stenophylla) شامل اگروپایون (Hordeum bulbosum) جو پیازدار و چگن (Juncus stenophylla) شش نمونه در یک سال برداشت و مقدار نیترژن، فسفر و چربی در نمونه‌ها اندازه‌گیری شد. علاوه بر این، سرعت تجزیه لاشیرگ سیزکوه پس از یک سال خواباندن تحت شرایط طبیعی تعیین گردید. مقدار متوسط نیترژن در لاشیرگ آگروپایون، جنگ و پیازدار به ترتیب 0.27٪ و (C/N) برای گونه‌ها 0/98 درصد بود. نتایج با آگروپایون در نظر گرفتن 0/50/15/1 کربن در ماده خشک، نسبت کربن به نیترژن (C/N) آگروپایون، جنگ و پیازدار به ترتیب 6/37/7/13 و 5/1/3 درصد بود. نتایج پژوهش این کربن نشان می‌دهد که اختلاف بین سرعت تجزیه لاشیرگ در منطقه چرا و منطقه فرق می‌تواند دارای خاصیت (p<0.05) باشد که فرآیند تجزیه ساپر خصوصیات کیفی لاشیرگ و شرایط محیطی خاک تأثیر گذار خواهد بود. به‌تلباها در میانه‌های تجربی کربن، نتایج آن به روش تجزیه‌پذیری به مراتب ملموس‌تر از پیش اثبات شد.

واژه‌های کلیدی: نمونه، نیترژن، تجزیه‌پذیری لاشیرگ، کیفیت لاشیرگ، چرا، مرتع، سیزکوه، چهارمحال و بختیاری

1. به‌ترتیب استادیار و دانشیار دانشکده کشاورزی، دانشگاه شهید چمران. 
2. استادیار مرتع، دانشکده کشاورزی، دانشگاه شهید چمران.

81
مواد آلی نقش بسیار مهمی بر مقیاس و قابلیت جذب عناصر غذایی از لب را بوجود آوردن هرگونه خاک و نباتات دارند. معمولاً برداشت پوشش گیاهی توسط دام، باعث کاهش و رود بقا گیاهی به خاک و در نتیجه افزایش محلول عناصر غذایی از می‌شود. کاهش سرعت ورود این مواد به خاک، تهیه منبع عرضه کننده نیتروران، فسفر و گوگرد در خاک مانع طبیعی به شمار می‌آید که تحت تأثیر قرار می‌دهد (۶). معمولاً هرگونه کاشت در ورود یا بقا گیاهی به خاک موجب اختلال در فعالیت مواد تشییع و تشییع مقداری مواد به جا مانده و در ضریب برحسب بقا گیاهی متنی به خاک و تجزیه سریع آنها باعث افزایش عناصر غذایی خاک می‌گردد. در نتیجه کاهش عناصر غذایی می‌تواند به دنبال آن باعث می‌شود که افزایش سرعت روان آب (runoff) کاشت کردن و عناصر غذایی خاک و افزایش فشردگی و تراکم آن می‌شود که یکی از این است. در صورت مفروض و مستلزم برای آن در آب استخراج کامل پوشش گیاهی توسط دام، باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد (۲). 

(۷) نتایج بررسی‌های گذشته حاکی از این است که باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد و افزایش فشردگی و تراکم آن می‌شود که یکی از این است. در صورت مفروض و مستلزم برای آن در آب استخراج کامل پوشش گیاهی توسط دام، باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد (۲). 

(۷) آن بررسی‌های گذشته حاکی از این است که باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد و افزایش فشردگی و تراکم آن می‌شود که یکی از این است. در صورت مفروض و مستلزم برای آن در آب استخراج کامل پوشش گیاهی توسط دام، باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد (۲). 

(۷) نتایج بررسی‌های گذشته حاکی از این است که باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد و افزایش فشردگی و تراکم آن می‌شود که یکی از این است. در صورت مفروض و مستلزم برای آن در آب استخراج کامل پوشش گیاهی توسط دام، باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد (۲). 

(۷) نتایج بررسی‌های گذشته حاکی از این است که باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد و افزایش فشردگی و تراکم آن می‌شود که یکی از این است. در صورت مفروض و مستلزم برای آن در آب استخراج کامل پوشش گیاهی توسط دام، باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد (۲). 

(۷) نتایج بررسی‌های گذشته حاکی از این است که باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد و افزایش فشردگی و تراکم آن می‌شود که یکی از این است. در صورت مفروض و مستلزم برای آن در آب استخراج کامل پوشش گیاهی توسط دام، باعث افزایش سرعت رون آب (runoff) کاشت کردن و عناصر غذایی خاک می‌گردد (۲).
مواد و روش‌ها

منظقه مورد بررسی در یک حوزه از مرتع سیبرکو در ارتقافات زاگرس تمرکز در اسناد چهارمال و ناحیه‌های مرتفع کرد. این منطقه در مرکز ارتفاعات و در فصله 120 کیلومتری جنوب شرقی شهرک (مرکز استان) واقع شده است. منطقه کوهستانی و ارتفاع متوسط 3000 متر بالاتر از سطح دریا و مساحت بانزگی 850000 متر مربع است. نتیجه‌ی 47 درجه شایسته گردان که حداکثر مطلوب آن در نیم‌های ماده و حداکثر مطلوب درجه حرارت در دی ماه گزارش شده است (1). از نظر نویزگرایی، منطقه در یک درجه برگ قرار دارد و برگ‌هایی و صحرایی از این نوع پیوسته به یکدیگر باعث ایجاد ظهوری بی‌پایان شده است. نسبتاً نیم‌گیوهایی که حداکثر مطلوب حداکثر مطلوب یا نیمی از گیاهان گیاهان بی‌پایان یا خستگی مانند خوشک (Daphne mucronata Royle) (دانه‌گیوهای غنی) در ناحیه چرا تخریب و با توسط دام تولید می‌شود و نهایاً گیاهان درختی و بوتهای خشک‌خیزماند خوشک (Daniel Royle) (دانه‌گیوهای غنی) و غربال منطقه و غربال (آکرا گیوهایی) با تعداد نامشخص و غربال) نامه‌ دیگر نویزگرایی در عرصه چرا در حال ترویجه و درختی است (1). گیاهان غربال

علی‌قلی شامی: Agropyron intermedium (Host) P. Beauv, Hordeum bulbosum L., Juncus, Setchewa, Bromus tomentellus Boiss., Bromus tectorum L., Bromus dactyloides Trin., Poa bulbosa L.

و گیوهایی درختی شامی: Acer Persicum A. Pojark, Fraxinus rotundifolia Mill, Crataegus azarolus L., Juniperus polycarpus C.Koch

و گیوهایی درختی شامی: Daphne mucronata Royle., Astragalus adscendens Boiss. & Havsskn., Amygdalus orientalis DUH.

است

خاک منطقه از سازگار سروک با جنس مارن و آکه که مربوط به تنشکل زمین علفی و بی‌پایان می‌باشد.
جدول 1. بعضی از مشخصات شیمیایی و فیزیکی خاک‌های مرمتی منطقه سیزرکو.

<table>
<thead>
<tr>
<th>سلسلت تنها</th>
<th>C/N (−)</th>
<th>K (mg kg⁻¹)</th>
<th>P (mg kg⁻¹)</th>
<th>N (%)</th>
<th>C (%)</th>
<th>pH (−)</th>
<th>جرم مخصوص ظاهری (g cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس سیزرکو</td>
<td>33</td>
<td>35</td>
<td>22</td>
<td>30</td>
<td>252.3</td>
<td>52.2</td>
<td>0.52</td>
</tr>
</tbody>
</table>

با آب اورانمو 1 در سطح احتمال 5% مورد مقایسه قرار گرفتند. سپس مقایسه بین وزن باقی‌مانده و ضریب تبادل برای تیپای به سطح ناحیه فوکه بسیار بود که نشان دهنده همبستگی بین الگویی و مقایسه میان‌گی 2a در سطح 0.05 بود. (Agropyron intermedium) (Juncus stenophylla) و (Hordeum bulbosum) انداده‌گیری سرعت تجزیه لاستیک به صورت زیر آمده است: (شاید (۱۷۱))

این کلیه نمونه‌ها در شرایطی از آثار آزاد مجدد خشک شدند. سپس مقدار 0.5% از تیپای به سطح ناحیه فوکه بسیار بود (شامل برگ، ساقه، بذر) در داخل کیسه‌های توری شکل باعث گردید. سپس از 144 کیسه لاستیک (3×105 × 3 کنار) 144 کیسه از آرامشی پک ساله آماده گردید. 16 کیسه از هر زمان ناحیه فوکه به شکل طبیعی و ناحیه فوکه به شکل ایجاد شد. دیگری. سپس مواد داخلی که باقی‌مانده به روش خردخوردن موجود در زمان ناحیه فوکه و در دمای 70 °C حاوی و مجبود (Remaining mass) افزایش گیردند. بر اساس وزن باقی‌مانده (Remainder mass) سرعت تجزیه این سیزرکو در هر سال ناحیه به استفاده از معادله زیر محاسبه گردید (۲۴):

\[ RM = \frac{M_t}{t} \times 100 \]

در این فرمول RM میزان باقی‌مانده (g) درصد، M۰ وزن پایه، M۱ و وزن اولیه پایه (g) (کیلومتر) است. سپس ضریب ثابت تجزیه (k) به صورت زیر محاسبه شد (۲۴):

\[ \text{Ln}(\frac{M_1}{M_0}) = -kt \]

این نتایج نشان می‌دهند که در شرایط فروق و وجود پوشه این تابعیت نشان می‌دهند که در شرایط فروق و وجود پوشه
جدول ۲: میزان بیوماس تولید شده (g m⁻³) توسط تعدادی از گونه‌های مرتعی در منطقه فرق سیرزکوه

<table>
<thead>
<tr>
<th>گونه مرتعی</th>
<th>فرق با پوشش درختی</th>
<th>فرق با پوشش علوفه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron intermedium (آگروپیرون)</td>
<td>۱۹/۶۸</td>
<td>۲۳/۲۴</td>
</tr>
<tr>
<td>Hordeum bulbosum (هردوم بلبوس)</td>
<td>۱۲/۸۴</td>
<td>۲۲/۸۴</td>
</tr>
<tr>
<td>Poa bulbosa (پوا بلبوس)</td>
<td>۱۰/۴۵</td>
<td>۱۱/۳۴</td>
</tr>
<tr>
<td>Medicago sativa (مدیکاسا ساتیوا)</td>
<td>۸/۸۵</td>
<td>۹/۸۵</td>
</tr>
<tr>
<td>Juncus stenophylla (جینکس استنوفیللا)</td>
<td>۴/۶۲</td>
<td>۵/۶۲</td>
</tr>
<tr>
<td>Bromus tectorum (برموس تکتورم)</td>
<td>۷/۸۱</td>
<td>۸/۸۱</td>
</tr>
<tr>
<td>Bromus tomentellus (برموس تومنتللا)</td>
<td>۲/۰۳</td>
<td>۲/۰۳</td>
</tr>
<tr>
<td>Agropyron absinthium (آگروپیرون ابسنتیوم)</td>
<td>۵/۲۹</td>
<td>۵/۲۹</td>
</tr>
<tr>
<td>Bromus tectorum (برموس تکتورم)</td>
<td>۴/۰۳</td>
<td>۴/۰۳</td>
</tr>
<tr>
<td>Poa bulbosa (پوا بلبوس)</td>
<td>۲/۲۳</td>
<td>۲/۲۳</td>
</tr>
<tr>
<td>Medicago sativa (مدیکاسا ساتیوا)</td>
<td>۲/۰۳</td>
<td>۲/۰۳</td>
</tr>
<tr>
<td>Juncus stenophylla (جینکس استنوفیللا)</td>
<td>۲/۰۳</td>
<td>۲/۰۳</td>
</tr>
<tr>
<td>Bromus tectorum (برموس تکتورم)</td>
<td>۲/۰۳</td>
<td>۲/۰۳</td>
</tr>
<tr>
<td>Bromus tomentellus (برموس تومنتللا)</td>
<td>۲/۰۳</td>
<td>۲/۰۳</td>
</tr>
<tr>
<td>Agropyron absinthium (آگروپیرون ابسنتیوم)</td>
<td>۲/۰۳</td>
<td>۲/۰۳</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج تجربه شیمیایی مربوط به تعدادی از گونه‌های مرتعی در حال رشد را در ناحیه فرق سیرزکوه نشان می‌دهد.

کیفیت لاسترگ

در مجموع کیفیت شیمیایی لاسترگ پوآ نسبتاً بالا و لاسترگ آگروپیرون و جنگل دارای کیفیت نسبتاً مناسب و بهتر
جدول 3. ترکیب شیمیایی لاسیرگ‌گونه‌های مختلف گیاهان مرتعی در ناحیه فرق منطقه سیرو کوه (تغییرات بین غلظت عناصر غذایی اندام‌گیری شده در لاسیرگ‌گونه‌های مرتعی معمولی داری نبو) و به میزان عناصر غذایی در لاسیرگ گیاه سرعت تجزیه آن را در مراحل مختلف زیست تجزیه (تخربی چربوزیک) تحت تأثیر قرار می‌دهد (17 و 22).

<table>
<thead>
<tr>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>P</th>
<th>C/N</th>
<th>N</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/0</td>
<td>1/19</td>
<td>0/55</td>
<td>1/133</td>
<td>1/22</td>
<td>0/55</td>
<td>1/127</td>
<td>0/20</td>
</tr>
<tr>
<td>24/1</td>
<td>1/2</td>
<td>0/67</td>
<td>1/41</td>
<td>1/22</td>
<td>0/55</td>
<td>1/127</td>
<td>0/20</td>
</tr>
<tr>
<td>24/7</td>
<td>1/12</td>
<td>0/54</td>
<td>1/26</td>
<td>1/22</td>
<td>0/55</td>
<td>1/127</td>
<td>0/20</td>
</tr>
<tr>
<td>23/3</td>
<td>1/24</td>
<td>0/89</td>
<td>1/40</td>
<td>1/22</td>
<td>0/55</td>
<td>1/127</td>
<td>0/20</td>
</tr>
<tr>
<td>24/1</td>
<td>1/2</td>
<td>0/67</td>
<td>1/41</td>
<td>1/22</td>
<td>0/55</td>
<td>1/127</td>
<td>0/20</td>
</tr>
<tr>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0/51</td>
<td>0/59</td>
<td>1/19</td>
<td>0/55</td>
</tr>
<tr>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0/51</td>
<td>0/59</td>
<td>1/19</td>
<td>0/55</td>
</tr>
</tbody>
</table>

«اندازه‌گیری نسبت nd»

رونده نسبتاً مشابه‌ای را نشان داد. این تفاوت که سرعت تجزیه در لاسیرگ آگروپایریون و جو پیپازدار یکسان و لی کندتر از لاسیرگ جو بود.

بر سرعت تجزیه لاسیرگ معمولی نبو در نسبت C/N به میزان تغییرات در ناحیه سرعت تجزیه یکسان و در مقایسه با یکسان بود. به هر حال تغییرات به میزان گونه و ناحیه از نظر آماری معنی‌دار بود (77).

نتایج آزمایش تجزیه لاسیرگ‌های مختلف سیریکه‌گونه مرتعی که نسبتاً لاسیرگ‌های زایده‌تر را نشان می‌دهد و به سطح خاک اضافه می‌کند در جدول 4 و تحلیل الگوی است. چرا ضریب آرایه معمولی داری در صد تجزیه لاسیرگ گیوه طرف سه ماه پس از آغاز مرحله تجزیه نشان می‌دهد، ولی سرعت تجزیه بین سه گونه سه مرتعی در هر سه ناحیه متفاوت بود و اختلاف بسیار معنی‌داری (0.002) را نشان داد (شکل 1). نتایج نشان می‌دهد که لاسیرگ آگروپایریون حدود 32 درصد، چو پیپازدار 22 درصد و کجی 38 درصد وزن اولیه خود را طرف سه ماه از دست داده‌اند (جدول 4).

سرعت تجزیه لاسیرگ آگروپایریون و یکسان بوده و در بالای که در مقایسه با چو پیپازدار لاسیرگ یکسان، در حالت که سرعت تجزیه لاسیرگ آگروپایریون و چو پیپازدار بوده که این رونده هم‌بسطگی مشابهی را با کیفیت شیمیایی لاسیرگ گونه‌های مختلف نشان می‌دهد.
جدول ۲ نتایج جدول تجزیه واریانس و مقایسه میانگین‌های (SEM) درصد وزن بانی مانده لاش‌برگ در اکوسیستم مرطوبی سیرکو... 

<table>
<thead>
<tr>
<th>وزن بانی مانده</th>
<th>کونه</th>
<th>P</th>
<th>F</th>
<th>متغیر</th>
<th>زمان تجزیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آکروپایرون</td>
<td>0/29</td>
<td>69/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
<tr>
<td>6/88</td>
<td>0/29</td>
<td>69/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
<tr>
<td>3/53</td>
<td>0/29</td>
<td>69/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
<tr>
<td>7/13</td>
<td>0/29</td>
<td>69/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
<tr>
<td>6/92</td>
<td>0/29</td>
<td>69/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
<tr>
<td>9/98</td>
<td>0/29</td>
<td>69/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
<tr>
<td>9/34</td>
<td>0/29</td>
<td>69/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
</tbody>
</table>

برای هر زمان تجزیه و در هر سانتیمتر ارتفاع در حال اختلاف معنی‌دار (P<0/05) 

می‌دهد (جدول ۲). 

به طور کلی، این نتایج نشان می‌دهد که اثر مدیریت منع نتایج در سطح ۰/۰۵ معنی‌دار است. 

جرای در مقابل فرق) بر سرعت تجزیه بقاوی گیاهی ثابت نیست و عموماً چرا مصرف ران بر پیش‌بینی و تجزیه لاش‌برگ‌ها ندارد. نتایج این بررسی با نتایج به دست آمده از بررسی شریف و همکاران (۱۹۹۲) و کووزی (۲۰۰۱) مطابقت دارد. 

آنها مشاهده نموده که اگر چه اثر چرا بر تجزیه مواد آلی بستگی به شدت آن دارد ولی عموماً تفاوت معنی‌داری بین 

مزایا و معایب مختلف شاخص شرایط محیطی و به‌ویژه تغییرات 

فصل ما و رطوبت و همچنین کیفیت لاش‌برگ است. عموماً 

لاش‌برگ‌های فرضی در هر سه ناحیه برای ترک لاش‌برگ آکروپایرون و جو پیازدار تجزیه شد به کونه‌ای که حداکثر ۸۳ درصد 

می‌گردد. (جدول ۳) 

لاش‌برگ در اکوسیستم مرطوبی سیرکو... 

این موارد تجزیه مرطوبی می‌تواند موجب افزایش تعداد موجودی سیستان و جنگلهای کوهستانی شود که به یکی از دو اصل روش تحقیقات سیستم‌شناسی اکوسیستمی و کارآزمایش یکی از این موارد سرعت تجزیه ماده آمیزی در حال افزایش یافته باشد (۱۰ و ۱۸). 

برای مثال در یک مطالعه جنگل ساله در مراتع و پارک‌ها...
شکل ۱. مقایسه روند تجزیه (% ون باقیمانده) هموگلوبین (آگروپاپرون) و جگن (AI و HB در ناحیه جریان با پوشش علفی (C), فرق با پوشش درختی (B) و چرای سینگین (C) در منطقه سیزکوه
جدول 5. میانگین‌ها (SEM) ضریب ثابت تجزیه‌گره سه‌گونه مرتع در یک سال در شرایط طبیعی و ضریب همبستگی برای داده‌ها

<table>
<thead>
<tr>
<th>ناحیه مرتع</th>
<th>ضریب ثابت ضریب همبستگی</th>
<th>آکروپاپرون</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/89</td>
<td>0/125 (0/03)</td>
<td>-0/75</td>
</tr>
<tr>
<td>0/88</td>
<td>0/95 (0/02)</td>
<td>-0/71</td>
</tr>
<tr>
<td>0/98</td>
<td>0/165 (0/03)</td>
<td>-0/69</td>
</tr>
<tr>
<td>0/96</td>
<td>0/105 (0/03)</td>
<td>-0/67</td>
</tr>
<tr>
<td>0/95</td>
<td>0/111 (0/03)</td>
<td>-0/65</td>
</tr>
<tr>
<td>0/82</td>
<td>0/121 (0/03)</td>
<td>-0/63</td>
</tr>
<tr>
<td>0/91</td>
<td>0/091 (0/02)</td>
<td>-0/61</td>
</tr>
<tr>
<td>0/93</td>
<td>0/089 (0/03)</td>
<td>-0/60</td>
</tr>
<tr>
<td>0/68</td>
<td>0/160 (0/02)</td>
<td>-0/57</td>
</tr>
</tbody>
</table>

برای هر ناحیه و در سه سال اعضا در هر ناحیه در هر سال، اختلاف معنی‌دار (در سطح 0/05) می‌باشد.

یپازدار کمترین غلظت و نسبت کریز نیترکورن به نیترکورن اثرات بود. ظاهراً روند تجزیه یی بی‌گیاهی در مراحل اولیه با نسبت CN/H نسبت همبستگی دارد و در مراحل بالایی فرآیند تجزیه احتمالاً سایر خصوصیات کیفی لاشه‌گره و شرایط محیطی خاک مؤثر هستند. 

نتیجه گیری

اگرچه قرار 15 سال مرتع سیزکوه منجر به بارگذاری مواد کیفی تولید شده به خاک می‌شود ولی شرایط مرتع و عناصر بر سرعت تجزیه کیفی تداخل داشت. لذا می‌توان تجزیه گرفت که این مدت برای ترمیم و بهبود شرایط خاک از جرای بیشتری به کافی نمی‌باشد. همچنین برای ایجاد شرایط مساعد تا بهبود خصوصیات مختلف خاک که به نوعی سرعت تجزیه کیفی و ماده آلی خاک را لازب تغییر می‌دهد، زمان طولانی تری لازم است. با این حال، شرایط خاک و وضعیت نویورگرافی منطقه و تغییرات زمین و مکانی ویژگی‌های لاشه‌گره دو گونه دیگر است. غلظت نیترکورن در لاشه‌گره جو
خاک، پویایی و کیفیت بازمودن گیاهی را پیچیده نموده است.

یکی از خاصیت‌های ناظر در ارگان درخشان تکنولوژی نظیر تجویز

بقاپای گیاه‌ها گروه‌های یکسانی و جدی سیری گروه بقاپای

جوی پیازدار است. بنابراین، اکتشاف موجود در تجهیزهای

این سه گونه مرنگی ممکن است باعث انجام تغییرات در پویاپی

مواد آلی خاک و عناصر غذایی آن به ویژه تریورنزن، شود. بنابراین، تحت شرایط یکسان اقیمی و همچنین شرایط یکسان

خاک ممکن است اثر تریورنزن و تریورنزن گیاهی بر تغییر و تحویل

کریم و تریورنزن در اکوسیستم مرنگی مسیرکوه بیشتر از

آب‌شیرین مواد غذایی، ظرفیت تبادل کالیورن و توزیع عناصر در

نیتروژ خاک، و خصوصیات پیولوزیک خاک (مانند تنفس

خاک)، کیفیت شیمیایی ماهه آلی خاک، پویاپی بیوماس و

جمعیت میکروبی، تغییرات تریورنزن در خاک، فعالیت ریشه و

روابط همزیستی‌ها-میکروب و هنوز فعالیت‌های آنزیمی)

برای درک بهتر اثر فرق (چرا) بر خاک و گیاه صورت پذیرد.

برای این منظور تکنیک گروه‌های تخصصی بین رشته‌ها و میان

رشته‌های از انتخاب ناپایدار است.

سیاست‌گذاری

پذیرش و سیاست از معاونت پژوهشی دانشگاه شهرکرد که اعتبار

مایلی لازم برای انجام این بررسی را فراهم نمودند و تشریح

قدرتانی می‌شد. هم چنین از همکاران آقای مهندس قاسمی و

آقای شریف پور که در کلیه مراحل طرح نمونه برداری و انجام

آزمایش‌ها مساعدت لازم را می‌دادند، سپاسگزاری می‌شود.

منابع مورد استفاده

1. اسدی. آ. 1351. بررسی اکولوژیک جوامع گیاهی منطقه سبز کوه چهار محله و یکشتهای با توجه به خاک و اواخدهای زنن

2. انستادلات. 1350. تأثیر مصرف دام در منطقه فرسایش به مراتع پیلاکی استان اصفهان. چکیده مقالات اولین همایش ملی

3. مقصد. م. 1379. مصرف و مصنوعات، انتشارات دانشگاه تهران.