براش توابع انتقالی خاک با استفاده از رگرسیون فازی

چهانگرد محمدی و سید محمود ظهیری

چکیده

توابع انتقالی خاک عبارتند از مدل‌های تخمین یک‌خطی مشخص خاک با استفاده از ویژگی‌های آن آسان، سریع و
با ارزان می‌باشد. روش معمول در برآورش توابع انتقالی خاک استفاده از رگرسیون آماری است. این روش بر پایه فرض دقیق بودن متغیرهای
موردنظر و مشاهدات مربوط به آنها استوار بوده و در هنگام روابط بین متغیرهای نیز به طور دقیق مشخص می‌شود. در مدل سازی
سیستم‌های طبیعی مانند خاک، تصمیم‌گیری با مشاهدات کمکی و یا روابط مهی‌پی یا جایبرای استفاده از روش‌های برآورش توابع که
 قادر به تیبیت ساختار می‌باشد و در اختیار به‌توانانگیزه می‌باشد و احتمالی مستقل با واقعیت هستند، ضروری است. در بررسی حساسیت روش
رگرسیون خطی بر تأثیر مجموعه‌های فازی به مانند برآورش توابع انتقالی شبیه‌سیاری و فیزیکی خاک استفاده شد. مدل‌های بهینه رگرسیون
خطی با ضرایب فازی برای توابع قوی به دست آمده. تجزیه و تحلیل حساسیت به یا می‌تواند انتخاب جامعه با توجه به مقدار این ابیض آمیز
شد. شاخص اطمینان مدل‌ها انجام شد.

نتایج نشان داد که روش رگرسیون فازی در شرایط روابط ابسته بین متغیرها و به طور کلی در مواردی که با خط‌های ناشی از ابیض در
صاخب مدل‌های رگرسیونی به‌طور مهی‌پی و با چاگانزین مناسب برای روش رگرسیون آماری لقبی شود.

واژه‌های کلیدی: اعداد فازی، برنامه ریزی خطی، توابع انتقالی خاک، رگرسیون فازی

مقدمه

یکی از جنبه‌های مهم بررسی خاک، دانستن روابط و هیپسکی
بين اعداد مختلف خاک و بیان کشی آنها در قالب
مدل‌های آماری است. این مدل‌ها هک اصطلاحاً توابع انتقال

1. دانشیار جامعه‌شناسی، دانشکده کشاورزی، دانشگاه شهید رجایی
2. استادیار آمار. دانشکده علوم رياضی، دانشگاه صنعتی اصفهان

51
سادگی و با هزینه کمتری قابل انتزاع گیری هستند، بیان می‌گردد (۵).

با اخیراً تلاش‌های به منظور به کارگیری روش‌ها و فنون جدید در مدل‌سازی چنین توابع‌های صورت گرفته است که می‌توان برای تهیه به منظور هسته ساخته‌ای استفاده از شبیه‌سای عصبی مصنوعی (Artificial neural networks) تمامی این روش‌ها بر پایه فرض دقیق بودن متغیرهای مورد مطالعه و مشاهدات مربوط به آنها استوار است و روابط بین متغیرها نتیجه دقیق فرض می‌گردد. حال آنکه در سیستم‌های طبیعی آماده خاک، عناصری از مشاهدات یا روابط ناشی از آنها، با متغیرهای رهبرد دیگری از کنترل سازگاری شده در کنار منبع در هر کدام از فرضیات اصلی داشته باشد. به دنبال تبیین، با توجه به این ماهیت ارائه‌ای یکدیوهای مربوط به خاکی می‌توانید بودن مقادیر انتخاب‌گیری شده خصوصیات مختلف خاک، به نظر می‌رسد لازم به بررسی یکی از روش‌های منطقی الگوریت کاربردی فازی برای برآوری توابع پدیدار نشده. از این رو، به روش‌های مبنی بر نظریه مجموعه‌های فازی در پردازش توابع یک خاصی از این رو در پیامدهای منطقی استفاده یک گروه پژوهش در طبقه بندی و پهنه بندهای خاکی و ارزیابی اشاره کرد (۴۳، ۴۲، ۱۹ و ۱۶).

نظریه مجموعه‌های فازی در سال ۱۹۵۰ عرضه شد (۱۷). این نظریه یک قالب جدید دریافت به منظور تجزیه و تحلیل مفاهیم و متغیرهای مهم و سیستم‌های بی‌strument کاهش پردازش قابلیت آموزشی مناسب و سیستم‌های فعال نهایی در طبقه‌بندی و پهنه‌بندی خاکی است. این تکنیک به کاربردهای احتمالی مناسب در طبقه‌بندی و پهنه‌بندی نقش بازی کرده است. در ادامه، این تکنیک در مدل‌سازی رگرسیونی که به‌جای خاصیت منحنی برآمده، بیشتر توضیح داده شده است. در یک مدل رگرسیونی ممکن است خطای مدل ناشی از

می‌تواند با توجه به این تغییرات و تفاوت‌های مکانی، از این روش‌ها برای کاهش اثرات چنین خاصیت‌های گسترده‌ای استفاده شود. در پایان، باید به توجه به این شرایطی که در این روش‌ها برای کاهش اثرات چنین خاصیت‌های گسترده‌ای استفاده شود.

گزارش بررسی‌های مناسب
برازش توابع انتقابی خاک با استفاده از رگرسیون فازی

مواد و روش‌ها

مجموعه داده‌ها و برآش توابع انتقابی توسط رگرسیون معمولی داده‌های مورد استفاده در پژوهش حاضر، با هدف از مجموعه اطلاعات حاصل از بررسی خاک‌های منطقه دشت سیلانوس در استان لرستان است. نمونه برداری در محدوده 100 هکتاری و به صورت شبیه‌سازی شده با 100 نمونه و از لایه سطحی 0-30 سانتی‌متر واقع در مرکز هر شبیه انجام شد. خصوصیات خاک شامل دشد دارد، سیلت و شن، اندازه‌گیری به روش پیت (11)، درصد رطوبت استی، (SP)، درصد رطوبت اشباع (SC) درصد کربن آلی (OC) درصد آهک (روش تیتراژسیون پرگشتی) و طرفیت تبادل کاتیونی (CEC) درصد کربن آلی (OC) درصد آهک (روش تیتراژسیون پرگشتی) و طرفیت تبادل کاتیونی (CEC) درصد کربن آلی (OC) درصد آهک (روش تیتراژسیون پرگشتی) و طرفیت تبادل کاتیونی (CEC) را نشان داده می‌باشد. به این دلیل روش رگرسیون معمولی (روش حداکثر درمان) و به صورت رگرسیون کام در یک کم ترخیص طرفیت تبادل کاتیونی (Stepwise regression) و درصد رطوبت استی، (SP) و درصد رطوبت اشباع (SC) برای داده‌های را در جهت بهبود ونتیژ و مقایسه برآورده شده توسط مدل، با توجه به نتایج به دست آمده از رگرسیون آموزش، راه‌های خویش به‌ین متمرکز بر مدل‌های مطالعه تأیید و پذیرفته شد. بنابراین در پژوهش حاضر از رگرسیون خطی به ضرایب فازی به مطابق

مدل تنیاب توالی انتقابی خاک استفاده شد. در مدل رگرسیون با ضرایب فازی، فرض بر آن است که مدل به‌ین مقدار مشاهده شده مربوط به متغیر وابسته و مقایسه برآورده شده توسط مدل، ناتیز از این ابزار در استخراج مدل می‌باشد. این ابزار، در ضرایب مدل که اعداد فازی سه‌ër (متر) منظره می‌باشد. با توجه به ترتیب

در این نوع رگرسیون خطی، هدف آن است که بر پایه مجموعه مشاهدات مدل به‌ین اعداد یکسان باشد. به طوری که دست آمده که

\[\bar{y} = f(\bar{x}) = A_0 + A_1 x_1 + \ldots + A_n x_n \]

که مدل به‌ین باشد. به طوری که دست آمده که

\[x_i = (x_{i1}, \ldots, x_{im}) ; i = 1, \ldots, m \]

که مدل به‌ین باشد. به طوری که دست آمده که

\[\tilde{N}(x) = \begin{cases} \frac{x - S_L}{C - S_L} & \text{if } x \leq S_L \\ \frac{x - S_R}{S_R - C} & \text{if } x \geq S_R \end{cases} \]

که مدل به‌ین باشد. به طوری که دست آمده که

\[\tilde{N}(x) = \begin{cases} \frac{x - S_L}{C - S_L} & \text{if } x \leq S_L \\ \frac{x - S_R}{S_R - C} & \text{if } x \geq S_R \end{cases} \]

که مدل به‌ین باشد. به طوری که دست آمده که

\[\tilde{N}(x) = \begin{cases} \frac{x - S_L}{C - S_L} & \text{if } x \leq S_L \\ \frac{x - S_R}{S_R - C} & \text{if } x \geq S_R \end{cases} \]

که مدل به‌ین باشد. به طوری که دست آمده که

\[\tilde{N}(x) = \begin{cases} \frac{x - S_L}{C - S_L} & \text{if } x \leq S_L \\ \frac{x - S_R}{S_R - C} & \text{if } x \geq S_R \end{cases} \]

که مدل به‌ین باشد. به طوری که دست آمده که

\[\tilde{N}(x) = \begin{cases} \frac{x - S_L}{C - S_L} & \text{if } x \leq S_L \\ \frac{x - S_R}{S_R - C} & \text{if } x \geq S_R \end{cases} \]
که ابهام در مقدار پیش‌بینی متغیر وابسته بازیند حداکثری بادند.
چون بر آن‌های مراهمه، یک خروجی از مدل خوایی
داست، پس با این‌جای ابهام‌های خروجی‌ها، حداکثری کنیم.
به‌بان‌دینگ‌های مقدار زیر حداکثری شود:
\[Z = m(s^L + s^R) + \sum_{i=1}^{n} \left(s_i^L + s_i^R \sum_{j=1}^{m} x_{ji} \right) \]
که نتایج مقدار فاصله را در برابر ضریب کشیدگی به
صورت زیر ناهمواره‌تری:
\[Z = m(\gamma + k)s^L + \sum_{i=1}^{n} \left((\gamma + k)s_i^L \sum_{j=1}^{m} x_{ji} \right) \]
اختشان نشان می‌کند در زوج‌های حاضر، آنالیز حساسیت
مدل بر پایه مقدار \(h \) با توجه به
مقدار ابهام کل و شاخص اطمینان IC انجام شده است.
(17)، (32)
با توجه به روابط \(5 \) و \(6 \) حداکثری‌های مدل به صورت
زیر به دست می‌آید:
\[y_j - f^C(x_j) \geq h \Rightarrow (1-h)s^L \left(x_j \right) + f^C \left(x_j \right) \geq y_j \]
\[f^C \left(x_j \right) - y_j \geq h \Rightarrow (1-h)s^R \left(x_j \right) - f^C \left(x_j \right) \geq -y_j \]
\[s^R = k_s^L = k_s^R \]
که با چاپ‌گذاری \(f^C \) و \(f^L \) در روابط فوق،
محدودیت‌های متعلق به صورت زیر در
\[(1-h)s^L + (1-h) \sum_{i=1}^{n} (s_i^L x_{ji}) + a^C + \sum_{i=1}^{n} (a_i^C x_{ji}) \geq y_j \]
\[(1-h)k_s^L + (1-h) \sum_{i=1}^{n} (k_s^L x_{ji}) - a^C - \sum_{i=1}^{n} (a_i^C x_{ji}) \geq -y_j \]

تغییر ضریب‌های فاصله
در رگرسیون از ضرایب فاصله (و مشاهده‌های غیر فاصله)، هدف آن
است‌که ضرایب \(\beta_i \) به‌گونه‌ای تعیین شود که
اول‌اکنون فاصله \(Y \) برای تمام‌گام‌های مقدار
داده‌های دارای درجه عضویتی به‌دست‌آورد \(h \) باشد:
\[Y(y_j) \geq h \]
(8)
(10)

اثبات اینکه بازی‌های فاصله مدل حداکثری ممکن باشد.
شرط اول ضریب‌های مقدار که در مدل جایگزین، مقدار
ضرایب \(Y(y_j) \) برای تمام‌گام‌های مشاهده‌های غیر فاصله
\(\beta_i \) از مقدار \(h \) تغییر مقدار به‌دست‌آورد
توسط کاربرد مدل به‌دست‌آورد.
بتاید توجه داشته که در ناماده‌ای اخیر از رابطه

\[Y(y_j) \geq h \]
(17)
شرط دوم نیز بیانگر اینکه است
برازش توایع انتقالی خاک با استفاده از رگرسیون فازی

نتایج حاصل از مدل تخمینی طرفیت تبادل کاتیونی حاکی از تغییر با پیش از یک خصوصیت خاک هموئیسته است. در این مدل مقدار تغییرات درصد شن و کربن آلی به عنوان متغیرهای توصیفی در طی عملیات رگرسیون کام با کام انتخاب شدند. کلیه ضرایب مدل در سطح معنی‌دار قابل قبول قرار دارند. دو مدل تابع پدیده‌گر استاندارد و مدل سایز پک خصوصیت فیزیکی است. عناوین گونه نخواهد داشته، نمایشی درسی و رطوبت اشباع خاکی می‌توان از متغیرهای درسی سیگل، درصد شن و میزان کربن آلی با قابلیت اعتماد آماری بالایی بهره جست. مبناگذاری رشته دوم خطا (Mean squared error (MSE) به ترتیب برای 0/15 و 0/30 به دست امده.

ارزیابی مدل
ارزیابی مدل‌های رگرسیون خطي با ضرایب فازی برابه‌ی معیار (IC) (Index of confidence) شاخص اطمینان (یا ضریب تغییرات) در این نوع رگرسیون، معیار IC به صورت زیر تعریف می‌شود (33):

\[IC = 1 - \frac{SSE}{SST} \]

که در آن، \(SSE \) و \(SST \) به ترتیب مجموع مجدورات خطا و مجموع مجدورات کل رگرسیون فازی است:

\[SSE = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 \]

\[SST = \sum_{i=1}^{m} (y_i - \bar{y})^2 + \sum_{i=1}^{m} (\hat{y}_i - \bar{y})^2 \]

انتخاب مدل بله‌یه
انتخاب مدل ساده با استفاده از رگرسیون خطی و مدل‌های مختلف با ضرایب کیفیت‌های مختلف را برای تهیه قرار داده و در نهایت مدلی را که دارای IC کوچکترین باشند، به عنوان مدل بهینه انتخاب کرد. الیه این زمینه با یک سطح انتخاب مناسب را نیز در نظر گرفته.

نتایج و بحث
جدول 1 داده‌های مربوط به متغیرهای مختلف مورد استفاده در مدل سایز را به همراه چند شاخص آماری آنها نشان می‌دهد. نتایج به دست آمده از برآوردی ضرایب با استفاده از روش رگرسیون معمولی در جدول 2 ارائه شده است.

با در اختیار داشتن نتایج هدف (12) و با توجه به

\[Z = (\lambda k_1) S_1 L + (\lambda k_2) S_2 L + \cdots + (\lambda k_n) S_n L + \sum_{j=1}^{m} x_{j1} (\lambda k_1) S_1 L + \sum_{j=1}^{m} x_{j2} (\lambda k_2) S_2 L + \cdots + \sum_{j=1}^{m} x_{jn} (\lambda k_n) S_n L \]

بتق رابطه 10 و با توجه به 25 مشاهده، تعداد 50 مجدوریت وجود خواهد داشت. به طور مثال، با استفاده از

\[D = \frac{1}{10} \sum \text{مجدوریت منتشر} \text{ مشاهده آور} \theta \in 0/1 \text{ با جدید مقدار در محدودیت 100} \]

\[\sum_{i=1}^{m} x_{i1} (\lambda k_1) S_1 L + \sum_{i=1}^{m} x_{i2} (\lambda k_2) S_2 L + \cdots + \sum_{i=1}^{m} x_{in} (\lambda k_n) S_n L \]

با در اختیار داشتن نتایج هدف (12) و با توجه به
جدول 1. داده‌های مربوط به میزان‌های مختلف مورد استفاده در بررسی توان انتقالی خاک

<table>
<thead>
<tr>
<th>رطوبت اشباع (Cmol+/kg)</th>
<th>ظرفیت تادال کاتیونی (cmol+/kg)</th>
<th>کربن آلی (g%)</th>
<th>آهک (g%)</th>
<th>سیلت (g%)</th>
<th>رس (g%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>16/5</td>
<td>0/88</td>
<td>3/0</td>
<td>2/0</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>18/6</td>
<td>1/13</td>
<td>3/7</td>
<td>2/1</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>19/3</td>
<td>1/31</td>
<td>3/7</td>
<td>3/0</td>
<td>4</td>
</tr>
<tr>
<td>51</td>
<td>20/3</td>
<td>1/98</td>
<td>3/9</td>
<td>3/0</td>
<td>5</td>
</tr>
<tr>
<td>35</td>
<td>17/3</td>
<td>1/02</td>
<td>3/8</td>
<td>3/2</td>
<td>6</td>
</tr>
<tr>
<td>42</td>
<td>20/4</td>
<td>1/29</td>
<td>3/2</td>
<td>3/9</td>
<td>7</td>
</tr>
<tr>
<td>54</td>
<td>19/3</td>
<td>1/52</td>
<td>3/7</td>
<td>3/4</td>
<td>8</td>
</tr>
<tr>
<td>52</td>
<td>21/9</td>
<td>1/33</td>
<td>3/7</td>
<td>3/5</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>15/9</td>
<td>1/71</td>
<td>3/8</td>
<td>2/2</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>18/3</td>
<td>1/28</td>
<td>3/8</td>
<td>2/6</td>
<td>11</td>
</tr>
<tr>
<td>59</td>
<td>22/6</td>
<td>1/88</td>
<td>3/8</td>
<td>2/7</td>
<td>12</td>
</tr>
<tr>
<td>62</td>
<td>23/7</td>
<td>2/15</td>
<td>3/15</td>
<td>1/3</td>
<td>13</td>
</tr>
<tr>
<td>60</td>
<td>24/4</td>
<td>3/52</td>
<td>3/1</td>
<td>2/8</td>
<td>14</td>
</tr>
<tr>
<td>52</td>
<td>21/8</td>
<td>3/23</td>
<td>3/1</td>
<td>2/7</td>
<td>15</td>
</tr>
<tr>
<td>52</td>
<td>23/8</td>
<td>2/51</td>
<td>3/1</td>
<td>2/3</td>
<td>16</td>
</tr>
<tr>
<td>49</td>
<td>20/8</td>
<td>2/1</td>
<td>3/1</td>
<td>2/2</td>
<td>17</td>
</tr>
<tr>
<td>50</td>
<td>17/5</td>
<td>0/99</td>
<td>3/1</td>
<td>2/2</td>
<td>18</td>
</tr>
<tr>
<td>44</td>
<td>18/8</td>
<td>2/8</td>
<td>3/1</td>
<td>2/3</td>
<td>19</td>
</tr>
<tr>
<td>49</td>
<td>20/2</td>
<td>7</td>
<td>3/3</td>
<td>3/3</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>20/0</td>
<td>8/1</td>
<td>3/3</td>
<td>3/6</td>
<td>21</td>
</tr>
<tr>
<td>52</td>
<td>22/8</td>
<td>1/8</td>
<td>3/3</td>
<td>3/9</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>19/1</td>
<td>0/8</td>
<td>3/3</td>
<td>3/9</td>
<td>23</td>
</tr>
<tr>
<td>40</td>
<td>12/1</td>
<td>1/28</td>
<td>3/3</td>
<td>3/9</td>
<td>24</td>
</tr>
<tr>
<td>37</td>
<td>11/8</td>
<td>1/28</td>
<td>3/3</td>
<td>3/9</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>5/3</td>
<td>0/8</td>
<td>3/3</td>
<td>3/9</td>
<td>25</td>
</tr>
<tr>
<td>47/04</td>
<td>18/90</td>
<td>0/86</td>
<td>3/0</td>
<td>2/15</td>
<td>27/04</td>
</tr>
<tr>
<td>49/04</td>
<td>19/03</td>
<td>1/38</td>
<td>3/0</td>
<td>2/15</td>
<td>28/00</td>
</tr>
<tr>
<td>47/04</td>
<td>4/20</td>
<td>0/82</td>
<td>3/0</td>
<td>2/15</td>
<td>29/00</td>
</tr>
<tr>
<td>47/04</td>
<td>-1/5</td>
<td>0/84</td>
<td>3/2</td>
<td>3/4</td>
<td>30/00</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>3/3</td>
<td>3/2</td>
<td>3/4</td>
<td>31/00</td>
</tr>
</tbody>
</table>

میانگین: 27/13
میانه: 28/00
انحراف معیار: 9/02
ضریب چولگی: 2/02
ضریب تغییرات (%):
پرسش توانای انتقال خاک با استفاده از روش رگرسیون معمولی

جدول ۲. نتایج حاصل از پرسش توانای پدتورانتاسف به روش رگرسیون معمولی

<table>
<thead>
<tr>
<th>ضرایب مدل (اعداد داخل پرانتز سطح بحرانی مشاهده شده)</th>
<th>p-value (اعداد داخل پرانتز سطح بحرانی مشاهده شده)</th>
<th>c</th>
<th>d</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC = a + b(Sand) + c(OC)</td>
<td>۲/۱۸۸۹</td>
<td>۲/۶۹</td>
<td></td>
<td>۰/۸۵۵</td>
</tr>
<tr>
<td>KSP = a + b(Silt) + c(Sand) + d(OC)</td>
<td></td>
<td></td>
<td>۰/۹۳۳</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳. نتایج حاصل از پرسش توانای پدتورانتاسف به روش سلیکا مایع قلیاقی

<table>
<thead>
<tr>
<th>ضرایب مدل سلیکا مایع قلیاقی</th>
<th>توای پدتورانتاسف</th>
<th>μ</th>
<th>μ</th>
<th>μ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC = μ + μ(SAND) + μ(OC)</td>
<td>۲/۱۸۸۹</td>
<td>۲/۶۹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP = μ + μ(SILT) + μ(SAND) + μ(OC)</td>
<td></td>
<td></td>
<td>۰/۹۳۳</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

محدودیت‌های ۵۰ کانناد اینچ با رابطه ۱۳، با استفاده از روش سیمولیکس قطعی به خاکسازی ضایع ورده گردید. با حلق مسئله خطای نرمال، به دست آمده مدل‌های مختلفی به دست آمد. در نهایت مدل با ضریب فاکتور زیر به به این آیهی مختلفی (با ضرایب ممکن متفاوت) بود (جدول ۳): μ = ۱/۰; μ = ۰/۱; μ = ۰/۸; μ = ۰/۳۲.

بایدهد تنها در صورت توانای سلیکا مایع قلیاقی که IC آن برای ۱/۰ است، به صورت زیر می‌باشد:

CEC = (۲۱/۱۸۸۹/۲۸/۴/۲۸\) T
 = (۱/۱۸۸۹/۲۸/۴/۲۸\) T SAND + (۱/۲/۱۸۸۹/۲۸\) T OC
 = (۲۱/۱۸۸۹/۲۸/۴/۲۸\) T SAND + (۱/۲/۱۸۸۹/۲۸\) T OC

به بیان دیگر اگر مقادیر مشاهده شده ضایع و رکورد آنی را به تابع μ و متغیرهای مربوط به مراکز ضایع فاکتور IC شرایط محدودیت‌های برابر خطا می‌باشد.
جدول ۲. نتایج تجزیه و تحلیل حساسیت برای تابع پدیده‌گیری ضرایب ابتدایی

<table>
<thead>
<tr>
<th>ضرایب مدل بهبود</th>
<th>ابعاد گرمایش (متریک)</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ابعاد ابتدایی (متریک)</td>
<td>MCI</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳. نتایج تجزیه و تحلیل حساسیت برای تابع پدیده‌گیری ضرایب ابتدایی

<table>
<thead>
<tr>
<th>ضرایب مدل بهبود</th>
<th>ابعاد گرمایش (متریک)</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ابعاد ابتدایی (متریک)</td>
<td>MCI</td>
<td></td>
</tr>
</tbody>
</table>

\[\tilde{A}_i = (\frac{0.11}{0.11}) \quad \tilde{A}_r = (0.12/0.12) \quad \tilde{A}_s = (0.13/0.13) \]

مجموعه متغیر مثبت مصرف گردیدند. سپس، فاصله مقادیر این متغیرها از جواب بهینه سازی حاصل می‌شود، به عنوان مراکز ضرایب در نظر گرفته شوند.

بدین ترتیب، مدل بهبودی قابلیت IC ۰۹۴ بوده‌است که این IC ۰۹۴ بوده‌است.

\[\text{SP} = \frac{(0.11/0.11)}{0.12/0.12} \quad \text{SILT} \\ -\frac{(0.12/0.12)}{0.13/0.13} \quad \text{SAND} + (0.13/0.13) \quad \text{OC} \]

\[\text{OC} = \frac{(0.11/0.11)}{0.12/0.12} \quad \text{SILT} \\ -\frac{(0.12/0.12)}{0.13/0.13} \quad \text{SAND} + (0.13/0.13) \]

همان‌گونه که از جدول ۲ ملاحظه می‌شود، پارامترهای محاسبه شده در مدل‌های رژیم‌گیری فازی به صورت اعداد فازی هستند که در بی‌گریری مقداری را به هم چنین درجه.

مدل رژیم‌گیری فازی رطوبت ابتدای خاک

در انتخاب مدل مناسب رژیم‌گیری فازی برای رطوبت ابتدای خاک، مشابه در بینش‌ها عمل شد. در نتایج مدل به ضرایب فازی به دست آمده، IC ۰۹۹ بوده‌است.

(در سطح اعتبار ۰/۰۵) بود. (جدول ۳):
برازش توانای انتقالی خاک با استفاده از رگرسیون لازم‌الزمان‌ها

اثاب‌های و یا عدم قطعیت امکان‌آوری آنها می‌باشد. این اثاب‌های می‌توانند مقترن و یا نامتنقرا باشند. به طور مثال، در تابع انتقالی مربوط به تیراندازی نامتنقرا شن، مقاومت این اثاب‌های با پهنای نامتنقرا است. به‌دنبال آن، نسبت که پهنای چپ‌چیز این اثاب‌های کوچک‌ترین چیز است، بزرگ‌تر و گردیده‌تر از پهنای راست، منطقی مقاومت بزرگ‌ترین شن است.

نتیجه‌ی گیری

در بررسی سیستم‌های که در طول زمان برای ساختار معادله بار معادله سازی سیستم ضروری به نظر می‌رسد. در مورد توانایی انتقال‌های این ساختار، را می‌توان به صورت که تابع خطی فازی این تاریکی‌ها یا این ساختار می‌تواند در جدول ۱ شود. کل اثاب‌های مقادیر شاخه‌ای اتمیان مدل‌هاش. نتایج در ۴۰۰۰ و ۵ نمونه را به طورکلی و همگون شدن مقادیر این اثاب باعث می‌شود، به‌طور کلی به دست آمده. به یک، با امکان بینش‌گذاری ناخنی به

تجزیه و تحلیل حساسیت

بسته به نظر ارزیابی مدل‌های حاصل از رگرسیون فازی، اقدام به تجزیه و تحلیل حساسیت بر یکی از متغیرهای محاسبه مقدار کل اثاب و مقادیر شاخه‌ای اتمیان مدل‌هاست. نتایج در جدول ۱ و ۵ نمونه را به طورکلی و همگون شدن مقادیر این اثاب باعث می‌شود، به‌طور کلی به دست آمده. به یک، با امکان بینش‌گذاری ناخنی به

سپاسگزاری

بدین‌وسیله از معاینه‌های پژوهشی دانشگاه صنعتی اصفهان و دانشگاه شهرکرد به خاطر این هنرمندان، بی‌طرفی روزگاری مورد مراجعه کارشناس ارشد نساجی به خاطر کمک آن‌ها در آن‌الات داده‌های قدیمی

همان‌گونه که از جداول مشاهده می‌شود، تغییر مقادیر

تأثیر بر روی مراکز (مقاومت مارک) اعداد فازی (ضایع مدل) ندارند و نیز به‌طور مثال، اعداد خطی تغییر می‌کند. به طورکلی

انتقال سطح اعتبار مدل و در نتیجه مقادیر ایم‌بها، در انتخاب

کاربر است که براساس شناخت و آگاهی وی از پیشنهاد و سیستم مورد مطالعه و توانای مورد نظر بین اعتبار و ایم‌بها مدل

انتقال می‌شود. امکان می‌توان سطح اعتبار ۰.۵ را به عنوان

یک سطح اعتبار معقول و مداول در نظر گرفته گرچه، این

منابع مورد استفاده

1. برگوار، ت. و. م. طاهری. ۱۳۸۳. رژرسیون کمترین مربعات فازی با استفاده از عملکردهای حافظ شکل. مجموعه مقالات پنجمین کنفرانس سیستم‌های فازی ایران. دانشگاه امام حسن(ع). صفحه ۶۵۴-۶۵۶.

2. طاهری، س. م. ۱۳۷۸. آشنايی با نظریه مجموعه‌های فازی. انتشارات جهاد دانشگاهی مشهد.

3. مجدی، س. و. م. طاهری و م. ح. علامت ساز. ۱۳۸۰. رژرسیون خطی با ضرایب فازی. مجموعه مقالات ششمین کنفرانس آمار ایران. دانشگاه تربیت مدرس. صفحه: ۳۳۳-۳۱۹.

4. محمدی، ج. و. ج. گیوری. ۱۳۸۰. ارزیابی نسبت اراضی برای گندم آبی در منطقه فلورجان (اصفهان) با استفاده از نظریه مجموعه‌های فازی. علوم و فنون گزارشی و منابع طبیعی ۵(۱) : ۱۳۳-۱۱۹.

