تأثیر کلرید سدیم بر فعالیت آنزیم لیپوسیس زناز، میزان پراکسید هیدروژن و پراکسیداسیون چربی در دانه‌های سه پایه پسته

پیشنهاد

پیکن از عوامل مهم در تعیین مقاومت به کلرید سدیم، کارایی غشاها سلولی در شرایط نش می‌باشد. پراکسیداسیون چربی و بی‌کاهشی از فعالیت آنزیم لیپوسیس زناز و یا راکت‌کسیلی آزاد اکسیژن، از عوامل مهم تخصیص غشاها سلولی در شرایط نش کلرید سدیم است. در پژوهش حاضر آثار تیمارهای صفر، ۷۵ و ۱۵۰ میلی مول کلرید سدیم طی یک دوره چهاره بهره بر فعالیت آنزیم لیپوسیس زناز، میزان پراکسید هیدروژن و مالون دی آلدهید (پراکسیداسیون چربی) در برگ دانه‌های سه پایه پسته (Pistacia mutica F. & M.), پسته نوری و پشتی و برسی سرخسی و جلبکی (P. vera L.) و پایه پسته دارند.

نتایج پذیره نام‌کننده (اندازه‌گیری فعالیت آنزیم لیپوسیس زناز در برگ دانه‌های سه پایه پسته دارند) در کل، ظهور کاهش میزان فعالیت آنزیم دیده شد. در روز جهاد بهره‌مندی کاهش کمتری نسبت به دانه‌های سرخسی و قترفی نشان داد. میزان پراکسید هیدروژن در برگ دانه‌های سه پایه پسته نوری و پشتی به ترتیب در دانه‌های سه پایه پسته و برسی سپس از کلرید سدیم تیمار کلرید سدیم ۱۵۰ میلی مول در روز جهاد بهره‌مندی کاهش دیده شد. در دانه‌های سه پایه میزان پلاک مالون دی آلدهید (شاخص پراکسیداسیون چربی) در روزهای حذف و جهاد بهره‌مندی بود. نتایج دنبال کاهش داد امکان استفاده از شاخص پراکسیداسیون چربی و فعالیت‌سایه مربوط به آن مانند آنزیم لیپوسیس زناز در گزارش گیاهان مقاوم به کلرید سدیم در پسته و برسی دارد ولی است در مورد تغییرات بیوشیمیایی و آنزیمی در پسته در پاسخ به نش کلرید سدیم برسی سایه بیشتری صورت گرفت.

واژه‌های کلیدی: پسته، کلرید سدیم، پراکسیداسیون چربی، لیپوسیس زناز، پراکسید هیدروژن، مالون دی آلدهید

1. به ترتیب دانشجوی سابق دکتری و استاد بافیاتی، دانشکده کشاورزی، دانشگاه شیراز
مقدمه

وجود غلاف زیاد کلید سدیم در خاک و یا آب موجب بررسی تغییرات فیزیولوژیکی و پیوپمیکاتی بیماری در گیاهان می‌شود.

یکی از عوامل مهم در تعیین مقاومت به کلید سدیم، کارایی غشاها سلولی در شرایط نش کلید سدیم می‌باشد (16).

چگرها یکی از مهم‌ترین ترکیبات تشکیل دهنده غشاها سلولی می‌باشد و به پیشنهاد شده تغییر در میزان و ترکیب اسیدهای چرب غشا در تحلیل به کلید سدیم مؤثر است (13).

در غشاها یا نباتان بیشتر، نش بینی کمتری صورت گرفته و مقاومت به کلید سدیم بیشتری واحده باز درد (16) از طرف دیگر پراکنداپاسیون چربی‌های موجود در دوباره سلول‌ها گیاهی که تحت تأثیر رادیکال‌های آزاد و صورت شیمیایی و یا پیوپمیکاتی بیماری می‌شود مهم‌ترین مکانیسم تغییر غشا سلولی سلول‌ها (MDA) می‌باشد (13).

موجبین ترکیب اسیدهای است است ها تحت تأثیر آذرماژیم است تأثیر قرار دارد (3). نتایج این بحث فیزیولوژیکی و پیوپمیکاتی بیماری در ارتفاع حساسیت مقاوم به کلید سدیم در پیال اسیدهای است است (13).

کُر گرفته است نش کلید سدیم موجب افزایش تولید رادیکال‌های آزاد اکسیژن می‌شود (12). هم چنین گزارش گردیده است نش کلید سدیم موجب افزایش تولید رادیکال‌های آزاد اکسیژن مانند پراکنداپاسیون (RO2)

کیفیت شده (13) و به دنبال آن پراکنداپاسیون (RO2)

کیفیت شده (13) و به دنبال آن پراکنداپاسیون (RO2)
مواد و روش‌ها

اين پژوهش طالب سال 1382 در لگنخانه باغبانی دانشگاه شيراز و آزمایشگاه مجمع تحقیقات باغبانی شيراز (وابسته به مرکز تحقیقات کشاورزی استان فارس) انجام گردید. بذردهای محققان از جنس برتکانه و چهل مورد به وجود در جنوب غربی استان فارس جمع‌آوری شدند. بذردهای یک بذردهای قروپینی و سرخسی نیز از موسمه تحقیقات پسته ایران واقع در رفسنجان تهیه شدند.

در کیسه‌های پر قارچ و مداوم 46 درجه سانتی گراد سرمایه شدند. تندل بذردها در دماي 24 درجه سانتی گراد انجام گردید و سپس از بذردهای تندل یافته در کیسه‌ها در 5 کیلوگرم حاوی 20 کیلوگرم که اباد تقریبی 2 میلی متر وزن مخصوص 460گرم بر سانتی متر مکعب) کشت شد. کلیدانها در لگنخانه درجه حرارت روست و شب به ترتیب 25 و 14 درجه سانتی گراد و شرایط نور طبیعی (بدون نور دهی تكمیلی) در 24 ساعت نگهداری گردیدند. به منظور تأمین عنصر مورد نیاز، محلول غذايي اپتین (10 اسکلو اسید) تیماره های شوری (شامل 75 و 150 میلی‌مول کلرید سدیم به علاوه نسبت 1:10 کلرید) در سه نقطه شوری به ترتیب 75 و 15 میلی‌مول کلرید کلسیم از همین نقطه پس از کاشت دانه‌ها انجام گردید. افزودن کلرید کلسیم به دایل حفظ لیماش غشا سایلول هری و آهیان پاسیم مانسب در سولو انجام شد (8).

پراکسیداسیون جهی
میزان مالون دی آلدهید در برگ با استفاده از روش پیشنهادی هست و پارکادور (14) اندازه‌گیری شد. میزان جذب در طول موج 234 و 690 نانومتر قرائن گردید و میزان مالون دی آلدهید با استفاده از تفاضل قرائن انجام شده در 690 نانومتر (مرسوب به جذب مولی خور و پر) محاسبه شد.

پراکسیداسیون چرخ
اندازه‌گیری میزان پراکسید ییدروژن براساس روش پیشنهادی وت ووکا و همکاران (24) (انجام گردید. نمونه برد (0/2) میلی مول (C) با استفاده از 5 میلی لیتر اسید تری کلر استیک (TCA) درصد عصاره‌گیری شد و به مدت 15 دقیقه سانتریفوژ

۴۲
برای انتخاب، بازخوانی به مقاله جدیدی در مورد اینمک می‌تواند معنی‌داری داشته باشد. به نظر می‌رسد که در این مقاله نیست.

پراکداسیون چری

جدول 3 مربوط به نتابی آثار تیمارهای کلرید سدیم و مدت زمان تیمار بر پراکداسیون چری (که براساس مقادیر مالون دی آلدهید اندوزیکی) در برگ دانه‌الهای پایه‌های یک می‌باشد. نتایج نشان داد کلرید تیمارهای کلرید سدیم و میلی‌مول در لیتر به طور معنی‌داری موجب افزایش پراکداسیون چری در هر سبک از کلرید تیمار 150 میلی‌مول در لیتر کلرید سدیم، بیشترین میزان پراکداسیون چری به دهه 7977 میلی‌مول در سطح و در برگ تیمارهای کلرید سدیم و مدت زمان تیمار در سطح میلی‌مول کلرید سدیم در روزهای هفته و چهاردهم افزایش معنی‌دار نسبت به روز اول داشته و در دانه‌الهای قزوینی و سرخس این طریق بود.

پراکداسیون هیدروژن

در جدول 4 است تیمارهای کلرید سدیم بر میزان جذب پراکداسیون هیدروژن در برگ دانه‌الهای پایه‌های یک به دو بقیه دوره چهاردهم روزه‌ای آورده شده است. نتایج نشان داد کلرید کلرید تیمارهای کلرید سدیم طی پک دوره چهاردهم روزه موصل افزایش معنی‌دار تولید پراکداسیون هیدروژن در برگ دانه‌الهای در سه پایه به نسبت به شاهد گردد. بیشترین میزان پراکداسیون هیدروژن در روز چهاردهم پس از اعمال تیمار کلرید سدیم 150 میلی‌مول (به ترتیب 14 و 20 درصد) و در دانه‌الهای به دو، روز اول پس از اعمال تیمار کلرید سدیم 150 میلی‌مول بیشترین فعالیت آنتریم مشاهده گردید. (به ترتیب 14 و 20 درصد) به نشان داد کلرید کلرید سدیم در روزهای هفته و پس از اعمال تیمار کلرید سدیم 150 میلی‌مول به نشان داد کلرید کلرید سدیم در روزهای هفته و پس از اعمال تیمار کلرید سدیم 150 میلی‌مول دیده شد که به نتایج روز اول و هفتگ تفاوت معنی‌دار داشته.(به ترتیب 14 و 20 درصد)
جدول ۱. آثار کلرید سدیم و زمان بر فعالیت آنزیم لیپوسی زنان (پپروتکس لیپوپروتکس اکتاد) کادینولین اسید در دقتی در گرم وزن نازه برق در یگ پایه‌های پسته

<table>
<thead>
<tr>
<th>کلرید سدیم (میلی مول)</th>
<th>مدت زمان (روز)</th>
<th>بهه</th>
<th>سرخس</th>
<th>فزرینی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۵۰</td>
<td>۷۵</td>
<td>۱۰</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>۱۶۴/۸۸</td>
<td>۱۵۸/۴۴</td>
<td>۱۵۷/۴۴</td>
<td>۱۵۰/۷۱</td>
</tr>
<tr>
<td></td>
<td>۱۳۲/۷۳</td>
<td>۱۳۲/۷۹</td>
<td>۱۳۴/۷۸</td>
<td>۱۳۰/۰۷</td>
</tr>
<tr>
<td></td>
<td>۱۱۱/۵۴</td>
<td>۱۱۳/۵۱</td>
<td>۱۱۱/۵۶</td>
<td>۱۰۸/۵۹</td>
</tr>
<tr>
<td></td>
<td>۱۰۸/۵۹</td>
<td>۱۰۸/۵۹</td>
<td>۱۰۸/۵۹</td>
<td>۱۰۸/۵۹</td>
</tr>
</tbody>
</table>

جدول ۲. آثار کلرید سدیم و زمان بر درصد فعالیت آنزیم لیپوسی زنان در یگ پایه‌های پسته

<table>
<thead>
<tr>
<th>کلرید سدیم (میلی مول)</th>
<th>مدت زمان (روز)</th>
<th>بهه</th>
<th>سرخس</th>
<th>فزرینی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۵۰</td>
<td>۷۵</td>
<td>۱۰</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>۱۶۴/۸۸</td>
<td>۱۵۸/۴۴</td>
<td>۱۵۷/۴۴</td>
<td>۱۵۰/۷۱</td>
</tr>
<tr>
<td></td>
<td>۱۳۲/۷۳</td>
<td>۱۳۲/۷۹</td>
<td>۱۳۴/۷۸</td>
<td>۱۳۰/۰۷</td>
</tr>
<tr>
<td></td>
<td>۱۱۱/۵۴</td>
<td>۱۱۳/۵۱</td>
<td>۱۱۱/۵۶</td>
<td>۱۰۸/۵۹</td>
</tr>
<tr>
<td></td>
<td>۱۰۸/۵۹</td>
<td>۱۰۸/۵۹</td>
<td>۱۰۸/۵۹</td>
<td>۱۰۸/۵۹</td>
</tr>
</tbody>
</table>

بحث

بیش از کلرید سدیم موجب افزایش پراکسیداسیون چری در یک چهاردهم میلی مول موجب بیشترین میزان تولید پراکسید هیدروژن در دانه‌های بهه در روز چهاردهم شد.

تهیه ۵۷ میلی مول موجب بیشترین میزان تولید پراکسید هیدروژن در دانه‌های بهه در روز چهاردهم شد.

میزان تولید پراکسید هیدروژن در روزهای اول هفته و چهاردهم تفاوت معناداری نشان داد. کلرید تیم کلرید سدیم
جدول ۳. آثار کلرید سدیم و زمان بر میزان مالون دی آلدهید (ناتوامول در گرم وزن تر بره) در برگ دانه‌های پایه‌پرست

<table>
<thead>
<tr>
<th>کلرید سدیم (میلی مول)</th>
<th>مدت زمان (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰</td>
<td>۷۵</td>
</tr>
<tr>
<td>۴۲/۸۸bdh</td>
<td>۲۸/۹۹fh</td>
</tr>
<tr>
<td>۵۶/۲۹fh</td>
<td>۴۵/۸۹bhde</td>
</tr>
<tr>
<td>۵۷/۷۴fh</td>
<td>۴۲/۹6de</td>
</tr>
</tbody>
</table>

جدول ۴. آثار کلرید سدیم و زمان بر میزان جذب پراکسیدهیدروژن (H₂O₂) در برگ دانه‌های پایه‌پرست

<table>
<thead>
<tr>
<th>کلرید سدیم (میلی مول)</th>
<th>مدت زمان (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰</td>
<td>۷۵</td>
</tr>
<tr>
<td>۴۲/۸۸bdh</td>
<td>۲۸/۹۹fh</td>
</tr>
<tr>
<td>۵۶/۲۹fh</td>
<td>۴۵/۸۹bhde</td>
</tr>
<tr>
<td>۵۳/۴۱fh</td>
<td>۴۲/۹6de</td>
</tr>
</tbody>
</table>

*میانگین‌هایی که در هر رنگ و با ستون دارای حروف مشابه می‌باشند، تفاوت معنی‌داری در سطح ۵% آزمون تکی ندارند.

پژوهشگران در تکل خرسن (۱۵)، پرون‌ال (۱۳) و سویا (۱۶) گزارش شده است. همچنین نتایج در میزان تولید مالون دی آلدهید که برای قاچینی در برگ‌های پایه‌پرست گزارش شد، نشان می‌دهد این شاخص را می‌توان به عنوان یکی از معیارهای آلدهید (MDA) که شاخص انجام پراکسیداسیون چربی می‌باشد، در پاسخ به کلرید سدیم افزایش معنی‌داری نشان داد (جدول ۴). نتایج مشابهی در مورد اثر نشان داد کلرید سدیم بر افزایش میزان مالون دی آلدهید و پراکسیداسیون چربی توسط سایر

۴۶
تویج، قرار گیرد. با توجه به اینکه نش تن کلید سدیم موجب
افزایش میزان پراکسید هیدروژن دیگری (جدول ۴) و اینکه یکی
از آثار اولیه افزایش میزان پراکسیداسین هیدروژن، تحریک
فعالیت آنزیم لیپوسیتی زنن می‌باشد (۱۷)، بنا به این می‌توان
نتیجه کریت افزایش فعالیت آنزیم لیپوسیتی زنن می‌باشد.
می‌توان این نتیجه را به دو پاره دیگر گزارش کرد. افزایش
میزان پراکسیداسین جریان تولید آن دلیلی بیشتر در
ارقام حساب نسبت به کلید سدیم در برنقاط (۱۳) کند،(۲۰) و
توت (۲۳) مورد تأثیر قرار گرفته است. افزایش میزان
رادیکال‌های آزاد (۲۰) و افزایش فعالیت آنزیم لیپوسیتی
زنن (۱۷) و (۱۸) از مهم ترین دلایل پراکسیداسین جریان می‌باشد.
اگرچه در مورد تأثیر آنزیم لیپوسیتی در زنن داده‌ها کمی و وجود دارد (۶، ۵) ولی چون این آزمایش امکان گرفتن چنین داده‌ها را به عنوان سیستم مورد استفاده
قرار می‌دهد و ترکیبات حاصل از این فعالیت تفسیر می‌شود در
پی برای تحقیقات حاصل از این فعالیت تفسیر می‌شود.
کندنی تانتین گیاهی موکولیک علاطم دهنده (مانند
جامسونین) دارد (۱۲). در این است در زنن داده افزایش
سدنی بر فعالیت نش تن کلید سدیم بیشتری صورت گیرد.
افزایش بیشتر در فعالیت آنزیم لیپوسیتی زنن در دانه‌های
شنن دانه نیز میزان آسیب زنن بیشتر به غشاء‌های سلولی توطیف
این آزمایش نسبت به ظرفیتی زنن می‌باشد.
نتایج این پژوهش نش داد که پراکسیداسین جریان
یکی از آسیب‌های ناشی از تن‌های محیطی می‌باشد. در اثر
نش تن کلید سدیم در دانه‌ها سطح نیز صورت می‌گیرد و
چون میزان آن بهتر به حالت به کلید سدیم گیاه چهره متفاوت
است، پیشنهاد می‌شود در مورد آن مانند افزایش از این شاخص و
فعالیت‌های مربوط به آن مانند فعالیت آنزیم لیپوسیتی زنن در
گریش گیاهان مقدار به کلید سدیم بیشتری صورت گیرد. همچنین با توجه به اینکه در بررسی‌های انجام
شبه در زنن ماقعیت به کلید سدیم در پیش از شاخص غیب
مانند نیست و با شاخص‌های زنن می‌باشد (۲) استفاده
شده و در مورد تغییرات پیشی‌سایا و آزمایش ناشی از تن
کلید سدیم، گزارش می‌شود است. پیشنهاد می‌شود این
تغییرات نیز در گونه ها و یا پایه‌های پیش‌سیا و با نش
کلید سدیم مورد تویج قرار گیرد. بررسی دیده‌های آنزیم
لیپوسیتی زنن (جدول ۲) نشان داد در دانه‌ها پی یا مدت
کوتاهی پس از بروز نش تن کلید سدیم، فعالیت این آنزیم

27
یک مورد استفاده

1. بابی نسبت به ۱۳۵۵ رکود بذر و اثر ایسید جیریلیک بر رشد دانهال دو گونه وحشی پستان پایان نامه کارشناسی ارشد باغبانی دانشکده کشاورزی دانشگاه شیراز.

2. حیدری م. و. م. راجم. ۱۳۸۱. مطالعه اثر کلرید سدیم بر نزدیکی دانه گره و دادر جنگ پایه پستان مهی‌غلی علوم کشاورزی ایران ۳۳(۴): ۳۸۵-۳۹۳.

3. حیدری م. ۱۳۷۷. مطالعه اثرات کلرید سدیم بر نزدیکی دانه گره و بذر و هم چنین رشد دانهال در پایه به کلرید سدیم و تنظیم کننده‌های رشد گیاهی در گونه‌های پستان پایان نامه کارشناسی ارشد باغبانی دانشکده کشاورزی دانشگاه شیراز.

