تجزیه اثر متقابل زنوتیپ × محيط و بررسی الگو واکنش زنوتیپ در ارقام بولاف

قاسم محمدی نژاد و عبدالملک رضایی

چکیده
در این پژوهش از روش امی (تجزیه توالی آثار افزایشی جمع‌گزاری و آثار متقابل ضریب‌پذیر) به منظور تعیین پایداری عملکرد 9 زنوتیپ پیشرفته در به دقت 3 آزمایشی (بر اساس مقدار و نسبت تغییرات) در سه مولکول متفاوت (ریشه سخت) شناخته شده در ناحیه ترشح در سال زراعة شده در سال 1379، به ترتیب، اثر متقابل ضریب‌پذیر از طریق دنباله‌ای کاملاً

تقصیصی با 3 نکته استفاده شد.

طبق نتایج به دست آمده، آثار اصلی زنوتیپ و محيط و اثر متقابل زنوتیپ × محيط معنادار بودند و 90٪ از مجموع مربوطات آن توسط در مولکول اصلی اثر متقابل (IPCI) بین زمان در مولکول متفاوت، دو مولکول دیگر و اثر متقابل AMMI2 بین E12 و S1P1 ترکیبی، که این گروه کشف کند که ارقام پیبر کالیبرب در تاریخ 30، ناپایداری و واکنش 30 گونه سازگاری خخصوصی با مولکول K3 در تاریخ کاتش دانسته‌ای اول بودند. جوامعی که رمپ پیبر نسبت به تاریخ کاتش دوم در سوم و تراکم کاتش دوم سازگاری خخصوصی نیاگر دانسته.

واژه‌های کلیدی: اثر متقابل زنوتیپ و محيط، الگو، واکنش زنوتیپ، تجزیه امی، بولاف

زنوتیپ × محيط موتورین روش برای شناسایی ارقام سازگار است (31). اثر متقابل زنوتیپ × محيط همبستگی بین ارزش‌های زنوتیپ و فنوتیپ را کاهش و بهبود کاشت سودمندی ارقام می‌گردد (4). برای درک همه جنبه‌های مختلف این اثر متقابل، استفاده از روش‌های آماری تجزیه صندوق متغیره ضروری است. دلیل اصلی این است که پاسخ و واکنش مقدمه

پس از تولید ارقام و لایه‌های نوید بخش، تعیین درجه پایداری محیط آنها و شناسایی ارقام سازگار با محیط‌های خاص و یا ارقام با سازگاری عمومی از اهمیت خاصی برخوردار است. از انجایی که هنوز بین ظهور صفات و سازگاری عمومی در گیاهان مختلف ارتباط قوی پیدا نشده، مطالعه اثر متقابل

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
در تجزیه و ارتباط عملکرد زنوتیپها در محیط‌های مختلف از یک مدل آماری جمع‌پذیر برای آن اصلی زنوتیپ و محیط استفاده می‌شود. اگر چه در این روش معنی دارد تا تبدیل اثر متقابل زنوتیپ و محیط مورد آزمون شود می‌گردد، ولی تجربه این آزمون می‌تواند تا دقت کافی برخوردار باشد. در این روش نظر ساختاری زنوتیپها با محیط‌های اصلی در اثر متقابل روش نمی‌شود. از تجزیه به مولفه‌های اصلی نیز در مطالعه اثر متقابل زنوتیپ و محیط استفاده شده است. اجمالاً عمدتاً این روش اخلاط آثار اصلی جمع‌پذیر و محیط با اثر متقابل ضریب‌زدایی (Additive Main Effects and Multiplicative Interaction (AMMI) نمود. در واقع چنین‌طور از محیط‌های اصلی برای این اثر اثر متقابل ضریب‌زدایی را ارائه نمود. نمونه‌های AMMI0 با توجه به شده است. اگر نشان داده می‌شود، تجزیه واریانس معنی‌دار این اثر است. در سایر موارد می‌توان یک یا چند مولفه اصلی را به مدل اضافه نمود که در این صورت از تجزیه واریانس با توجه به یک اثر متقابل اصلی، اثر متقابل و محیط می‌تواند آنها را ارائه شده‌اند. شاید روش تجزیه واریانس میانگینی با توجه به اثر اثر اصلی، اثر متقابل و محیط و مولفه‌های اصلی، اثر اثر اصلی و محیط می‌تواند آنها را ارائه شده‌اند. شاید روش تجزیه واریانس با توجه به اثر اصلی، اثر متقابل و محیط می‌تواند آنها را ارائه شده‌اند.

روش‌های آماری سیستمی از جمله تجزیه رگرسیون، تجزیه واریانس و تجزیه به مولفه‌های اصلی برای ارزیابی ساختاری ارقام در محیط‌های مختلف و برآوردهای آن‌ها اصلی و محیط و اثر متقابل آنها ارائه شده‌اند. شاید روش تجزیه واریانس میانگینی با توجه به اثر اصلی، اثر متقابل و محیط و مولفه‌های اصلی، اثر اثر اصلی و محیط می‌تواند آنها را ارائه شده‌اند. شاید روش تجزیه واریانس با توجه به اثر اصلی، اثر متقابل و محیط می‌تواند آنها را ارائه شده‌اند.

روش‌های آماری سیستمی از جمله تجزیه رگرسیون، تجزیه واریانس و تجزیه به مولفه‌های اصلی برای ارزیابی ساختاری ارقام در محیط‌های مختلف و برآوردهای آن‌ها اصلی و محیط و اثر متقابل آنها ارائه شده‌اند. شاید روش تجزیه واریانس میانگینی با توجه به اثر اصلی، اثر متقابل و محیط و مولفه‌های اصلی، اثر اثر اصلی و محیط می‌تواند آنها را ارائه شده‌اند. شاید روش تجزیه واریانس با توجه به اثر اصلی، اثر متقابل و محیط می‌تواند آنها را ارائه شده‌اند.

روش‌های آماری سیستمی از جمله تجزیه رگرسیون، تجزیه واریانس و تجزیه به مولفه‌های اصلی برای ارزیابی ساختاری ارقام در محیط‌های مختلف و برآوردهای آن‌ها اصلی و محیط و اثر متقبال آنها ارائه شده‌اند. شاید روش تجزیه واریانس میانگینی با توجه به اثر اصلی، اثر متقابل و محیط و مولفه‌های اصلی، اثر اثر اصلی و محیط می‌تواند آنها را ارائه شده‌اند. شاید روش تجزیه واریانس با توجه به اثر اصلی، اثر متقابل و محیط می‌تواند آنها را ارائه شده‌اند.
محیط‌های مورد بررسی شناسایی کرد. به‌دین طریق استنباط مناسب در مورد اثر مقیال زنی‌تیپ، محیط فراهم می‌شود وانت‌باز این زنی‌تیپ‌ها با سازگاری اختصاصی به محیط‌های
خاص نشیب می‌گردد (18).

تجزیه اگلو و اکتش زنی‌تیپ به مدل‌های اطلاعاتی می‌شود که در آنها به طور همزمان از روش‌های دسته‌بندی مانند تجزیه
خوشه‌ای و روش‌های برداری‌پیوند و مقیاس‌بای مانند تجزیه به
مؤلفه‌های اصلی تجزیه به عامل‌ها و غیره استفاده می‌شود. در
واضح از این روش به مصور نشان دادن حاکمیت تغییرات مانیفست
زنی‌تیپ محیط استفاده می‌گردد و در دو سطح مجموعه‌ی تغییرات
جدیدی در ابعاد مکانی که به روش می‌شود. برای تبیین اثر
مقیال زنی‌تیپ، روش‌های استفاده می‌شود. حتی اگر در مواردی
درصد کمی از اثر مقیال به‌وسیله مؤلفه‌ای اصلی نیست، شور
چون روش‌های تجزیه برداری‌های مشخصه باعث کاهش
باقا مانده نیز نیست. دقت برآوردهای افزایش یافته و ارائه
شکل روش‌انش اثر مقیال مسر می‌گردد (5).

زوبی و همکاران (18) در ارزیابی مدل ژنی‌تیپ سوسیا ل
محیط از چهار مدل تجزیه واریانس، تجزیه مؤلفه‌های اصلی،
رگرسیون خطی و اسکالر استفاده کردند. در روش تجزیه واریانس
با وجودی که مجموعه مراجع اثر مقیال زیاد بود، ولی به علت
بی‌این درخ هزینه‌ی اسکالر، این منبع تغییر معنی دار نگردید. در
روش به علت اختلاف آثار اصلی و مقیال مناسب تشخیص
داه نشده. در روش رگرسیون خطی فقط 1/19 از مجموع
مراجع اثر مقیال توسط مدل خطی تبیین شد، ولی مدل امی در
مجموع با توجه 7/49 از مجموع مراجع اثر مقیال، مفیدترین
روش تشخیص داده شد.

داه (16) واکنش با اینکه از روش‌های اکتش زنی‌تیپ به مدل‌های اطلاعاتی می‌شود وانت‌باز این زنی‌تیپ‌ها با سازگاری اختصاصی به محیط‌های
خاص نشیب می‌گردد (18).

تجزیه اگلو و اکتش زنی‌تیپ به مدل‌های اطلاعاتی می‌شود که در آنها به طور همزمان از روش‌های دسته‌بندی مانند تجزیه
خوشه‌ای و روش‌های برداری‌پیوند و مقیاس‌بای مانند تجزیه به
مؤلفه‌های اصلی تجزیه به عامل‌ها و غیره استفاده می‌شود. در
واضح از این روش به مصور نشان دادن حاکمیت تغییرات مانیفست
زنی‌تیپ محیط استفاده می‌گردد و در دو سطح مجموعه‌ی تغییرات
جدیدی در ابعاد مکانی که به روش می‌شود. برای تبیین اثر
مقیال زنی‌تیپ، روش‌های استفاده می‌شود. حتی اگر در مواردی
درصد کمی از اثر مقیال به‌وسیله مؤلفه‌ای اصلی نیست، شور
چون روش‌های تجزیه برداری‌های مشخصه باعث کاهش
باقا مانده نیز نیست. دقت برآوردهای افزایش یافته و ارائه
شکل روش‌انش اثر مقیال مسر می‌گردد (5).
مواد و روش‌ها

ارزیابی یکی از 9 زنوبیپ پیرول شکاف 5 لایه اصلاحی دراتیفی از ترکیبی به شماره‌های 28، 26، 23 و چهار

Plant Gene (Resource of Canada, Saskatoon Research Center.

نام‌های بیور (Payer)، (Boyer)، (Calibre) به همراه یک رقم جو (جوماکوی) به عنوان کالیبر

شاد به رای مقاپه با سازگاری آن با ارقام

پیلوف در 6 میکروفیلم از لحاظ تاریخ با تراکم کاشت در سال

زراعی ۱۳۸۰-۲۰ به مراجعه و داشتن صحتی اصلاح

واقع در لرک دی‌آباد واقع در عرض جغرافیایی ۳۲ درجه و

۳۲ دقیقه شمالی و طول جغرافیائی ۵۱ درجه و ۲۷ دقیقه شرقی

سیونتراگر. مس میکروفیلم با نوعی کاشت ۲۰ مهر، ۱۰ آبان

و سه ۱۰ آبان با تراکم ۲۳۵۰ به متر مربع و سه

مربع در میان کاشت ۲۳۵۰ متر مربع و مکرر

زنوبیپ در ۴ میکروفیلم در قالب طرح بلوک‌های کامل

تکاردی با سه تکرار ارزیابی شدند. هر کرت شمار ۴ ردیف

کاشت به طول ۲ متر و فاصله ردیف ۴۰ سانتیمتر بود. در طول

دوره رشد مراقبت‌های زراعی لازم ماند که از گرداری

نلمه‌های هرز به طور کامل اعمال گردید. عملکرد هنگام با حذف

اثر خاصی برای هر کرت تعیین شد. نخست عملکرد ارقام مورد

اجرای ارتقاء و رسیدن مراکز کاشت گرفته و سپس از استفاده

در ام Fatal ۱۲ تا بانوان آلال کار

میت یکی از میت‌ها به مایه‌ای است. (۱۷):

\[Y_{ij} = \frac{X_{ij}}{g + b + e + \sum_{n=1}^{N} \delta_{n} \theta_{n} + \theta_{0} + \theta_{i}} \]

در این مدل میانگین کلی (g)تکرار اصلی زنوبیپ (i) از میانگین میکروفیلم (e) اصلی محیطی می‌باشد. (Singuler value)

میانگین محیطی (\(\delta_{n}\)) میانگین اصلی اصلی اصلاحی از میانگین اصلی اصلاحی

می‌توخه به بزرگی و علامت میت‌ها اصلاحی اصلاحی می‌باشد.

\[\text{EV} = \sum_{N} \xi_{n} \text{SPIC} = \sum_{N} \theta_{n} / \xi_{n} \]
در ترسيم سایت برای اولین مؤلفه اصلی محور افقی مربوط به میانگین اصلی (عملکرد) زنوتیپها و محیط‌ها و محور عمودی مربوط به مقادیر اولین مؤلفه اصلی زنوتیپها و محیط‌ها. زنوتیپها و محیط‌هایی که ترکیب بالا و روی یک خط عمودی قرار می‌گیرند دارای میانگین (انر اصلی) مشاهده می‌شوند و زنوتیپها و محیط‌هایی که ترکیب بالا و روی یک خط افقی واقع می‌شوند دارای گروه اثر مقابل مشاهده خواهند بود. در زنوتیپها که از مؤلفه اصلی اثر مقابل ندیمک به صفر برخورد باشد دارای سازگاری عموی محیط‌های آزمایش است. یعنی این زنوتیپهای اثر مقابل کم و جزئی است. زنوتیپها با پرداخت داده‌های مقادیر مؤلفه‌های اصلی بزرگ (ثبت یا منفی) دارای اثر مقابل برگه هستند و ممکن است سازگاری خصوصی را نشان دهد.

همچنین تجزیه خوشه‌های زنوتیپها و محیط‌ها بر مبنای مؤلفه‌های اصلی اول و دوم و آماره‌های پایداری مدل با روش وارد (Ward) و بررسی ماتریس عدم مشابهی فاصله انگیزه (IPPC) در نهایت تجزیه گروه و اکتش فزنوتیپ بر مبنای مقادیر مؤلفه‌های اصلی اول و دوم و آماره پایداری مدل انجام شد. در تجزیه گروه و اکتش فزنوتیپ بر مبنای مقادیر مؤلفه‌ای اول و دوم چهار گروه به‌شکل متناسب با زاویه بین پارامترها محیط در تفسیر مشابهت‌های محیط‌های ارزش‌آمیز است. زاویه‌های جدید ۱/۲ داده به دو سطح میزان مشخص کننده همبستگی برای بازی زاویه به دو سطح میزان مشخص کننده همبستگی برای بازی زاویه به محیط است. زاویه قائم برای مدل محیط‌سنجی عدم وجود همبستگی در ایجاد اثر طبقات زاویه منفی برای مدل محیط‌سنجی منفی دو محیط از لحاظ ایجاد اثر مقابلی منفی (۲) محاسبات آماری با نرم‌افزار SAS انجام شد.

نتایج و بحث

نتیجه آزمون بارلنت دلایل بر همگن بودن واریانس‌های خطای داده‌ها تجزیه واریانس مربوط اکتش عملکرد داده‌ها بیان می‌کند. در این داده‌ها برای ارزیابی پایداری زنوتیپها، ستیج تغییرات محیطی و همچنین اساسیت از زنوتیپها به محیط‌های مختلف در تجزیه خوشه‌های زنوتیپها بر اساس مقدار اولین مؤلفه.
جدول ۱. تجزیه و اریاف عامل‌کرد ۱۰ زنوتیپ در ۶ محيط بر مبیای روش امی

<table>
<thead>
<tr>
<th>میانگین مرعابات</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل</td>
<td>۳/۱۹۳۶</td>
<td>۹۲/۶۵</td>
<td>۳۹</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>۳/۱۹۳۶</td>
<td>۹۲/۶۵</td>
<td>۹</td>
</tr>
<tr>
<td>محیط</td>
<td>۹/۱۸۹۶</td>
<td>۲۶/۷۸</td>
<td>۵</td>
</tr>
<tr>
<td>زنوتیپ × محیط</td>
<td>۸/۸۷۸۶</td>
<td>۵۸/۹۸</td>
<td>۲۴</td>
</tr>
<tr>
<td>IPCA</td>
<td>۱/۱۴۳۶</td>
<td>۱۹/۸۶</td>
<td>۱۳</td>
</tr>
<tr>
<td>IPCA</td>
<td>۱/۱۴۳۶</td>
<td>۱۹/۸۶</td>
<td>۱۱</td>
</tr>
<tr>
<td>باقی مانده</td>
<td>۱/۱۶۳۶</td>
<td>۱۸/۳۶</td>
<td>۲۱</td>
</tr>
<tr>
<td>بلک</td>
<td>۱/۱۶۳۶</td>
<td>۱۸/۳۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>خطأ</td>
<td>۰/۱۹۵۶</td>
<td>۲۸/۷۳</td>
<td>۱۰۸</td>
</tr>
<tr>
<td>کل</td>
<td>۰/۱۹۵۶</td>
<td>۲۸/۷۳</td>
<td>۱۷۹</td>
</tr>
</tbody>
</table>

* و ** به ترتیب معنی دار در سطح احتمال ۵ و ۱ درصد

جدول ۲. پارامترهای اثر متقابل زنوتیپ × محیط در مدل AMMI2 برای زنوتیپ‌ها

<table>
<thead>
<tr>
<th>زنوتیپ</th>
<th>پیوسته</th>
<th>پیوسته</th>
</tr>
</thead>
<tbody>
<tr>
<td>لائن ۲</td>
<td>۱۶۴/۱۹۶</td>
<td>۱۰/۸</td>
</tr>
<tr>
<td>لائن ۳</td>
<td>۱۷۶/۱۹۶</td>
<td>۱۹/۸</td>
</tr>
<tr>
<td>لائن ۴</td>
<td>۱۱۲/۱۹۶</td>
<td>۱۷/۸</td>
</tr>
<tr>
<td>لائن ۵</td>
<td>۱۱۲/۱۹۶</td>
<td>۱۷/۸</td>
</tr>
<tr>
<td>کالیبر</td>
<td>۲۴۴/۱۹۶</td>
<td>۵۵/۸</td>
</tr>
<tr>
<td>دریای</td>
<td>۱۸۸/۱۹۶</td>
<td>۱۸/۸</td>
</tr>
<tr>
<td>پسر</td>
<td>۱۳۵/۱۹۶</td>
<td>۱۵/۸</td>
</tr>
<tr>
<td>ببویر</td>
<td>۲۱/۱۹۶</td>
<td>۰/۰۱</td>
</tr>
<tr>
<td>جویمکری</td>
<td>۲/۰۱۲</td>
<td>۲۵/۰۱</td>
</tr>
</tbody>
</table>

* و ** به ترتیب عباراتند از بردارهای ویژه زنوتیپ برای اولین و دومین مؤلفه اصلی اثر متقابل

جدول ۳. پارامترهای اثر متقابل زنوتیپ × محیط در مدل AMMI2 برای محیط‌ها

<table>
<thead>
<tr>
<th>محیط</th>
<th>η۱</th>
<th>η۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاریخ کاشت اول</td>
<td>۰/۹۸</td>
<td>۰/۹۸</td>
</tr>
<tr>
<td>تاریخ کاشت دوم</td>
<td>۰/۸۷</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>تاریخ کاشت سوم</td>
<td>۰/۸۷</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>تراکم کاشت اول</td>
<td>۰/۸۷</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>تراکم کاشت دوم</td>
<td>۰/۸۷</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>تراکم کاشت سوم</td>
<td>۰/۸۷</td>
<td>۰/۸۷</td>
</tr>
</tbody>
</table>

* و η۱ به ترتیب عباراتند از بردارهای ویژه محیط برای اولین و دومین مؤلفه اصلی اثر متقابل زنوتیپ × محیط
جدول 4 مقدار ریشه مشخصه و مقدار مؤلفه‌ای اصلی آثار متقابل در مدل برای زونتیپها AMMI

<table>
<thead>
<tr>
<th>زنوتیپ</th>
<th>مؤلفه‌های اصلی آثار متقابل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPC1</td>
</tr>
<tr>
<td>لاکین</td>
<td>0.824</td>
</tr>
<tr>
<td>لاکین</td>
<td>0.881</td>
</tr>
<tr>
<td>لاکین</td>
<td>0.775</td>
</tr>
<tr>
<td>لاکین</td>
<td>0.676</td>
</tr>
<tr>
<td>لاکین</td>
<td>0.553</td>
</tr>
<tr>
<td>کالری</td>
<td>0.220</td>
</tr>
<tr>
<td>روبی</td>
<td>0.055</td>
</tr>
<tr>
<td>پیسر</td>
<td>0.043</td>
</tr>
<tr>
<td>جوامکوبی</td>
<td>0.022</td>
</tr>
</tbody>
</table>

ریشه مشخصه درصد تجمعی واریانس مؤلفه‌ها

<table>
<thead>
<tr>
<th></th>
<th>IPC1</th>
<th>IPC2</th>
<th>IPC3</th>
<th>IPC4</th>
<th>IPC5</th>
<th>IPC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>لاکین</td>
<td>0.24</td>
<td>0.30</td>
<td>0.22</td>
<td>0.17</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>کالری</td>
<td>0.21</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>روبی</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>پیسر</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>جوامکوبی</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

جدول 5 مقدار ریشه مشخصه و مقدار مؤلفه‌ای اصلی آثار متقابل در مدل برای محیطها AMMI

<table>
<thead>
<tr>
<th>محیط</th>
<th>مؤلفه‌های اصلی آثار متقابل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPC1</td>
</tr>
<tr>
<td>تاريخ کشت اول</td>
<td>0.294</td>
</tr>
<tr>
<td>تاريخ کشت دوم</td>
<td>0.185</td>
</tr>
<tr>
<td>تاريخ کشت سوم</td>
<td>0.185</td>
</tr>
<tr>
<td>تراکم کشت اول</td>
<td>0.185</td>
</tr>
<tr>
<td>تراکم کشت دوم</td>
<td>0.185</td>
</tr>
<tr>
<td>تراکم کشت سوم</td>
<td>0.185</td>
</tr>
<tr>
<td>ریشه مشخصه</td>
<td>0.185</td>
</tr>
</tbody>
</table>

ریشه مشخصه درصد تجمعی واریانس مؤلفه‌ها

<table>
<thead>
<tr>
<th></th>
<th>IPC1</th>
<th>IPC2</th>
<th>IPC3</th>
<th>IPC4</th>
<th>IPC5</th>
<th>IPC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاريخ کشت اول</td>
<td>0.24</td>
<td>0.30</td>
<td>0.22</td>
<td>0.17</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>تاريخ کشت دوم</td>
<td>0.21</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>تاريخ کشت سوم</td>
<td>0.21</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>تراکم کشت اول</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>تراکم کشت دوم</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>تراکم کشت سوم</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

گروه عمده را مشخص نمود. در گروه اول محتوی‌های تاريخ کشت اول و تراکم‌های کشت اول و سوم قرار گرفتند که در گروه IPC1 متغیر بودند و در گروه دوم محتوی‌های کشت دوم و سوم و تراکم‌های کشت دوم با IPC1 متغیر بودند. گروه سوم شامل لاکین 2 مقدار IPC1 متغیر و برگ بودند. IPC1 گروه لاکین 28 و ارقام برگ و کالری را شامل شد که درای آماری نزدیک به صفر و نیز شرایط پایداری بودند. همچنین تجزیه IPC1 و IPC2 نشان‌دهنده این این بود که اصلاح(IPC1) صفر نداشته باشد.
شکل 1. باز پلته حاصل از میانگین و پارامتر پایداری Zنوتیبها و محیطها. اشکال چهره ضلمی و بیده به ترتیب گروه‌های حاصل از تجزیه خوشه‌ای Zنوتیبها و محیطها براساس IPC1 را نشان می‌دهد. نقطه افقی و عمودی مدت به ترتیب از نقاط میانگین عامل کرد و IPC1 برای با صفر می‌گذرد.

ملفه اصلی اثر مقفلب) و میانگین مشاهده شد که ارقام بیور، کالربر و لاین ۲۸ دارای کمترین اثر مقفلب Zنوتیبها محیط هستند و از بین این ارقام، رقم بیور با IPC1 نزدیک به صفر و عامل کرده بالاتر از میانگین به عنوان پایدارترین Zنوتیب پر IPC1 محصول شناسایی شد. لاین ۲۸ و رقم کالربر بر اساس دارای وکش پایداری مشابه بودند که با توجه به عامل کرده بالاتر لاین ۲۸ این لاین در رتبه دوم Zنوتیب‌های پایدار بر محصول جایگزین نشان داد که محیط‌های مورد آزمایش همگی سالی در ایجاد آثار مقفلب Zنوتیبها محیط داشته‌اند. به نظر می‌رسد می‌توان جوماکویی و ارقم دریبی و پیشر را دارای سازگاری خصوصی به نسبت محیط حاکم بر تاریخ کاشت دوم، لاین‌های ۲ و ۱۷ را دارای سازگاری خصوصی به تراکم کاشت اول و لاین ۴۶ را دارای سازگاری خصوصی به تراکم کاشت دانست (شکل ۱).

تجزیه خوشه‌ای براساس مقادیر دو میانگین مؤلفه اصلی اثر مقفلب (IPC2), Zنوتیبها را در سه گروه تفکیک کرد. گروه
تجزیه اثر مقاول‌های زنوتیپ × محیط و بررسی الگوی واکنش زنوتیپی در ارتفاع پاول

شکل ۲. باعث پلاس حاوی از میانگین عملکرد دانه و IPC2 زنوتیپها و محیط‌ها. اشکال چهار ضلعی و بینشی به ترتیب گروه‌بندی‌های حاوی از تجزیه خوشه‌ای زنوتیپها و محیط‌ها بر مبنای IPC2 را نشان می‌دهد. خطوط افقی و عمودی مدت به ترتیب از نقاط میانگین عملکرد و IPC2 برای با صفر مقدار می‌باشد.

کمتر از مقدابر توسط مولفه دوم نسبت به مولفه اول می‌باشد. با توجه به اینکه در این تجزیه از مدل AMM12 استفاده شده، آماره‌های بی‌پایداری EVs و معادله محاسبه شده (جدول ۶) بر مبنای هر دو آماره بی‌پایداری ارقام کالیپر و بوری پادارا بودند کمترین مقدابر، پایدارترین واکنش را داشتند و ارقام پیسر، درباره و جوماکوپی و لاین ۷۹ تایپی انسان واکنش را نشان داد. با توجه به پاداری بیشتر رقم پیسر و عملکرد بالاتر از میانگین آن، بر مبنای این دو آلاره نیز رقم پیسر به عنوان رقم مطلوب برگزیده شد.

شکل ۳. باعث پلاس مقدابر مولفه‌های اصلی اول و دوم برای زنوتیپها و محیط‌ها را به طور تأمین می‌دهد. این باعث پلاس جمعاً ۷۹ اطلاعات مربوط به اثر مقاول‌های زنوتیپی و محیط‌ها بر اساس اطلاعات پیشنهاد شده توسط مولفه‌های اصلی اول و دوم ار اثر مقاول‌های دیگر مجبور راشان داد. در کروه اول که پایدارترین کروه می‌باشد، ارقام بوری، کالیپر و لاین ۷۹، ۷۳، ۷۸ و ۷۲ کمند. گروه دوم رقم پیسر و لاین ۷۲ با مقدابر بزرگ و منفی برای هر دو IPC را شامل شد. در گروه سوم ارقام دریای جوماکوپی با مقدادر
جدول ۶: آماره‌های پایداری برای زنوتیپ‌ها در مدل AMM12

<table>
<thead>
<tr>
<th>زنوتیپ</th>
<th>SIPC</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>لااين‌2</td>
<td>0/855</td>
<td>0/1235</td>
</tr>
<tr>
<td>لااين‌17</td>
<td>0/189</td>
<td>0/185</td>
</tr>
<tr>
<td>لااين‌48</td>
<td>0/937</td>
<td>0/1059</td>
</tr>
<tr>
<td>لااين‌34</td>
<td>0/103</td>
<td>0/1015</td>
</tr>
<tr>
<td>لااين‌36</td>
<td>0/913</td>
<td>0/1</td>
</tr>
<tr>
<td>کالیر</td>
<td>0/43</td>
<td>0/22</td>
</tr>
<tr>
<td>دربای</td>
<td>0/759</td>
<td>0/4</td>
</tr>
<tr>
<td>پسر</td>
<td>0/783</td>
<td>0/21</td>
</tr>
<tr>
<td>پسر</td>
<td>0/180</td>
<td>0/6002</td>
</tr>
<tr>
<td>جوئلکوئی</td>
<td>0/1386</td>
<td>0/0267</td>
</tr>
</tbody>
</table>

AMMI1: پارامترهای پایداری برای مدل AMMI2: EV = EV و SIPC

شکل ۳: پای پلاک حاصل از مقادیر IPC1 و IPC2 و زنوتیپ‌ها و محیط‌ها. اشکال چهار ضلعی و بیضی به ترتیب گروه‌بندی‌های حاصل از تجزیه خوش‌بانی زنوتیپ‌ها و محیط‌ها برپایه مقادیر IPC2 و مؤلفه اصلی اول را نشان می‌دهند. خطوط افقی و عمودی سنگ به ترتیب از نقاط مبتنی عامل‌کردن IPC2 و IPC1 صفر می‌گذرند.
تجزیه اثر متقابل زنوتیبی × محیط و بررسی اگوی واکنش زنوتیبی در ارقام بولاف نمود. همچنین می‌توان استنباط نمود که ارقام جوماواکیپی، بی‌سر و دریای ولایت ۴۶ نسبت به تاریخهای کاسست دوم و سوم و تراکم کاسست دوم دارای سازگاری خصوصی می‌باشد.

بردارهای محیطی بیانگر همبستگی مثبت بین تاریخ کاسست اول و تراکم کاسست همچنین تراکم کاسست دوم با تاریخهای کاسست دوم و سوم در بین آثار متقابل می‌باشد. با تاریخهای کاسست اول و سوم و تاریخهای کاسست اول و دوم در بین آثار متقابل همبستگی وجود نداشت، ولی بین تراکم‌های کاسست اول و دوم همبستگی متفاوت در بین آثار متقابل مشاهده گردید. همچنین تاریخهای کاسست اول و دوم همبستگی متفاوت در بین آثار متقابل داشتند. مقایسه بای پلاتهای ترسیم شده برای مدل امی نشان داد که در هم‌نمودارهای تجاری اگوی کاسست به خاطر هزینه‌ای این طرح (طرح شماره ۳۴۳۲) از محل ابزارهای درون‌روی است. زیرا در اثر حفظ کیفیت کشاورزی کاسست‌ها در کانادا رای در اختیار قرار دادن به که او در مواد آزمایشی مشاهده نمود.

سیاسگزاري

بدین وسیله از سازمان مدیریت و برنامه‌ریزی امتی اصهال به خاطر هزینه‌ای این طرح (طرح شماره ۳۴۳۲) از محل ابزارهای درون‌روی است. زیرا در اثر حفظ کیفیت کشاورزی کاسست‌ها در کانادا رای در اختیار قرار دادن به که او در مواد آزمایشی مشاهده نمود.

منابع مورد استفاده

1. فتحی، ف. م، مقیم. ع، گرامی و. م. یوسفی. ۱۳۷۷ بررسی بايداری ارقام جوز از طریق بارام‌توار اکووالاس ریک، تاریخهای واکنش و زیرکه (Pattern analysis (AMMI) توطیحات كمک می‌کند. محیط، توانایی برقراری و اصلاح نیازهای ایران، مؤسسه