بررسی تاثیر آفت‌دهی خاک بر روند جمعیت گونه‌های Fusarium در شرایط آب و هوایی همدان

محمد جواد سلیمانی

چکیده

بیماری‌های پرستاریکی طوفان و ریشه‌گاه‌های ناشی از گونه‌های Fusarium فوروزاروم خراسان شدید را روی تعدادی از محصولات زراعی در همدان باعث می‌شود. پاتولوژی بیماری‌زاپایی برخی از گونه‌های این جنس در ایجاد بیماری‌های مخرب می‌تواند عامل محدود کندن‌های در تولید محصولات کشاورزی به ویژه اقلیم و سبی زنبوری در همدان محروم شود. این پژوهش با هدف بررسی و تعیین تاثیر احتمالی آفت‌دهی خاک بر روند جمعیت گونه‌های Fusarium در شرایط آب و هوایی همدان صورت گرفته است. نتایج نشان داده‌است که بیماری‌های Fusarium در خاک، وابستگی به تغییرات آب و هوایی است. با توجه به این امر، استفاده از روش‌های محیط‌پس‌گرایانه در زلوه‌نمایی و تداوم زراعت، بهبودی می‌تواند رقم‌ها را در بهبودی محصولات زراعی در همدان جبران کند.

واژه‌های کلیدی: آفت‌دهی خاک، Fusarium، همدان

مقدمه

بحث‌های کلان در تولید محصول در کشاورزی پایدار (Sustainable agriculture) استفاده بهینه و حداکثر از منابع غیر تجدید شونده در جهت افزایش عملکرد محصول می‌باشد. استفاده از انرژی برق‌زده در گرما‌دهی خاک نخستین بار در سال 1976 می‌باشد. استفاده از انرژی برق‌زده در گرما‌دهی خاک به شرح زیر از بین بردن بیمارگه‌های خاک‌زدایی کمک می‌کند:

۱. استفاده گیاه پرکشی، داشته‌کنی کشاورزی، دانشگاه بعلی سینا، همدان
یونان نیز مؤید تأثیر معنی‌داری کاربرد این روش در کنترل خسارت بیماری‌های است. (6)

اندامای مقاوم قارچی در خاک مه‌داری مایه‌های تمایل بیماری‌های شاکی و نازک مایه‌های تولید نمی‌کند. متعددی از فیتوکاتیکی‌ها، Verticillium dahliae به حالات بازسازی می‌توانند به محل‌های تولید شده و هم اکنون در بیش از چهل کشور جهان به عنوان یک روش کنترل مؤثر در کاهش خسارت آفات و بیماری‌ها و خلق‌های هرز استفاده می‌شود (18). پلاستیکی-کشی سطح خاک مزروعی‌ها که به‌طور اولیه مربوط به موضع محیطی نموده هوا در زیر پلاستیکی و افزایش دمای خاک در اثر تنش خورشید اساس روش آفت‌کننده خاک می‌باشد.

برای پرورش آنها در سطح بالای خاک کافی است (13، 21).

فیتوکاتیکی‌های نیم‌پایی از بیمارگرهای شاکی و Fusarium نیز پیکر از بیمارگرهای شاکی و کنترل آفات در روش‌های دست‌نوازه است که با توجه به سایر اصولهای مقاوم، بایدهی اثر استفاده از فیتوکاتیکی‌های مایه‌های طبیعی در خاک آبی‌کننده گیاهی و استخراج تولید نماینده باعث ابعاد بیماری‌های مایه‌های اندازه‌گیری می‌شود. از روش‌های دست‌نوازه استفاده از بهترین روشهای گیاهان خاک‌زایی که در اثر تولید خاک نیز به‌کار می‌رود دیده می‌شود (5 و 18).

در برنامه‌های حیطه‌داری، مایه‌های طبیعی به‌طور کامل دست‌نوازه نیستند، بلکه در این صورت، برای کاهش خسارت پیش‌بینی می‌شود و بهترین روشهای دست‌نوازه استفاده می‌شود (17).

در میان فهرست میکوراگانیزم‌هایی که در اثر کاربرد بیمارگرهای خاک‌زایی تأثیر آفت‌کننده در موارد بیمارگرایی و کاهش دمای در مجموعه‌های کاربردی استفاده می‌گردد. برخی از این روشهای دست‌نوازه در این صورت به‌کار می‌رود.

خاک‌زایی در اثر بیمارگرهای خاک‌زایی گیاهی باعث کاهش خسارت آفات‌کننده خاک می‌گردد. این هزاره‌ها از نوع یک خاک‌زایی تانشی از عوامل بیمارگرهای خاک‌زایی مایه‌های خاک‌زایی گیاهی است. خاک‌زایی دست‌نوازه می‌تواند در همه موارد با کاربرد یکبار اتفاق‌دهی خاک به نتایج مناسب انجام دهد. استفاده از روش‌های مختلف خاک‌زایی که به‌طور محدودیت‌های زیست محیطی مورد سؤال بوده است و
بررسی تأثیر آفتان دهی خاک بر روند جمعیت گونه‌های Fusarium

مورخی که به کشت سبب زنبوری بوده و به طور شدیدی علتی آلوگوی بسیاری فورازیوم را نشان می‌دادند. نشان‌های از خاک مزرعه برای تیم‌های مشخصات خاک از جمله بانف خاک، عوامل سببی و pH (pH) بی‌معانی درorganic می‌باشد. اخیراً انرژی ترکام پایداری از جهر همه‌گونه‌های مختلف گزارش شده که خواری‌های عمده‌ای را به تولید محصولات ماکز و جو (27 و 1) نشان داده است. در این مطالعه از تعداد 200 گرمی خاک از نقاط مختلف مزرعه جمع آوری شده و پس از اکتشاف و خشک کردن نمونه آنها با استفاده از روش (15) به جام جام‌های کنترلی Fusarium sp در محیطی کشت انتخابی نسبت به جداسازی Soil Dilution Plate (Nash & Snyder Medium) با توجه به نتایج به دست آمده از نمونه برداری از خاک و propagules آزمایش‌های جامعه سنجی رادامایسی به که Fusarium جامعه خواب زمین مناسب با آلوگوی تعبیه صورت گرفت.

انجام پلاستیک کشی در رابین آزمایش بررسی تأثیر طول دور آفتان دهی و نوع پلاستیک‌ها با استفاده از هفت تیمار و شیده تکرار در قالب طرح آماری بلوک کاملاً تصادفی صورت گرفت. این تیمارها شامل مدت زمان آفتان دهی که در آن به سه 4-5 و 8 هفته‌هایی در نظر گرفته شده و دو نوع پلاستیک شفاف (Transparent Polyethylene Sheets) و سیاه (Black Polyethylene Sheets) شاهد (بدون پوشش پلاستیک) بوده‌اند. پس از انتخاب زمین و قلب از پلاستیک‌کشی در تاریخ اول مرداد ماه نسبت به آب‌پذیری آن اقدام و سپس تیمارهای آزمایشی در کرت‌هایی ایجاد گردید. مساحت 175 متر مربع به صورت تصادفی انتخاب و سطح آنها با پلاستیک‌های شفاف و سیاه به عرض 8 متر در کرت‌های مورد نظر پوشانده شد.

 довستسی به ارقام مقام نیز در بیشتر محصولات زراعی و باعث به راحتی امکان‌پذیر بودن نسج است. بنابراین وجود یکی از روشن‌هایی که به عنوان روش جایگزین مطرح می‌باشد استفاده از آفات دهی خاک است که حساسیت ذرات غیر قابل جمعیت گزارش شده که می‌باشد. اخیراً انرژی ترکام پایداری از جهر همه‌گونه‌های مختلف گزارش شده که خواری‌های عمده‌ای را به تولید محصولات ماکز و جو (27 و 1) نشان داده است. در این مطالعه از تعداد 200 گرمی خاک از نقاط مختلف مزرعه جمع آوری شده و پس از اکتشاف و خشک کردن نمونه آنها با استفاده از روش (15) به جام جام‌های کنترلی Fusarium sp در محیطی کشت انتخابی نسبت به جداسازی Soil Dilution Plate (Nash & Snyder Medium) با توجه به نتایج به دست آمده از نمونه برداری از خاک و propagules آزمایش‌های جامعه سنجی رادامایسی به که Fusarium جامعه خواب زمین مناسب با آلوگوی تعبیه صورت گرفت.

انجام پلاستیک کشی در رابین آزمایش بررسی تأثیر طول دور آفتان دهی و نوع پلاستیک‌ها با استفاده از هفت تیمار و شیده تکرار در قالب طرح آماری بلوک کاملاً تصادفی صورت گرفت. این تیمارها شامل مدت زمان آفتان دهی که در آن به سه 4-5 و 8 هفته‌هایی در نظر گرفته شده و دو نوع پلاستیک شفاف (Transparent Polyethylene Sheets) و سیاه (Black Polyethylene Sheets) شاهد (بدون پوشش پلاستیک) بوده‌اند. پس از انتخاب زمین و قلب از پلاستیک‌کشی در تاریخ اول مرداد ماه نسبت به آب‌پذیری آن اقدام و سپس تیمارهای آزمایشی در کرت‌هایی ایجاد گردید. مساحت 175 متر مربع به صورت تصادفی انتخاب و سطح آنها با پلاستیک‌های شفاف و سیاه به عرض 8 متر در کرت‌های مورد نظر پوشانده شد.

مواد و روش‌ها

مشخصات زمین مورد آزمایش

این پژوهش در تابستان سالهای 1379-1380-1381-1382 مزرعه‌ای با بانف خاک‌های سختی از روسیه دهه پیساب در 5 کیلومتری شمال شهرستان همدان صورت گرفت. با توجه به این که در این مطالعه انتخاب آفتان دهی بر جمعیت تأثیر در خاک با آلوگوی طبیعی مورد نظر بوده است بدین جهت از سال قبل
نتایج و بحث
تأثیر آفت‌نابین بر دما عاملی
خصوصیت‌های مناسب و شیمیایی ناخ ناتوان می‌باشد. در مورد آزمایشی که حاصل نمونه‌برداری مربوط به تلفات مختلف قطع زمینی مورد آزمایش و ابعاد سه گانه (0-5 تا 5-15 cm) pH خاک حدود 7/8 با درصد ماده آلی 0/1/4 درخت خاک لومی-EC خاک به طور متوسط 3/5 mho/cm² به دست آمده است.

میانگین دما عاملی مختلف خاک در تیمارهای مورد آزمایش در شکل‌های 1 و 3 آمده است. براساس این نتایج متوسط دما خاک در عناصری میانگین نشان دهنده بیشتر بوده و نوسانات آن در ساخت و توزیع خاک از اختلافات بین 20-30 درصد در ساخت اولیه و واقعیت نمایانگر شدت نوسانات در ابعاد خاک بوده و این در حالی است که در ابعاد خاک تا حدود 30/5 می‌باشد دما کاستن بر جای می‌گذارد. این نتایج نشان از کاهش میزان هداهنده گرمایی خاک در ابعاد مختلف می‌باشد و در مقایسه روند نمودارها و به ویژه در شکل 3 کاملاً مشهود است.

نتایج به دست آمده نشان می‌دهد که میانگین دما خاک نسبت به شاهد (نیم‌نورد پلاستیک کشی) در ابعاد سه گانه تیمارهای پلاستیک سیاه و شفاف افزایش چشمگیری داشته و این اختلاف دما در تیمارهای پلاستیک تشکیل شفاف نسبت به پلاستیک سیاه در ابعاد بیشتر می‌باشد که حاکی از نفوذ عمیق دمای ناشی از تغییر نورشیدن از پلاستیک‌های شفاف (Transparent) در مقایسه با پلاستیک سیاه می‌باشد. این اختلاف افزایش دما به ویژه در این دماهای فوقانی از هم‌بستگی بروخوردار است و میزان آن گاهی به بیش از 10 درجه سانتی‌گراد بالغ می‌گردد. با وجود این میزان افز دما در طول شبانه روز در تیمارهای با پلاستیک سیاه کمتر از تیمارهای

کمیت سنگی زاده‌زایی فارج
پس از آن‌چه نمونه‌های خاک و تیمارهای مختلف روش فوقالکتریک سوسپانسیون محلول خاک در تشکیک‌های یپر گروهی محیط کشت دمای سبب زنی- دکستروز- آگار (Potato Dextrose Agar) و نیز محیط کشت اختصاصی (Fusarium) گونه‌های (Nash & Snyder Medium) باعث فضایش به مدت 3-7 روز در انکوریور در دمای 25 به دست آمده و پس از آن نسبت به تعیین ریگ و شمارش تعداد پرگنه‌های فارج در هر گرم خاک خسک (Colony Forming Unit/g) جهت رسیدن و رنگ پرگنه شکل و آرایش کنیدیمها و سرول پاها و نوع فعالیت‌های آن تقدیم گردید.

ثبت دما روزانه خاک با استفاده از دماسنج مخصوص (Soil Thermometer) خاک در تنها 3 از 13 می‌باشد. همچنین به مفهوم اطمینان از دقیقت دمای اندازه‌گیری شده از داده‌ها مربوط به دمای خاک در ابعاد مختلف که در استحکام هواشناسی اکباتان - همدان جمع آوری شده بوده و در فاصله 2 کیلومتری از روستای محل انجام آزمایش قرار ذکر نه‌چه می‌توان استفاده گردید (شکل 4). ضمناً خصوصیات فیزیکی خاک استفاده از جمله رنگ و بافت و ساختمان آن کاملاً مشابه خاک مزرعه مورد آزمایش بوده است.

mahsanei@iau.ac.ir Downloaded from jsh.tarjat.ac.ir at 5:06 IRDT on Thursday March 26th 2020
پلاستیک شفاف بوده است (شکل 1 نا 3). حداکثر میانگین دما در تیمار با پلاستیک شفاف در عمق 5 سانتی متر خاک به مرز 27 درجه سانتی گراد رسیده که بالاتر از دمای کشیده (Lethal heat) برای بسیاری از قارچ‌های خشک (ج) تأثیر دارد.

شکل 2: دمای خاک در عمق 5 سانتی متر در تیمارهای مورد آزمایش (بررسی 12 درجه C) در تابستان سال 1379

شکل 1: دمای خاک در عمق 5 سانتی متر در تیمارهای مورد آزمایش (بررسی 12 درجه C) در تابستان سال 1379

میانگین دمای خاک در عمق 5 سانتی متر در تیمارهای مختلف

<table>
<thead>
<tr>
<th>زمان</th>
<th>شاهد</th>
<th>شفاف</th>
<th>سیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
میانگین دمای خاک در عمق 25 سانتی متر در تیمارهای مختلف

شکل 3. دمای خاک در عمق 25 سانتی متر در تیمارهای مورد آزمایش (بر حسب °C) در تابستان سال 1379

میانگین دمای خاک (عمق 5 سانتی متر) در سال‌های 1376-1380 در همدان

شکل 4. میانگین دمای روزانه در عمق 5 سانتی متری خاک در ماه‌های تابستان سال‌های 1376-1380 در همدان

تأثیر آفت‌زایده بر میزان جمعیت گونه‌های فوزاریوم
وضعیت آلودگی خاک و جمعیت اندازه‌های قارچی در خاک مزرعه مورد آزمایش قبل از شروع پلاستیک‌کش با تعیین میزان پرنگ‌های قارچ در هر گرم خاک در جدول 1 آمده است. همان‌طور که در متن جدول نشان داده شده است، میانگین جمعیت پرنگ‌های فازیوم در تیمارهای مختلف و در عمق‌های مختلف خاک تفاوت معنی‌داری با یکدیگر نداشتند و

کرت‌های مورد آزمایش ثبت شده (به جز یک مورد که ثبت دما در محیط صورت گرفته) دمای خاک در عمق 5 سانتی متری هم در تیمارهای با پلاستیک سیاه و هم در پلاستیک شفاف بیش از ۷۷° به دست آمد و به طور میانگین دمای خاک در عمق 5 سانتی متری در طول مدت آزمایش معادل ۵۷/۲ و ۳۷۶/۳ درجه سانتی‌گراد بوده است. ترتیب در تیمارهای پلاستیک سیاه و پلاستیک شفاف بوده است.

۲۲۴
جدول 1: میانگین جمعیت پرگنهای قارچ فوزاریوم در گرم خاک خشک (1000 x CFU/g) در حالت مختلف شاخص فوزاریوم

<table>
<thead>
<tr>
<th>شاخص فوزاریوم</th>
<th>بالاترین کمیت از پرگنهای فوزاریوم در گرم خاک</th>
<th>بالاترین کمیت در گرم خاک (CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10</td>
<td>2/10</td>
<td>3/10</td>
</tr>
<tr>
<td>11-15</td>
<td>3/10</td>
<td>3/10</td>
</tr>
<tr>
<td>16-20</td>
<td>4/10</td>
<td>3/10</td>
</tr>
<tr>
<td>21-25</td>
<td>3/10</td>
<td>2/10</td>
</tr>
</tbody>
</table>

آیلودی، طبیعی خاک به اندام‌های نگه‌داری کودک‌ها و Fusarium
در حداً قابل قبول بوده است.
در پایان دوره مهاتری افتراقی قارچ با استفاده از
پلاستیک‌سازی سیاه و شفاف تعداد جمعیت زاده‌های قارچ در
این تیمارها از نظر خاکی در شاخص فوزاریوم (جدول 2) افزایش یافته است.
ولی ادامه آن است که تحت شرایط شکاف، زاده‌های قارچی به
مدافع زیادی ترکیبات درونی خود را در اثر تنفس و ترشح
از دست می‌دهند و در نتیجه فوآ نامی و قدرت بیمارسازی آنها
کاهش می‌یابد.

تأثیر شاخص فوزاریوم در آتاق‌دهی در تیمارهای آزمایش در شرایطی
به دست آمد که حاکم‌داران در طی آزمایش‌های روند کاهشش داشته است و سپس به شرایطی
دوره آتاق‌دهی به فوزاریوم تنظیم شود که از دست دادن
مخصوصاً در شرایط آب و هوای مهار حساسیت بهبود می‌یابد.

این نتایج به‌همین‌راستا که فوزاریوم قارچ و
همگراش در سال 1994 (8) مانی بر گنته در Bun-1 و
افرازیزیز مصالح‌ناپذیر از کاربردهای آزمایش گیرنده‌ها در
مزایا و مضرات موجود مختلس مختلفی داشتند. براساس این
بررسی‌ها در این بحث، روشی از جمله فاکتورهای هسته‌ای
که با ایجاد تنفس در کاهش نتوان رقابتی زاده‌های قارچ
فوزاریوم در حالت آتاق‌دهی شدن نشان دهنده تغییر نسبتی
کاهش داشته است. همان‌طور که در شرایط 1-3 آلوده، میانگین
دامای خاک از طول دوره آزمایش حداکثر به 3 درجه
سانتی‌گراد رسیده که اگرچه نسبت به شرایط با و هوایی
منطقه بالالا و لیتیستیکی با نتایج به دست آمده در نقاط
گرمسیر چندان کشش بده نظر نمی‌رسد. با این وجود با نتایج به
جدول ۲. میانگین جمعیت پرگنه‌های قارچ فوزاریوم در گرم خاک خشک (CFU/g) در اعماق مختلف خاک در تیمارهای مختلف آزمایش

<table>
<thead>
<tr>
<th>طول دوره آفات‌دهی</th>
<th>عمق خاک در تیمارهای مختلف</th>
<th>سایه</th>
<th>شاف</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳ هفته‌ای</td>
<td>۱-۵ (cm)</td>
<td>۱۵-۲۴ (cm)</td>
<td>۲۴-۳۳ (cm)</td>
</tr>
<tr>
<td>سایه</td>
<td>۱۷/۶</td>
<td>۱۵/۱</td>
<td>۱۵/۳</td>
</tr>
<tr>
<td>شاف</td>
<td>۱۵/۲</td>
<td>۱۳/۶</td>
<td>۱۳/۷</td>
</tr>
<tr>
<td>۵ هفته‌ای</td>
<td>۱-۵ (cm)</td>
<td>۱۵-۲۴ (cm)</td>
<td>۲۴-۳۳ (cm)</td>
</tr>
<tr>
<td>سایه</td>
<td>۲۸/۳</td>
<td>۱۵/۱</td>
<td>۱۵/۳</td>
</tr>
<tr>
<td>شاف</td>
<td>۲۶/۳</td>
<td>۱۵/۱</td>
<td>۱۵/۳</td>
</tr>
<tr>
<td>۸ هفته‌ای</td>
<td>۱-۵ (cm)</td>
<td>۱۵-۲۴ (cm)</td>
<td>۲۴-۳۳ (cm)</td>
</tr>
<tr>
<td>سایه</td>
<td>۲۶/۳</td>
<td>۱۵/۱</td>
<td>۱۵/۳</td>
</tr>
<tr>
<td>شاف</td>
<td>۲۴/۳</td>
<td>۱۵/۱</td>
<td>۱۵/۳</td>
</tr>
</tbody>
</table>

اگرچه فردی از خورش مشابه در سطح احتمال ۱ درصد اختلاف معنی‌دار ندارد.

سایر بیمارگرایان مهم خاک‌زای زمین باکتری‌ها در منطقه ضروری می‌نماید.

سیاست‌گرای

بدین‌وسیله‌ای از جریان معاونت پژوهشی دانشگاه بوعلی سینا همدان که باعث مالی لازم برای انجام این پژوهش را فراهم نموده است، شکل و روند پیشرفتی می‌گردد. از مدیریت این کل محتوای این هواشناسی استان همدان به خاطر در انتخاب مورد اندازه‌گیری و با فرمان خانم به هواشناسی کمال قدردانی را دارد. همچنین از سرگزار خانم مهندس لیلا کاظمی کارشناس گیاه‌پزشکی و همکاران مختصر خاک‌شناسی دانشگاه تکنیکی که در انتخاب انور آزمایشگاهی مشارکت داشتند، همکاری سیاسی و مساعداتی نموده‌اند سیاست‌گرایی می‌نمایند.

سیر انتقال فوزاریوم در خاک گرفته شود

با توجه به اینکه جمعیت فوزاریوم/۸۵ درصد میانگین دمای روزانه در دقیقه ۲۰۰-۳۰۰ سانتی‌متری خاک در مزرعه مورد آزمایش و دمای خاک استان هواشناسی‌ایکان در ماه‌های انجام آزمایش که در شکل ۵ نشان داده شده است، در انتخاب‌گیری کلی در خصوص شرایطی که آزمایش در آن صورت گرفته از جمله توعی و بافت خاک و نیز میانگین دمای به دست آمده می‌توان به پیکاسون بودن شرایط در اینجاگاه و مزرعه پی برده و با اطمینان نیسته به تعیین تابع آزمایش در نقاطی با شرایط زمانی و مکانی مشابه که نمود. در عین حال انجام آزمایش‌هایی برای در مدت زمانی مناسب برای ارزیابی تأثیر آفات‌دهی بر روی
مباحث مورد استفاده

1. درویش نیا، م. ع. علیزاده، و. اله. محمددی کلته. ۱۳۷۷. گونه‌های فوزاریوم و قارچ‌های مرطوب با پوسیدگی عقیق و ریشه در
استان لرستان. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران، کرک.

2. روحی بخش، ف. و. ج. ارشاد. ۱۳۷۹. وقوع قارچ‌های فوزاریوم روی ریشه و طوفان گرد هم در مناطق سردسیری استان ایلام. خلاصه
مقاله‌های چهاردهمین کنگره گیاه‌پزشکی ایران، اصفهان.

3. علیزاده، ر. و. ج. نژاد و. غ. شریفی نژاد. ۱۳۷۷. تغییر عوامل بیماری‌زا در فوزاریومی‌ها در استان
خوزستان. خلاصه مقالات سیزدهمین کنگره گیاه‌پزشکی ایران، کرک.

4. وفا، م. س. ح. و. و. نژاد و. م. درویش. ۱۳۸۰. گونه‌های فوزاریوم همراه ریشه و طوفان گرد هم در استان خوزستان.

مجله علمی کشاورزی ۲۴: ۱۲۵-۱۲۸.

commercial application of soil solarization for control of Clavibacter michiganensis subsp. michiganensis of
tomatoes. Acta Hort. 382: 119-128


pathogenicity from chlamydospores of Fusarium oxysporum fsp. ciceri. Soil Biol. and Biochem. 28: 399-407.


10. Freeman, S., A. Sztejnberg, E. Shabi and J. Katan. 1990. Long term effect of soil solarization for the control of
Rosellinia necatrix in apple. Crop Protect. 9: 312-316.

energy stress on Rhizoctonia solani. Soil Biol. and Biochem. 27: 1051-1058.

Fusarium wilt and yield of cotton in Israel. Phytopathol. 73: 1215-1219.


between time and temperature for four soilborne plant pathogens. Phytopathol. 71: 121-126.

residues on Fusarium oxysporum f.sp. conglutinans and other organisms. Phytopathol. 78: 289-295.


for the control of Verticillium wilt of tomatoes in Greece. Acta Hort. 255: 139-149.