کاربرد برنامه‌ریزی مصالحه‌ای در مدیریت منابع کمیاب:
مطالعه موردی منابع آب زیرزمینی در شهرستان رفسنجان

جواهر ترکمنی و محمد عبدالله عزت آبادی

چکیده
در این پژوهش نحوه استفاده از برنامه‌ریزی مصالحه‌ای (Multiobjective programming) در مدیریت منابع کمیاب ارائه شده است. داده‌های مورد نظر از نمونه‌های شرکت‌های زیرزمینی در شهرستان رفسنجان از هر اهداف حداکثری سازی است. هدف برنامه‌ریزی مصالحه‌ای بین اهداف حداکثری سازی به معنای جذب مقدار بزرگ‌تر از هر اهداف حداکثری سازی است. در این مقاله، ترکیب‌های تهیه شده از الگوهای جهت حل مسئله به‌کار گرفته شدند. به دست آمده که در جواب مصالحه‌ای هیچ کدام از اهداف سازگاری به طور کامل رضایت نداشتند. لطفاً برنامه‌های به‌کار گرفته در این مقاله برای تکنیک‌های منابع آب نیازمند تجدید باشد.

واژه‌های کلیدی: برنامه‌ریزی مصالحه‌ای، مدیریت منابع، پوشش

مقدمه
پوششی از جملات‌هایی که پرتوهای سرمایه‌گذاری از دیر بیانی به آن را به روش نمایش داده و هم‌اکنون این استفاده از منابع مختلف در بین مدیریت است. به عبارت دیگر، در طول زمان مختلف در بین مدیریت است. به عبارت دیگر، در طول زمان بخشی از منابع محدود به عنوان نیازمند تجدید شده و در

1. انتشار اقتصاد استادیار دانشگاهی، دانشگاه کشاورزی، دانشگاه کشاورزی کرمان
2. استادیار پژوهش، موسسه تحقیقات پست کشور، رفسنجان، کرمان
در زمان شروع سرمایه‌گذاری و سپس در ایجاد بازگشت پسند به
دهه ۴۰ نسبت به زمین محصولاتی خاصی نهاد. این در
طالب است که امور مربوط به حرفه در منطقه تبدیل
شد است. دلیل این امر، احتمال بایستن رفواون در منطقه
می‌باشد که موجب کمک آبی آماری در نهایت است. (۱)
در برخورد اول به نظر می‌رسد که در این مشکل نخواهد
دراست. (۱) که در هم در حداقل بهره‌وری از منابع آب به نسبت رها نمودن
قسمت عمده‌ای از بازه پسته و (۲) نگهداری تمام بازه‌های
پسته و بهره‌وری برخی از منابع آب با تخریب کامل این
منابع با افزایش در پیش داشته است. از این رابطه، نخستین گروه
هدف حداقل بهره‌وری از منابع آب از دنیای مکان در
حالا که در تایم‌ها هدف اصلی حداکثر سایه‌سازی سطح
کشت بازگشت پسته است. اگر به این اهداف، حداکثر سایه
نیز ضروری به نظر می‌رسد که کشاورزان و برنامه‌ریزان
در منطقه مورد بررسی با هدف عملکرد ریو و هستند. از
احتمال آنکه اهداف فوق تا حدی با یک در تنافی فرض
به‌رهیزی هر یک از آنها به نهایی امکان پذیر نیست.
با توجه به مطالعات فوق، استفاده از برخی برنامه‌ریزی
تا هدفی برای بهینه سازی روند استفاده از منابع ماسپب
نیز دیگر (۳۳). در این حالت نیاز به پایداری را حذف کرده است از
بتواند کلیه اهداف را به طور هم زمان به نهایی. به این نوع
رکیدن یک بازگشت آنگاه می‌تواند یکی از ناحیه
می‌باشد که در مشخص نمودن مجموعه
کارآمدی برخی از آنها، مجموعه کارآمدی
به عنوان مجموعه پازو تری
خوانده می‌شود. زیر مجموعه‌ای از تابعیت می‌باشد (۱۳)
۱۴ و ۱۵.
روش‌های مختلف برای حل مشایی جنگ هدفی وجود
دارد (۳۰). در برخی از آن روش‌ها، به‌نوبه توجه به تری‌های
تصمیم‌گیری، نه‌چندان جواب‌گان کارآمدی تعیین می‌گردد (۳)
۱۴ و ۱۵. در نوع دوم برخی از برنامه‌ریزی جنگ
هدفی، تری‌های تصمیم‌گیری مورد توجه قرار می‌گرفته ولی این

مواد و روش‌ها

تئوری تحقیق

مدل برنامه‌ریزی تصمیم‌گیری چند هدفی را می‌توان به صورت

۱۲ ارائه نمود (۲۱):
کاربرد برنامه‌ریزی مسالحه‌ای در مدیریت منابع کمیاب: مطالعه موردی منبع...

با‌این‌که اولیه به وسیله حل جدال‌های کاربرد برنامه‌ریزی مسالحه‌ای بررسی نشده بود، اما برای یافتن این به‌صورت x در معادلات جای‌گذاری شده. k جواب به‌عنوان برای x ایجاد می‌کند که با پایین‌ترین $z_k(x)$ همین حداکثر به‌رابطه

$$b_i \leq c_i x \leq b_i$$

سبش مجموعه جواب‌های مستقیم جواب‌های مسالحه‌ای است که از طریق برنامه‌ریزی مسالحه‌ای به دست آمده‌اند.

روش‌های مختلف برای ایجاد مجموعه جواب‌های مسالحه‌ای استفاده می‌شود. از آن‌رو این رویکرد برای مساله‌های ترکیبی یکی را به‌طور خلاصه به آن اشاره می‌شود.

روش‌های مختلف برای ایجاد مجموعه جواب‌های مسالحه‌ای استفاده می‌شود. از آن‌رو این رویکرد برای مساله‌های ترکیبی یکی را به‌طور خلاصه به آن اشاره می‌شود.

روش‌های مختلف برای ایجاد مجموعه جواب‌های مسالحه‌ای استفاده می‌شود. از آن‌رو این رویکرد برای مساله‌های ترکیبی یکی را به‌طور خلاصه به آن اشاره می‌شود.
حداکثر بوده و در غیر این صورت \(F^*_i \) حداقلی، جواب این است. از آنجایی که \(D_i \) می‌تواند مشبک باشد، باید به صورت زیر تعیین گردد:

\[
D_i = \left| F^*_i - F(x) \right|
\]

اگر توابع هدف \(F(x) \) به صورت توابع دارای یک پایان به شکل \(F_i(x) \) به ترتیب ارزش‌های حداقلی و حداکثری (\(F^*_i \)) به صورت زیر تعیین می‌شوند:

\[
S_i(D_i) = \frac{F^*_i - F(x)}{|M_i - m_i|}
\]

در اینجا \(m_i \) و \(M_i \) عناصر به ترتیب ارزش‌های حداقلی و حداکثری مدل \(p \) داده شده باشند. حداقلی سازی معادله 13 یک جواب بهینه با جواب مصلحه‌ای می‌دهد (که با توجه به اطلاعات بهینه است). تصمیم گیری‌های تعیین‌داده که تحلیل جواب‌های مصالحه‌ای با ارزش‌های مختلف \(p \) فراهم خواهد کرد. برای \(i = 1, \ldots, n \) و \(p = \alpha_i = 1 \), \(\beta_i = 1 \), \(\gamma_i = 1 \), برنامه‌ریزی آزمایشات تبدیل می‌شود. برای \(p = \alpha_i = 1 \), \(\beta_i = 1 \), \(\gamma_i = 1 \), برنامه‌ریزی مصالحه‌ای به روش‌هایی که هدف و برای خطا تبدیل شده و برای \(n = \infty \) به‌طور مثال حداقلی سازی (\(\text{Minmax} \)) تبدیل می‌شود.

متوسط مدل به صورت زیر تعیین می‌شود:

\[
z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl}
\]

\[
j = 1, \ldots, n
\]

\[
k = 1, \ldots, p
\]

\[
l = 1, \ldots, m
\]

متغیرهای مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]

مقدار مصرف آب در مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]

به‌طور مثال حاجتهای استفاده شده در مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]

به‌طور مثال حاجتهای استفاده شده در مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]

به‌طور مثال حاجتهای استفاده شده در مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]

به‌طور مثال حاجتهای استفاده شده در مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]

به‌طور مثال حاجتهای استفاده شده در مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]

به‌طور مثال حاجتهای استفاده شده در مدل به صورت زیر تعیین می‌شود:

\[z = \sum (x_{ijkl} - P_{ijkl}) X_{ijkl} \quad \gamma \]

\[j = 1, \ldots, n \quad \delta \]

\[k = 1, \ldots, p \quad \eta \]

\[l = 1, \ldots, m \quad \zeta \]
جدول 1. ویژگی‌های زیرنویس‌های تغییرات الگوی برنامه‌ریزی خاطی

<table>
<thead>
<tr>
<th>شماره زیرنویس</th>
<th>تعداد نمونه</th>
<th>مرکب‌کننده آبی</th>
<th>شوری آبی</th>
<th>نوع خاک</th>
<th>کمتر از 10</th>
<th>بیش از 10 متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>500-1000</td>
<td>500-1000</td>
<td>شی-سی</td>
<td>15-30</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>شی-سی</td>
<td>5-10</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

منبع: داده‌های مورد بررسی

محدودیت‌های مدل به صورت زیر تعریف می‌شود:

محدودیت شماره 15، میزان حداکثر آب قابل دسترس با شوری مختلف را محدود می‌کند.

محدودیت شماره 16، میزان حداکثر سطح زیر کشت باگات با خاک‌های مختلف را محدود می‌کند.

محدودیت شماره 17، میزان حداکثر سطح زیر کشت باگات با سن‌های مختلف درختان را محدود می‌کند.

چنان‌چه فلک‌ها اشاره شدند، مطالعه‌های علمی سه هدف را برای مدیریت منابع آب در نظر می‌گیرند. این اهداف شامل حداکثر کردن سود، حداکثر کردن مصرف آب و حداکثر تعمیم سطح زیر کشت باگات و پرداخت به‌پایانه دنباله‌ی زیر است:

max Z = \sum_{i=1}^{n} c_i x_i

Subject to:

\sum_{j=1}^{m} a_{ij} x_j \leq b_i, \quad i = 1, 2, \ldots, n

where:

- Z is the objective function.
- c_i are the coefficients of the objective function.
- x_i are the decision variables.
- b_i are the right-hand side constants of the constraints.
- a_{ij} are the coefficients of the constraints.

در یک علامت منفی ضرب می‌شود.

نتایج و بحث

یکی از ابزارهایی که به طور کلی برای کاربران برنامه‌ریزی
جدول 2. ماتریس بازده ی ریس سه هدف

<table>
<thead>
<tr>
<th>سطح زیر کشت</th>
<th>سود (میلیون یورو)</th>
<th>مصرف آب (میلیون متر مکعب)</th>
<th>(هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سود 1000</td>
<td>2500</td>
<td>390/54</td>
<td>4/27</td>
</tr>
<tr>
<td>سود 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>سود 3000</td>
<td>3300</td>
<td>110/150</td>
<td>2/53</td>
</tr>
</tbody>
</table>

مایجر: داده‌های مورد بررسی

عناصر فرعی ماتریس، بنابراین نقطه ابتدایی است، یعنی نقطه ابتدایی یک نقطه از این رویداد به‌یاد می‌آید. در مسأله فعلي، نقطه ابتدایی برای بازی 1/47714 ریال سود، صفر متر مکعب مصرف آب و 3000 هکتار باز به تناسب. به‌هر حال، نقطه ابتدایی غیرقابل دقیع است، زیرا اهداف در پیامدهای هستند. بنابراین ترتیب نمونه‌بندی از اهداف از راه انتخاب کرده و به آن دست یافت، در اینجا مصادری به آنها ایجاد نمود.

منحنی‌های موازنت (Tradeoff curve) سود، مصرف آب و سطح زیر کشت

برای بررسی چگونگی موازنت بازده ی ریس، مصرف آب و سود، مصرف آب و سطح زیر کشت باید، جزئیاتی از موازنت منحنی‌های سود به سود و سود به سطح زیر کشت را بررسی کنیم.

۱۳۸۴

دکلین این امر آن است که، هنگامی که هدف حداکثر شدن سود است، بیشترین میزان مصرف آب ۲۵۰ میلیون متر مکعب در سال نیاز است که بسیار بالاتر از میزان به‌پایداری باید است. به‌عبارت دیگر، با سطح زیر کشت فعالیت با گسترش حداکثر آب مورد نیاز ۲۵۰ میلیون متر مکعب در سال است. برای ایجاد مجموعه جواب‌هایی به دنبال آن، میانه‌های محدودیت آب با مقدار ۲۵۰ میلیون متر مکعب تغییر داده شد. این عده با توجه به حداکثر میزان مصرف آب که در موارد مختلف به‌عنوان تغییر معنی‌داری در ترتیب کشت و تابع سود می‌گردد، با تحلیل حسابی در مدل برنامه‌ریزی خطی، محاسبه شده است.

۲۵۰۰ مصرف زیر کشت (حذف پایینی) در نظر گرفته شد. این مقدار میزان سطح زیر کشت زیر به‌عنوان در زمان حداکثر نسخه سود بدون ملاحظات محدود‌سازی بر روی زمین است. میزان حداکثر سطح زیر کشت به‌عنوان ۳۰۰۰ هکتار در نظر گرفته شد که میزان فعالیت صحیح به‌عنوان سود و سطح به‌عنوان میزان برای تابع و در زمان حداکثر سازی، باید هدف سطح زیر کشت تبدیل است. برنامهریزی تیه‌ها در چارچوب فعالیت موجود صورت می‌گیرد و از اضافه‌سازی به‌عنوان جديد جلوگیری شده است. بنابراین، حداکثر سطح زیر کشت در برنامه برنامه‌برداری با سطح فعالی بگذارنده است.
ارزش‌های واقعی (یعنی هزینه‌های فرصت) بین سود و میزان مصرف آب و هم‌چنین بین سود و سطح زیر کشت باعث بهبود سیستم بهره‌وری و وسیله شیب خطوط صاف وصل کننده نقاط کارایی حداکثر داده شده در شکل‌های ۱ و ۲ بیان شده است. برای مثال شیب پاره خط AB در شکل ۱ حاکی از آن است که در برای ایجاد مجموعه کارآ و به‌دبای از مبنای میزان موردیت زمین با واحدهای ۲۵ هکتاری تغییر داده شد. این مبنای میزان می‌تواند به عنوان هزینه فرصت، یک هدف در ایزای هدف دیگر در نظر گرفته شود. نحوه محاسبه ۲۵۰ هکتار مشابه عدد ۲۵۰ میلیون متر مکعب است که قبل آن ارائه شد.
در این قسمت از محوریت موارد به افرایشک خرید ریال سود، باید 1 لیتر آب پیشر با صورت شهابی یا برابری از هر نهایت خرید ریال افزایش در سود کلی معنی می‌توان به عنوان قربانی کردن 1 لیتر آب‌های زیرزمانی و کم‌بود آن در آینده با نظر گرفت.

به طور مشابه، شیب پاره خط FG (شکل 2) در این اشاره بار دارد که در این قسمت از محوریت، هرینه خرید ریال هکتار افزایش در سطح باقی بسته منطقه برای کاهش سود می‌باشد.

کاهش سود مشابه از افزایش سطح زیر کشت ممکن است که برای ساخته‌بندی به نحو آیدی با ان حالات، با توجه به ثابت و محدود

بودن آب در منطقه، افزایش پیشر سطح زیر کشت باعث کاهش عملکرد افرایش‌های زیرسته‌ای می‌گردد و در نتیجه کاهش سود خواهد شد. اینکه با ثابت و محدود کشت به نمود کاهش سود در حالیکه دارد سود به عنوان سطح در حالت در نظر گرفته، وجودی می‌باشد که به منظور تبادل باعث مقداری که به یک متر مکعب در سال برسد، به نمود ریاضی سود را به تولید نیز صفر شده و تمام گذشتگی است از بین خواهد رفت. البته پایه‌باید توجه نمود که افزایش سطح زیر کشت می‌توان از سطح

2500 هکتار افزایش سود می‌باشد.

بعد از تعیین محوریت موارد، محوره به محاسبه

به‌ترتیب جواب‌های مصالحه‌ای است. این به سبب استفاده از روش پیش‌بینی مصالحه‌ی صورت می‌گردد. فرض کنید که

احتمال این وابستگی آنها در افزایش اهداف به‌این‌طور که

\[P = \left(\alpha_1 \right) \]

\[M = 2894910 \]

\[238 میلیون متر مکعب \]

در اینجا T، تعداد جواب، R، آمارisti درجه برندی استفاده و

پایه‌باید انتخاب کنند، این با توجه به طور مشابه تغییر

\[R = 2/5 \]

\[239800 هکتار زمینی \]

\[2 \]

به‌ترتیب جواب‌های مصالحه‌ای به‌این‌طور که

50
کاربرد برنامه‌ریزی مصالح‌های در مدیریت منابع کمیاب: مطالعه موردی منابع موردی منابع...
جدول 3. مجموعه نقاط کارا و الگوهای کشت برای سه هدف

<table>
<thead>
<tr>
<th>نقطه کارا</th>
<th>توابع هدف</th>
<th>متغیرهای تصمیم (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سود</td>
<td>X۱۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>زمین</td>
<td>X۳۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>آب</td>
<td>X۵۰۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نقطه کارا</th>
<th>توابع هدف</th>
<th>متغیرهای تصمیم (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سود</td>
<td>X۱۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>زمین</td>
<td>X۳۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>آب</td>
<td>X۵۰۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نقطه کارا</th>
<th>توابع هدف</th>
<th>متغیرهای تصمیم (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سود</td>
<td>X۱۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>زمین</td>
<td>X۳۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>آب</td>
<td>X۵۰۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نقطه کارا</th>
<th>توابع هدف</th>
<th>متغیرهای تصمیم (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سود</td>
<td>X۱۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>زمین</td>
<td>X۳۰۰۰۰</td>
</tr>
<tr>
<td></td>
<td>آب</td>
<td>X۵۰۰۰۰</td>
</tr>
</tbody>
</table>

آخذ: یافته‌های تحقیق
کاربرد برنامه‌ریزی مصاحبه‌ای در مدیریت منابع کمیاب: مطالعه موردی منابع...

با توجه به مطلوب فوق، به نظر می‌رسد که گرینه‌های مورد قبول است که اهداف توجه به حداکثر شدن سود باغداران، تأمین بهره‌برداری پایدار و منابع آب و همچنین حفظ سطح زیرکشت فعلي باگات را در داشته باشد. این باید نشان دهد اقدامات از راه حل میانی که حاصل توافقی بین اهداف باشد به نظر منطقی و مناسب می‌آید. در این راستا، استفاده از برنامه‌ریزی مصالحه‌ای می‌تواند راهکار مناسبی را ارائه نماید.

در بررسی جدی، ضمن معرفی روش برنامه‌ریزی مصالحه‌ای، کاربرد آن در سیاست‌گذاری‌های آبی و انتخاب بین گرندشهای تأمین آب کشاورزی ارائه شد. نتایج به دست آمده نشان دهنده برای استفاده از روش برنامه‌ریزی در مدیریت بهره‌مندی آب در منطقه مورد طالعه، نسبت به مدل‌های بهینه‌سازی تک‌هدفی است. با جایگذاری ویژه‌تری که در انتخاب و ارزیابی اقتصادی گرندشهای مطرح در تأمین آب کشاورزی برای منطقه مورد طالعه، به‌جای مدل‌های برنامه‌ریزی سنتی تک‌هدفی، از روش برنامه‌ریزی رایج مصالحه‌ای استفاده شود.

با حضوری در منطقه تبدیل شده است. در این راستا، وجود باگات فراوان پیش در منطقه و کمبود آب کافی برای آب‌بازی از ویژگی‌های اصلی شهرستان رفستن‌اند. است. در سال‌های اخیر، برای حل مشکل کم آب در منطقه مورد بررسی، به طور کلی گرندشهای زیر مصرف شده‌اند (الف) ادامه روند کنونی که نشان می‌دهد منطقه آن می‌تواند تخریب منابع آب و در تهیه داشته باشد (ب) انتقال آب از منابع مختلف کشور به این منطقه که نیاز به سرمایه‌گذاری مالی و فنی عظیمی دارد (ج) استفاده از روش‌های آب ظرفیت که آن هم تا حدود زیادی دارای مشکل گرندش دوم است و (د) کاهش منابع مصرف آب تا سطح پایدار بهره‌برداری از آب‌های زیرزمینی.

نتایج به دست آمده از این مطالعه نشان داد که برای انتخاب گرندش برتر نیاز توان بیش از پیچیده توصیه کردن نمود.

برای مثال، در افزایش هدف حداکثر نمودن سود در هکتار می‌تواند برنامه بهینه را به سمت گرندشهای هزینه‌مند کند که نتیجه نهایی آن تخریب آب باشد. همچنین، در صورتی که به هدف برنامه شامل بهره‌برداری پایدار از آب‌های زیرزمینی فراز داده شود و توجه به سود در گرندش نشود، برنامه مورد قبول آنها واقع نمی‌شود و در صورت اجرا موجب ضرر و زیان بخود می‌گردد.

مطالعه استفاده

1. شرکت سهامی آب منطقه‌ای کرمان، سال‌های مختلف. گزارش دی‌سته‌ها زیر وزره فرستن، وزارت نیرو، کرمان.