تأثير دماهای مختلف بر پارامترهای زیستی شته مومی کلم

Brevicoryne brassicae (L.)

یعقوم فتحی‌پور، علی حسینی، علی اصغر طالبی، سعید محرمویور و شهریار عسکری

چکیده

پارامترهای زیستی شته مومی کلم (*Brevicoryne brassicae*) در سه دمای 20، 25 و 30 درجه سانتی‌گراد، رطوبت نسبی ۶۵ درصد و دوره توری ۱۹ ساعت روشنایی و ۸ ساعت تاریکی داخل اتاق رشد بررسی شد. از ۴۰ عدد پره در هر دستگاه مورد استفاده در سه دمای فوق به ترتیب حدود ۴۰، ۴۵ و ۱۰ دمای آنها موقتاً به ورود به مرحله بلغ مخالف. اثر تغییرات دما بر بهبود رشد و تکثیر و تعداد دیگر شده بهبود یافته و افزایش زنده می‌شود. در صورت دمای ۲۰ درجه به صورت مستقیم و در دمای دیگر برده.

در بررسی جدول زندگی شته مومی کلم، مگر آخرين نتایج از تغییر دما مطالعه در دماي ۲۰ و ۲۵ درجه به ترتیب در روزهاي سوم و سوم به ترتیب در اتفاق افتاد. از زندگی به شدت بین دارای روز آزمایش برای سه دمای فوق به ترتیب ۱۲/۳، ۲۰/۵ و ۱۹/۱۷ مورد تحقیق شد. در نهایت، به ترتیب در دماي ۲۰ و ۲۵ درجه به ترتیب ۱۲/۳ و ۲۰/۵ تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۳، تفاوت اندازه‌گیری با هم داشتند ولی در دمای ۳۰ درجه به ترتیب ۲۰/۵ و ۲۰/۵

واژه‌هاي كليدي: شته مومي کلم، دما، پارامترهای زیستی، جدول زندگی، رشد جمعيت

1. به ترتیب استادیار و دانشجوی سابق کارشناسی ارشد، دانشیار و استادیار حشره‌شناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران
2. استادیار. پژوهش بخش میادین بیولوژیکی، مؤسسه تحقیقات آفات و بیماری‌های گیاهی، تهران

185
مقدمه
شته موی کلم Brevicoryne brassicae (L.) کلم در ایران و سیب زمینی از نقطه دیگر جهان به دست خواهد. قابل توجهی به این موارد وارد می‌یکنند. این کلم در اکثریت صنایع و گروه‌های خود را با سرعت افزایش داده و ضمن افزایش کلیه بر سطحی، منجر به خسارت مستقیم از طریق تغذیه از شیره گیاهی و در نتیجه پیچیدگی و بی‌کاری برخی از سوی دیگر با انتقال ورودی‌های بیماری‌زا گیاهان، منجر به خسارت غیر مستقیم می‌شود (9، 11 و 17).

تعادل نسل شته موی کلم به شرایط آب و هوای محل به ویژه با بستگی دارد و ممکن است بین 15 تا 20 نسل در سال انجام گردد. دوره تکامل این شته در زمستان 15 تا 20 روز و در تابستان 8 تا 10 روز طول می‌کشد. در ضمن حشرات بالغ در زمستان 7 تا 8 و در تابستان 30 تا 35 روز عمر می‌کنند. شته موی کلم در برخی شرایط ناسالم مقایسه بوده و سرمایه 10-2 درجه سانتی‌گراد را نیز تحمیل می‌کند. در ضمن در دماهای 22 درجه سانتی‌گراد نیز حداکثر 10 دو ساعت مقاومت می‌کند. اما توجهی به این محدوده‌هایی این شته قادر است در اکثر مناطق دنیا کشت‌پاید (11). دما مهم‌ترین عامل محیطی تأثیرگذار بر رشد و نمو و تولید مثل حشرات از جمله شته‌های است. شته موی کلم از نظر فعالیت‌های مثبت و برای افزایش رشد جمعیت شهته می‌باشد.

در هنگام شته مایه تایب (15) در دماهای 25 درجه بررسی قرار داده و اعلام کرده که در دمای 10 درجه و بالاتر تلفت سنگینی جمعیت شهته وارد می‌شود و از مقدار نرخ دانه افزایش جمعیت به شدت کاسته می‌شود. انسن و پونر (2) نیز تأثیر دماهای مختلف بر فعالیت‌های زنی و شاخص‌های جمعیتی سه گونه شره‌که در دماهای بهینه برا چند تغییرات به این موارد افزایش دارد. Aphis citricola van der (Toxoptera citricida (Kirkaldy) مورد بررسی قرار داده و نتیجه

گرفته است که میزان تأثیر معنای داری روی متغیرهای زنی و رشد جمعیت شهته‌ها دارد. نوربرزی و همکاران (12) ضمن تغییر آستانه‌های دمایی برای شته کرود، آمارهای
ردش جمعیت شته موومی کلم می‌توان در پیوستی روند تغییرات جمعیت این شته در شرایط گلخانه و طیعت استفاده کرد. از انجاچه که در مورد تأثیر دمای مختلف روی آماره‌های دمورگانیک شته موومی کلم پرورش کاملاً صورت نگرفته است، بنابراین نتایج به دست آمده از این پژوهش می‌تواند خلا موجود در این زمینه را پر کند.

مواد و روش‌ها
پروپاش شته موومی کلم
Brassica
برای پروپاش شته موومی کلم از وبته‌های کلم پیچ، Green Cornet رقمoleracea (L) استفاده کنیم. شته‌های اولیه برای ایجاد کلیه در اثر رشد، از مزرعه کلم که به همین منظور تهیه شده می‌باشد، پس از مرز، با مقدار بسیار کوچک آن فعالیت داشته. روی پوشه‌های موجود در آزمایشگاه مستقر شده. پوشه‌های موجود در داخل گلدان‌های پلاستیکی به اندازه 15 و قطر دهه 19 سانتی‌متر کاشته شدند و برای انجام آزمایش‌ها و مورد استفاده قرار گرفتند. این کلیه‌ها در اثر رشد در دمای 25±1 درجه سانتی‌گراد، رطوبت نسبی 65 درصد و دوره نوری 16 ساعت روش‌النام و 8 ساعت نارنجی نگهداری شده‌اند. یک پس از مدتی جمعیت شته‌های موجود در اثر رشد افرادی یافت و برای انجام آزمایش‌ها از آنها استفاده شد.

اندازه‌گیری پارامترهای زیستی شته
پارامترهای زیستی شته در سه دمای 8.20 و 30 درجه سانتی‌گراد محاسبه گردید. برای انجام آزمایش در هر یک از دمای‌های مختلف مقدار تغییرات شته‌های بالغ، پایان انتخاب و روند پرگ کلم (تحت همکاری از دمای فوق، رطوبت نسبی 65 درصد و دوره نوری 16 ساعت روش‌النام و 8 ساعت نارنجی) در زیر قطعی غیره (leaf cage) به مدت 100 روز داده شدند. پس از 24 ساعت ماده‌های بالغ برداشته شد و تعداد 40 عدد از پوشه‌های سن یک تولیدی شده در زیر قطعی باقی ماندند.
شته‌ی موجود کلم در هر سه دما فاقد دوره پیش از پوروزایی‌ی فاصله بلوگ تولید‌یمتوئرت با یونس و به‌همین لحاظ مقدار این خصوصیت معدال صفر در نظر گرفته شد. در مورد طول دوره پوروزایی‌ی (تولید‌یمتوئرت، طول دوره پیش از پوروزایی‌ی) فاصله توقف تولید ملی و طول دوره بلوگ (طول عمر حشرات کامل) بین دو دمای ۲۰ و ۲۵ درجه اختلاف معنی‌داری دیده نشد و در ارتقاء این سه یوزگی بین دمای ۲۰ درجه با دور دمای دیگر اختلاف معنی‌دار وجود داشت (۰.۰۵) و طول دوره کوتاه‌تری بود. به علت کاهش شدتی طول عمر شته‌های بالغ در دمای ۲۵ درجه و عدم تکمیل طول دوره پوروزایی‌ی در زمان کوتاه‌تری، در دو روز از پوروزایی‌ی در این دوا معدال صفر بود.

طول عمر کل (از تولید تا مگرب) و یوزگی پوروزایی‌ی (تولید) مختلف در دمای ۲۰ درجه به صورت معنی‌داری (۰.۰۱) بیشتر از دمای ۲۵ درجه و این دما نیز به صورت معنی‌داری (۰.۰۱) بیشتر از دمای ۲۰ درجه بود. به عبارت دیگر، یوزگی‌های زیستی بین دو دمای ۲۰ و ۲۵ درجه و در مورد اغلب آنها بین دمای ۲۰ و ۲۵ کمتر درجه اختلاف معنی‌دار وجود دارد (۰.۰۱) در هر دو مورد. کوتاه‌ترین طول دوره پوروزایی‌ی به صورت معنی‌داری در دمای ۲۵ درجه دیده شد و در ارتقا این دوا معدال صفر بود. بالاتر از ۲۰ درجه قاود به زنده ماندن و خاصیت نیست.

دلج (۱۰) طی بررسی نیازهای معدال شته‌ی موجود کلم عالمی کرد است که این شته در دمای ۲۵ درجه سالگری گرادیت قرار به زنده ماندن نیست، و اینها باید دما برای این شته پایین‌تر از دمای مادرکی می‌باشند. این‌ها معدالی بیش از گونه‌های مختلف منجر شده‌اند مفاعوی است (۰.۰۵) و برخی چندین (۱۵) آسساتان بد‌آموزان دمای با شته‌ی شته‌ی با پیوند همکاران (۳) این آسساتان Acryosophis kondoli Shinji B. brassicae مقایسه مربوط به یوزگی‌های زیستی شته‌ی موجود در سه دما (۲۵ و ۳۰ درجه سانتی‌گراد) و تأثیر به دست آمده از مقایسه آماری آنها در جدول ۱ درج شده است. نتایج به دست آمده از تجزیه آماری داده‌ها نشان داد که در مورد برخی از یوزگی‌های زیستی، بین دو دمای ۲۰ و ۲۵ درجه و در مورد اغلب آنها بین دمای ۲۰ و ۲۵ به دست درجه اختلاف معنی‌دار وجود دارد (۰.۰۱) در هر دو مورد. کوتاه‌ترین طول دوره پوروزایی‌ی به صورت معنی‌داری در دمای ۲۵ درجه و در ارتقا این دوا معدال صفر بود. بالاتر از ۲۰ درجه قاود به زنده ماندن و خاصیت نیست.
تأثیر دمای مختلف بر پارامترهای زیستی شته موی کلم (B. brassicae)

جدول ۱. میانگین (+ خطای معیار) وزن‌گی حیاتی زیستی شته در ۳۰ درجه سانتی‌گراد (طول دوره‌ها به روز)

<table>
<thead>
<tr>
<th>درجه سانتی‌گراد</th>
<th>وزن‌گی حیاتی زیستی</th>
<th>وزن‌گی حیاتی زیستی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵ درجه سانتی‌گراد</td>
<td>۱۲/۴۶±۱/۵۱ تا ۱۲/۴۶±۱/۵۱</td>
<td>۱۳/۳۳±۱/۵۰ تا ۱۳/۳۳±۱/۵۰</td>
</tr>
<tr>
<td>۲۰ درجه سانتی‌گراد</td>
<td>۱۲/۴۶±۱/۵۱ تا ۱۲/۴۶±۱/۵۱</td>
<td>۱۳/۳۳±۱/۵۰ تا ۱۳/۳۳±۱/۵۰</td>
</tr>
</tbody>
</table>

شکل ۱. تغییرات میانگین پارامتر در زمان ۲۰ ساله در B. brassicae در سه دمای (۰) و ۲۵ درجه سانتی‌گراد (۲۰) درجه سانتی‌گراد

را باش که اجتهاد کند به طوری که محققین میزان نیافته می‌باشد، در هر ۳۰ درجه سانتی‌گراد می‌باشد. این آمارها ممکن است به اندازه ۳۷ درجه سانتی‌گراد و بالاتر دچار اختلال شده و رشد جمعیت و میزان تولید مثل زیستی به سمت نشان دهنده تأثیر قرار می‌گیرد. البته دمایهای پایین‌تر نیز کمی اختلاف

۱۸۹
درجه شده است. نخ تناهیسی تولیدی‌تل (میانگین تعداد ماده‌های تولید شده توسط یک فرد ماده در طول عمر) و نرخ خالص تولید مثل (میانگین تعداد ماده‌های تولید شده توسط یک فرد ماده در طول عمر با اختلال احتمالی (قایق فرد ماده) در دمای 20 درجه بالا و در دمای 20 درجه بالا از دو دمای دیگر است. شله‌سمی کلم در دمای 30 درجه اکثریت میانگین بقا و بیشترین میزان تلفات را داشت و این نشان می‌دهد که دمای مذکور برای رشد و افزایش شته مومی دمای مناسبی نیست و احتمالاً باال‌تراوی در دمای 30 درجه برای افزایش و زنده‌مانی این شته می‌باشد. در غرب بالا بودن طول عمر کل شته در دمای 20 درجه میزان تلفات وارد به مرحله پروگرس در این دما (حدود 40 درصد) بیشتر از دمای 25 درجه (حدود 25 درصد) بوده است. دیگر دمای آزمایش میزان تلفات دوره پوکی (90 درصد) و بلحاظ را به حذف اختصاص داد امید به زدنگی شته مومی کلم در نسبت‌های زیر آزمایش در دمای 20، 25 و 30 درجه سالانه گرد از تاریخ 1373/5/19 و 19/7/19 روز تعیین شد که بالا بودن امید به زدنگی در دمای 20 درجه را نشان می‌دهد. دمای 30 درجه کمترین میزان امید به زدنگی را به حذف اختصاص داد و بسته به زمان نیز در این دما بیشتر از دو دمای دیگر بود.

از وضعیت میزان بقای شته مومی کلم در سه دمای مورد آزمایش می‌توان چنین نتایجی گرفت که این شته دمایهای پایین‌تر را بهتر از دمایهای بالاتر تحمل می‌کند. وانگ و نسایی (22) نیز در مورد شته‌ای به نام Aphis spiraecola نامیده گان معفن‌گر می‌کنند که عکس عمل شته‌ها به دمایهای بسیار پایین و بسیار بالا بسی را می‌توان به گونه شته و حتی پروپتی دارد. تأثیر دمایهای مختلف بر میزان بقا و عفایی‌های مختلفی به شته مومی کلم و سایر گونه‌های شته‌ها توسط پرین محققین مرتبط به مهم‌ترین شاخه‌های رشد جمعیت شته مومی کلم در سه دماه 15، 20 و 25 درجه سانتی‌گراد در جدول ۲

<table>
<thead>
<tr>
<th>شاخه‌های رشد جمعیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقادیر مربوط به مهم‌ترین شاخه‌های رشد جمعیت شته مومی کلم در سه دماه</td>
</tr>
</tbody>
</table>
تأثیر دمایی مختلف بر پارامترهای زیستی شته موی کلم (B. brassicae)

- شکل 2: متوسط ترخ پراکنده شته در سه دمای 20، 25 و 30 درجه سانتی‌گراد

- شکل 3: متوسط تعداد بی‌ژن در سه دمای 20، 25 و 30 درجه سانتی‌گراد
جدول 2. شاخص‌های رشد جمعیت شته B. brassicae در سه دمای 20 و 30 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>شاخص‌های جمعیت</th>
<th>دمای 20 درجه</th>
<th>دمای 25 درجه</th>
<th>دمای 30 درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سانتی‌گراد</td>
<td>سانتی‌گراد</td>
<td>سانتی‌گراد</td>
</tr>
<tr>
<td>نرخ ناخالص تولید مثل (GRR)</td>
<td>1/09</td>
<td>0/75</td>
<td>0/45</td>
</tr>
<tr>
<td>نرخ خالص تولید مثل (NRR)</td>
<td>1/16</td>
<td>1/48</td>
<td>1/94</td>
</tr>
<tr>
<td>نرخ ذای افزایش جمعیت (a)</td>
<td>1/29</td>
<td>1/31</td>
<td>1/27</td>
</tr>
<tr>
<td>نرخ ذای تولد (b)</td>
<td>1/07</td>
<td>1/04</td>
<td>1/04</td>
</tr>
<tr>
<td>نرخ ذای مرگ (c)</td>
<td>1/21</td>
<td>1/95</td>
<td>1/36</td>
</tr>
<tr>
<td>متوسط مدت زمان یک نسل (T)</td>
<td>13/35</td>
<td>10/07</td>
<td>8/30</td>
</tr>
<tr>
<td>مدت زمان در 16 درجه بیشتر (DT)</td>
<td>3/06</td>
<td>2/15</td>
<td>1/60</td>
</tr>
</tbody>
</table>

بررسی‌های مختلف نشان می‌دهد که چنین روندی در بسیاری از شته‌ها دیده می‌شود (12، 13 و 16). نتایج به دست‌آمده از پژوهش‌های دیگر نیز نشان داد که میزان نرخ ذای افزایش جمعیت این شته از دمای 15 درجه (1/09) تا دمای 25 درجه (1/86) به سرعت افزایش می‌یابد. ولی مقدار این آمار از دمای 27/5 درجه سپر نزولی بیشتر کرده و در دمای 30 درجه سانتی‌گراد (1/5) به بالاترین مقادیر رسیده‌است. ولی سایر مطالعات نشان‌دهنده‌اند که میزان نرخ ذای افزایش جمعیت این شته در دمای 25 درجه بیشتر از دوره‌های دیگر است.

آن نرخ ذای افزایش جمعیت شته مومی در دمای 25 درجه بیشتر بود. این شته در دمای 25 درجه توانست در مدت زمان کمتری نسل خود را کامل کند و هم چنین در این دمای بیشتر دو برابر شدن جمعیت به مدت زمان کمتری نیاز بود.

نرخ متدری افزایش جمعیت (a) در بیشتر افزایش جمعیت در دمای 25 درجه بیشتر از دوره‌های دیگر بود و نشان می‌دهد که نهایتاً در این دما می‌تواند جمعیت خود را به میزان 1/25 بیشتر از دوره‌های دیگر بیشتر کند. دلوج (10) در بیروز تأثیر دامای مختلف بر شدت رشد جمعیت شته مومی کلیمی در میکروپتری که بیشترین مقدار نرخ ذای افزایش جمعیت یافته‌اند، دمای 25 درجه بیشتر از دوره‌های دیگر بوده و این افتاده‌اند که در دمای 30 درجه، فعالیت‌های زیستی شته موجب شده‌اند. این می‌تواند در مطالعات تأثیر دامای مختلف بر شدت رشد جمعیت شته که می‌تواند تأثیرگذار باشد. A. spiraeola شته چنین نتیجه‌گیری گرفته‌اند که بیشترین میزان نرخ ذای افزایش جمعیت این شته در دمای 25 درجه بیشتر از دوره‌های دیگر است. این افتاده‌اند که در دمای 30 درجه بیشتر از دوره‌های دیگر خود به میزان 1/25 بیشتر از دوره‌های دیگر بوده است. این نتایج بررسی‌های مختلف شده‌اند.

Downloaded from jstnar.iut.ac.ir at 12:35 IRDT on Saturday June 20th 2020

