تعیین عمق بهینه آب آبیاری گندم بر اساس خط مشی‌های مختلف مدیریتی در آبیاری بارانی عقربه‌ای

فرد فروغی و علی اصغر قائمی

چکیده

در مبحث پردازشی آبیاری این سوال مطرح می‌شود که عمق بهینه آبیاری چه مقدار است؟ در این پژوهش عمق بهینه آبیاری (با ضعف توزیع نواحی) با در نظر گرفتن تاثیر توزیع حاکم بر داده‌ها (توزیع نرمال) با در نظر گرفتن آثار زیست محیطی برای سه خط مشی مختلف اقتصادی (بدون محدودیت، با محدودیت شستشوی کودها و با محدودیت زیست محیطی) برای گیاه گندم و با سیستم آبیاری بارانی طرح ریزی شده. به این ترتیب که در چهار ریز شماعی SAUE شیب سیستم در مرزه 24 هکتاری مطلق با استاندارد BRC ریز شده. شیب حداقل با زاویه 3 درجه بین دو شماع (روی شیب حداکثر با زاویه 3 درجه بین دو شماع) و در ریزی B را می‌توانیم برداری آب به فاصله شسو مت نرمال گردد. سپس دستگاه با پنج سرعت مختلف راه‌اندازی و مقادیر آب داخل قوطی‌ها اندازه‌گیری شد. نسبت اقتصادی (C)، برای سه نوع مدیریت بدون محدودیت، با محدودیت شستشوی کودها و محدودیت زیست محیطی محاسبه و برای سیستم آبیاری بارانی برای نتایج داد که عمق بهینه آبیاری برای مدیریت بدون محدودیت کمترین مقدار و برای مدیریت با محدودیت زیست محیطی بیشترین مقدار (در دو حالات فرض توزیع نواحی و تاثیر توزیع نرمال) بود.

واژه‌های کلیدی: آب‌آوری عقربه‌ای، عمق بهینه آبیاری، توزیع نرمال، توزیع نواحی، نسبت اقتصادی

1. مربی آبیاری، دانشکده کشاورزی داراب، دانشگاه شیراز
2. استادیار آبیاری، دانشکده کشاورزی، دانشگاه شیراز
مقدمه
ایران سرمایه‌های بین‌المللی به‌طور مستقیم و پارادکسیال مبلغ ۲۵۰ میلیون است که این مقدار کمتر از یکسوم سرمایه‌های پارادکسیال سالانه‌که زیمن است. در چنین شرایطی، آپ، عامل محدود کندن برای کارزاری شماری مورد افرازیون رشد جمعیت تا ۲۰ سال آینده. جمعیت کشور بالغ بر ۱۰۰ میلیون نفر خواهد شد. چنانچه جدیت پیشنهاد سازمان خوراکی جهانی (FAO) برای تأمین مواد غذایی سالانه هر ۳ فرد یک هکتار زمین آبی در نظر گرفته شود، در حال حاضر با جمعیت ۶۸ میلیون کشور حدود ۲۰ میلیون هکتار زمین آبی (به جای ۷/۵ میلیون هکتار) نیاز است و این نیاز در ۲۰ سال آینده به ۳۰ میلیون هکتار بالغ خواهد شد.

نتایج گزارش‌های آماری کشاورزی از روش‌های نوین علمی در آب‌یابی زمین‌های نواحی شکسته عمدتاً و به‌همراه دارای قابلیت استرس‌زا و برآوردی محقق از منابع آب و خاک می‌باشند. یک هکتار از اراضی در سراسر دنیا تحت کشت آبی درآمده یکی از این روش‌های نوین، آب‌یابی دامپاشی (وستپورت) است که برای گیاهان مختلف در سطح وسیعی به کار گرفته می‌شود. به همراه این روش‌ها، اقدامات برای حداکثر کردن محصول دندان‌پزشکی می‌شود.

روش‌های افرازی محصول غالب‌گیر از افرازی محصول تولیدی در واحدهای زراعتی و بین‌المللی ناهمگونی، انتخاب می‌شود. یکدیگر در نظر به‌گیرنده آن‌گونه‌ها، زیست محیطی عضلانی نموداده‌های گزارشی در کشور که برای بهبود پیش‌بینی‌های زمین‌های خاک‌آبی، آمارا و شاخص‌های زمین‌های مناطق مناسب برای کارزارشی، یکدهی می‌باشد و با محصولات زیرین محیطی بهبود برای آب‌یابی کرد.

درک و همانگان (۹) مقدار بهینه آب آبیاری را برای پارادکسیال آب‌یابی اقتصادی (C = \(\frac{\beta}{\alpha} \)) به‌صورت بهینه آب‌یابی مشخص می‌کند. در می‌باشد و با محصولات زیرین محیطی بهبود برای آب‌یابی کرد.

\[C = \frac{\beta}{\alpha} \]

زا بایستی سرمایه‌های زمین‌های مناسب برای کارزارشی، یکدهی می‌باشد و با محصولات زیرین محیطی بهبود برای آب‌یابی کرد.

\[C = \frac{\beta}{\alpha} \]

زا بایستی سرمایه‌های زمین‌های مناسب برای کارزارشی، یکدهی می‌باشد و با محصولات زیرین محیطی بهبود برای آب‌یابی کرد.

\[C = \frac{\beta}{\alpha} \]
کردند که عمق تجربه آن‌ها از کسب موفقیت در مدیریت عقیده‌ای به گوگنده بی‌کلامی، سرعت حرکت ویکس دستگاهها، میانگین یک‌سوش آب از دست‌گاه و نسبت انتقادی بستگی دارد. نسبت انتقادی
تای بنا بر شرایط محلی (یک‌سوش آب، بستگی به
محصول و ... به دو روش که در زمان‌های محدودیتی کم‌تر و برای
مدیریت بی‌محدودیت زیست‌محیطی پیش‌ترین مقدار آب
کاربردی را دست دهد.

دانالد و همکاران (8) با استفاده از مفهوم عمق تجربه آب‌داری که به سیستم و پردازه‌های (15) ارائه شده‌ای که برای تعیین عمق تجربه آپاریزی برای
سیستم‌های آب‌داری سطحی و باران انتخاب می‌کنند. همیشه آب‌داری برای آب‌داری بی‌محدودیت، با محدودیت شستشوی کم‌تر و محدودیت زیست‌محیطی ارائه کردند. عمق تجربه آپاریزی که آنها
معرف کرده علاوه بر نسبت انتقادی به پیش‌ترین و کم‌ترین
مقدار آب‌داری بی‌کلامی دارد.

منابع و سیستم‌ها (4) با استفاده از روابط دانالد و
همکاران (8) مقدار عمق سیستم آب‌داری را برای حالت مقدار
نیاز ثابت (سیستم‌های آب‌داری سطحی) محاسبه کرده‌اند. در این
تخیل‌هایی احداث سیستم‌های زیست‌محیطی نیز به کاهش
درآمد انتقادی در واحد آب‌دار (4) اضافه شد.

علایقیان (2) برای محاسبه مقدار آب‌داری آپاریزی در سیستم
آب‌داری بخاری یا لوله‌های چرخش از نسبت انتقادی لغات
درآمد ناشی از کم‌ترین آب‌داری سیستم‌های آب‌داری (4) انتقادی کرد.
وی برای به دست آوردن مقایسه آب‌داری از روش پردازه‌ای
و همکاران (15) و دانالد و همکاران (8) استفاده کرد. نسبت
اقتصادی را برای نوع محدودیت‌های محدودیت شستشوی کم‌تر و محدودیت زیست‌محیطی را به ترتیب 95/79 و 75/69 به دست آورد. سپس
عمق تجربه آپاریزی برای نوع محدودیت تعیین کرد.

در این پژوهش با استفاده از مفهوم عمق تجربه آپاریزی که
توسط پری و همکاران (15) و دانالد و همکاران (8) ارائه شده،
عمق تجربه آپاریزی برای خط مشی‌های مختلف مدیریتی (بدون
محدودیت، با محدودیت شستشوی کم‌تر و با محدودیت
زیست‌محیطی) برای گیاه گیاهی به دو روش تعیین شد:

مواد و روش‌ها

در پژوهش از دستگاه‌های آپاریزی عقیده‌ای (نوع کم
فشار) استفاده شد. این دستگاه در مزرعه به مساحت
392/1 هکتار در شمال غرب دانشگاه کشاورزی دانشگاه شیراز واقع
در منطقه بجا بر روی کشت شده است. در این مزرعه، گندم یادهای
کشت شد. سیستم تکراری در مشخصات مانند شک شکوه قطعه
بنج قطعه که بر طبق از طول 2/3 متر و طول آخر به طول
0/26 متر طول بالا 2/3 متر، طول بال معکل در انتهای آخرین قطعه
12 متر، تعداد 1/2 آب‌پاش (که به فاصله 1 متر از هر روز لوله
آپاریزی قرار گرفته‌اند) و همیشه تعداد شرکت‌های باشد.
دبی و فشار کارکرد سیستم با ترتیب 1/57 لیتر در ثانیه و
420 کیلو پاسکال بود. با توجه به دارایی از مزرعه، تقه‌تقویتی تهیه
و شبیه‌زنی در جهات مختلف تعیین شد. برای انجام این
پژوهش و سببیلی هم‌ونهادن سطح مدرن، میخ جویی، دوربین
شستشوی مرا، قطع، نمودن راه‌به‌آبی به قطع دایال
9/9 سانتی‌متر، دستگاه اسکلت و فنومتر برای تعیین از تیرانداز خاک
و اثرات کلیه (روش کلیدال) استفاده گردید. با توجه به
استاندارد آرایش قوطی‌ها در مزرعه پایه شد (7) و (11).
به این ترتیب که قوطی‌های نمودن‌ریزی آب در چهار رده
شناخت (دو رده د و C، دو رده د و D و C، دو رده
درجه این دو شناخت) قرار گرفت. سپس در انتخاب هر شناخت به
فواصل مشی میخ کوبی شبید و در محله‌ی یکی از میخ‌های
عده قطع نمودن‌ریزی قرار گرفت. حجم آب جمع شده در
قوطی‌های نمودن‌ریزی مستقر در رده‌های شناخت با توجه به
ارفاع پوشش گیاهی به دو روش تعیین شد.

3
عمق بهینه سیستم و فاصله بین آب‌یاری‌ها تعیین می‌شود. این حالت خود به دو مرحله تقسیم می‌شود. مرحله نخست اغلب مرتبه بین سیستم‌های آب‌یاری سطحی است که تغییرات در شرایط کارکرد سیستم ادامه دارد. حریق و زمان آب‌یاری غیر ممکن است با باعث ناکارآمد شدن سیستم می‌گردد. مورد دوم بسیاری از سیستم‌های آب‌یاری بارانی (به عنوان مثال آب‌یاری همگن) استفاده می‌شود که زمان آب‌یاری و مقادیر آب تابع از معادلاتی هستند که در این پیامدها است و با یابد که زمان نابنده آب‌یاری گردد (در این وضعیت شرایط فاصله بین آب‌یاری‌ها از رابطه زیر به دست می‌آیند (8 و 15)؛

\[T = \frac{y^*}{ET} \]

که فاصله بین آب‌یاری‌ها

در رابطه با موارد گفته شده فوق هزار و یونیکد (10) و

نورم (14) مفهوم توزیع تجمعی برگ‌تر را به کار می‌برد. برای توضیح این مطلب مقدار آب نفوذ‌پذیر (\(\beta \)) در برای کسری از سطح مزروع (\(\alpha \)) که به اندام (\(\beta \)) یا پیشرفت آب دریافت کرده است، به‌جای (\(\beta \))، این استاده (\(y \)แมً) یا (\(t \) مقدار مشاهده شده) در شکل 1، علاوه بر (\(y \) مقدار متحکم (\(y \) مقدار متوسط (\(y \) می‌باشد. این رسم (\(y \) مقدار گرایش است. در شکل 1، و \(ET \) همان مقدار آب مورد نیاز یک‌بار و یا به عبارتی، SOD و \(y \) و \(v \) و می‌باشد. SOD و \(y \) و \(v \) و می‌باشد. سیستم مقدار آب نفوذ کرده در واحد زمان بر میانگین

شدت خش سیستم زی معادله است. با استفاده از روابط موجود بر، (15) میانگین عمق آبی که باید به‌کار برده شود محاسبه می‌گردد. این عمق میانگین به عنوان عمق بهینه‌ی مفهومی می‌گردد و با تعیین آن زمان آب‌یاری تعیین می‌شود. این روش مختص آب‌یاری بارانی (به عقره‌ای) است که در این روش زمان آب‌یاری بی‌صرفه زیر ارائه شده است:

\[T = \frac{y^*}{y} \]

که:

\[y = \text{عمق بهینه آب آب‌یاری برحسب واحد ارتفاع (SOD)} \]

\[y = \text{میانگین مقدار آب نفوذ کرده در واحد زمان بر میانگین} \]

\[y = \text{زمان آب‌یاری} \]

حالات دوم میانگین مقدار آب کاربردی ثابت و معلوم بوده و
تیمین عمق بهینه آب آبیاری گندم بر اساس خطر مشیهای مختلف مدیریت...
بنابراین، توزیع آب به صورت بدون برون بودن به شکل زیر قابل پیش‌بینی است:

\[
\begin{align*}
 h &= f + ga^b \\
 g &= \sqrt{y} \\
 f &= f'(f' + \frac{g'}{b+1}) \\
 g &= \frac{g'}{b+1}
\end{align*}
\]

که:
- عمق آب نفوذ کرده، بدون برونبرد \(h \)
- عمق آب نفوذ کرده، میلی‌متر \(y \)
- میانگین عمق آب نفوذ کرده، میلی‌متر \(\bar{y} \)
- ضریب بازگشت \(f \) از معادلات زیر به‌دست می‌آید:

\[
\int h(a) \, da = 1
\]

ضارب \(b \) تابعی از مقدار آب نفوذ کرده برونبرد \(h_{\text{max}} \) و حداکثر (\(h_{\text{min}} \)) است که به‌صورت زیر محاسبه می‌شود:

\[
b = \frac{g+f-1}{-f} = \frac{-h_{\text{min}} - \bar{y} - y_{\text{min}}}{h_{\text{max}} - y_{\text{max}} - \bar{y}}
\]

وریکه دیل (5)، معادلات زیر برای محاسبه مقدار آب به‌هینه از راه‌کرده‌اند:

\[
\begin{align*}
 h^* - h_{\text{max}} &= \left(\frac{c}{c+1} \right)^b \\
 h_{\text{min}} - h_{\text{max}} &= \left(\frac{c}{c+1} \right)^b
\end{align*}
\]

که:
- مقدار به‌هینه آب اپیماری نسبی که برای استفاده از مقدار آب به‌هینه تفسیر می‌گردد \(h^* \)
- نسبت افت‌گذاری است که به‌صورت زیر تعیین می‌شود:

\[
\gamma = \int y(a) \, da = f' + \frac{g'}{b+1}
\]
تعیین عمق بهینه آب ایبایری گندم بر اساس خط مشی‌های مختلف مدیریت...
2 کاهش در آمد اقتصادی در واحد حجم غذای مصرف کرده و کمبود
تعیین نمود. به منظور تعیین کاهش عملکرد در واحد کمربود آب
از نتایج پژوهش‌های انجام شده (1) استفاده گردید. بر این منابع
برای کنترل هر میلیون کم آبیاری برای خاک یا حاصل خیزی
جایگذاری به کاهش عملکرد دانه به میزان 80 کیلوگرم در
هکتار می‌شود (1). با ارائه‌گیری نیتروژن دانه و کاه گیاهی به
روش استاندارد (2) مشخص شد که مقدار 188/100 کیلوگرم
نیتروژن برای تولید یک کیلوگرم دانه کنندگی نیاز می‌باشد. به
سمت دیگر، میزان کفته که برای هر کیلوگرم تلفات عملکرد
محصول دانه ناشی از آبیاری مقدار 188/100 کیلوگرم
نیتروژن غیرقابل خواهد مانید. میزان کود نیتروزون 400
ریال در کیلوگرم و قیمت تنظیم‌کننده دانه 30000 ریال در
کیلوگرم (در زمان انجام (یازدهم‌پوش‌های) بود. ارائه‌گیری
نیتروژن خاک به روش استاندارد، غلظت کود نیتروزون (N) در
عصاره اشباع خاک برای 1206 کیلوگرم در هکتار میلی‌متر
اندازه‌گیری شد. نسبت رطوبت اشباع به ظرفیت مرطوب تعیین و
با ضرب کردن این نسبت در غلظت کود نیتروزون (N) در
عصاره اشباع خاک، غلظت کود نیتروزون (N) در ظرفیت مرطوب
تعیین گردید (311 kg/ha-mm). میانگین غلظت در حالت
ظرفیت مرطوب و عصاره اشباع خاک برای غلظت کود نیتروزون
در 2 زمان خاک (N) در 1720 کیلوگرم (kg/ha).

برای انواع سطح‌های صحرایی آبیاری، کاهش عملکرد
اقتصادی در واحد حجم غذای مصرف کرده و کمبود (α)
و مقدار آبیاری (β) به ترتیب توسط معادلات 3 و 4 محاسبه شد.
سپس نسبت اقتصادی (C = β/α) نیز تعیین گردید. این مقدار
برای انواع مصرفی آبیاری بین محصولات با محدودیت
بستگی دارد و از میان محصولات با حل دیگر تفاوت
می‌باشد و لیست نسبت‌های اقتصادی به دست آمده در این پژوهش

تعیین آب بهینه با استفاده از روش توانی
با مقدار مشارکت شده به وسیله عادبان (2) و دوک و همکاران
هم‌خوانی دارد و در تمام موارد خط مشی بدون
محدودیت بیشتر و خط مشی با محدودیت زیست‌محیطی
کمترین نسبت اقتصادی را به دست می‌دهد.

تعیین آب بهینه با استفاده از معادله b
با استفاده از معادله 14 مقدار بهینه b
نسبت به معادله 12 تعیین شد. سپس با استفاده از معادله
مقدار بهینه گردید. نتایج محاسبه مقدار
برای مدل‌های مختلف آبیاری در جدول
1 2 ارائه شده است.

با توجه به سیستم آبیاری عرضه‌هایی که میانگین آب کاربردی
در هر آبیاری ثابت است، مقدار بهینه آب آب‌های ترشته در
اصل ضرر مقدار آب بهینه D و C ب A در
نسبت به میانگین آب کاربردی به دست می‌آید. مقدار بهینه آب
آبیاری در هر آبیاری (بیابی‌ها) شامل دو رنگ و
B و دو رنگ و دو رنگ و دو رنگ
بیابی‌گری در هر رنگ به دست می‌آید. نتایج محاسبه مقدار
بهینه آب آبیاری در هر رنگ و مقدار بهینه آب آبیاری در هر
آبیاری در جدول 3 ارائه شده است. با توجه به فرضیات احتمال
شده در سه نوع متغیر، مقدار آب بهینه برای خیز مشی
اقتصادی بدون محدودیت، کمتر از سایر مدل‌های طبیعی
همچنین برای خط مشی اقتصادی با محدودیت زیست‌محیطی
مقدار آب بهینه از سایر مدل‌های طبیعی

تعیین آب بهینه با توجه به نرمال و بدون داده
به منظور تعیین تاثیر توزیع حاکم بر مشاهده‌ها، از داده‌های به
دست آمده از آزمایشات مرطوبی‌ای (که در شرایط مختلف
اقیمی مانند سرعت باد، دمای هوا، رطوبت نسبی و با سرعت‌های مختلف حرکت دستگاه آب‌های طبیعی تعیین
شدند) استفاده گردید. سپس توابع توزیع مطابق در آب‌های
بازاری (نرمال، لگارنرمال، توانی خاص و یک‌نواخت) انتخاب

 HVAC, and leaner tissue weight. This study showed that the
climate index in the region is high, and the
vegetation cover is low. The results indicated
that the climate index is negatively correlated
with the soil moisture content. The study
also showed that the soil moisture content
had a significant effect on the growth of
the plants. The results are consistent with
previous studies and highlight the importance
of managing the water resources in the
region to promote sustainable agriculture.
جدول 1. عوامل اقتصادی مربوط به انواع مدیریت آبیاری (ریز بار هکتار میلی‌متر)

<table>
<thead>
<tr>
<th>انواع مدیریت آبیاری</th>
<th>حین موجود</th>
<th>بین محدودیت</th>
<th>عوامل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>هزینه آب</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>هزینه تلفات محصول مربوط به مقدار کمی کود ناشی از آب‌شماری</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>هزینه تلفات عملکرد ناشی از کم آبایی</td>
</tr>
<tr>
<td>هزینه آبیاری مازاد (α)</td>
<td></td>
<td></td>
<td>هزینه کم آبایی (β)</td>
</tr>
</tbody>
</table>

جدول 2. مقدار محاسبه شده (b) از شرایط (h*) در جدول 1 (بدون بعد) و h*، h_{min} و h_{max} در مدیریت‌های مختلف آبیاری (توزیع نوائی)

<table>
<thead>
<tr>
<th>با محض با محض</th>
<th>بدون محض</th>
<th>بدون محض</th>
<th>شماره آزمایش</th>
<th>ردید</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h_{*}</td>
<td>h_{*}</td>
<td>b</td>
<td>h_{max}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.628</td>
<td>0.628</td>
<td>0.419</td>
<td>0.419</td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.332</td>
<td>0.332</td>
<td>0.213</td>
<td>0.213</td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.118</td>
<td>0.118</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.069</td>
<td>0.069</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.008</td>
<td>0.008</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.003</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>h_{*}</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
جدول 3 مقدار محاسبه شده آب بهینه برای انواع مختلف مدیرپیت های آبیاری (توسعه توانایی) مقدار آب حسب میلی متر است.

<table>
<thead>
<tr>
<th>نوع مدیرپیت</th>
<th>با محدودیت مشروط محیطی</th>
<th>بدون محدودیت</th>
<th>رنگ</th>
<th>شماره آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>15/1</td>
<td>5/8</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>میانگین</td>
<td>14/7</td>
<td>5/3</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>میانگین</td>
<td>14/9</td>
<td>5/6</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>میانگین</td>
<td>19/2</td>
<td>2/3</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>میانگین</td>
<td>20/3</td>
<td>1/9</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>میانگین</td>
<td>19/8</td>
<td>9/7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>میانگین</td>
<td>15/0</td>
<td>9/4</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>میانگین</td>
<td>14/9</td>
<td>9/4</td>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/8</td>
<td>5/9</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/5</td>
<td>5/7</td>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>میانگین</td>
<td>12/3</td>
<td>6/5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>میانگین</td>
<td>12/1</td>
<td>3/3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/1</td>
<td>3/1</td>
<td>A</td>
<td>7</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/0</td>
<td>3/1</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/8</td>
<td>4/6</td>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/6</td>
<td>4/4</td>
<td>D</td>
<td>7</td>
</tr>
<tr>
<td>میانگین</td>
<td>9/1</td>
<td>4/2</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>میانگین</td>
<td>9/0</td>
<td>4/1</td>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/9</td>
<td>3/4</td>
<td>B</td>
<td>8</td>
</tr>
<tr>
<td>میانگین</td>
<td>8/9</td>
<td>3/4</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

حاکم بر مشاهدهات در نظر گرفته شد (3).

با استفاده از معادله 20 مقدار ضریب یکپارچه

کریستین س تیشین شد. با معلوم بودن نسبت اقتصادی (β/α) برای مدیرپیت های مختلف آبیاری پیشنهادی و مقدار ضریب یکپارچه، با استفاده از معادله 19 مقدار عمق بهینه آبیاری برای میانگین های مختلف پخش آب (که به ارزای سرعت‌های مختلف حرکت دستگاه حاصل می‌شود) در طول فصل زراعی تعبیر گردید. میانگین مقدار آب و آب بهینه برای انواع مختلف

و مورد مقایسه قرار گرفتند. به منظور انجام محاسبات از یک

نت از آزمایشاتی (آزمون کولمنوف-اسمپلتون) استفاده

شد. از بین توابع نرمال بررسی، توابع توانی و یکپارچه

در سطح اعتماد 5% در کلیه آزمایش‌ها از نظر آماری رد

شدند.

توزیع نرمال مکمل فقط در سه آزمون (از 20 مورد) در سطح

اعتماد 5% پذیرفته شد. توزیع نرمال که در سطح اعتماد 5% در

15 آزمون پذیرفته شد به‌هرین توصیف را برای پردازشگای داده‌ها

ارائه داد. بنابراین در محاسبات زیر توزیع نرمال به‌عنوان توزیع
نتیجه گیری
در این پژوهش نخست سه نوع مدیریت آبیاری در نظر گرفته شد. سپس نسبت اقتصادی (C) برای منطقه باغک و برای سه نوع مدیریت آبیاری (بدون محدودیت، با محدودیت شستشوی کوده و با محدودیت زیست محیطی) به ترتیب 4/27، 1/23 و 2/45 محاسبه گردید. مقدار آب بهینه برای۹ توزیع ناحیه حاکم بر مشاهدات (توزیع نرمال) مقدار آب بهینه برای سه نوع مدیریت آبیاری تعیین شد. در هر دو حالات توزیع نمونه و نرمال مقدار آب بهینه برای خط مسی‌های اقتصادی بدون محدودیت، با محدودیت شستشوی کوده و با محدودیت زیست محیطی به ترتیب افزایش می‌یابد. نتایج به دست آمده نشان داد که مقدار عمیق بهینه محاسبه شده با فرض توزیع نمونه (در هر سه نوع مدیریت آبیاری) کمتر از توزیع نرمال بوده است. روش نرمال که بهترین برآوردها بر داده‌های موزعه داشته دلیل و مناسب‌تر است. مقدار آب بهینه برای مدیریت بدون محدودیت با توجه به نرمال بدون داده‌ها برای میانگین‌های پیش آب 20/7، 21/0، 21/8، 16/3 و 10/6 میلی‌متر برای 4/27، 8/21، 9/7، 10/5 و 1/4 میلی‌متر به دست آمده است. مقدار آب بهینه برای محدودیت شستشوی کوده با توجه به نرمال بدون داده‌ها برای میانگین‌های پیش آب 20/7، 21/0 و 16/3 میلی‌متر برای 10/6 میلی‌متر به دست آمده است. مقدار آب بهینه برای محدودیت زیست محیطی با توجه به نرمال بدون داده‌ها برای میانگین‌های پیش آب 20/7، 21/8 و 16/3 میلی‌متر برای 10/6 میلی‌متر به دست آمده است. برای روش‌شناسان این مطلب مشابه ارائه می‌شود: می‌شود...
جدول 4: مقادیر محاسبه شده آب به منظور انتخاب مختلف مدیریت‌های آبیاری (توزیع نرمال) مقادیر آب حسب میلی‌متر است.

| شماره | زیست محیطی | بندون | ضریب | سرعت | میانگین آب | ظرفیت | دستگاه | پخش شده | آزمایش |
|-------|-------------|-------|-------|-------|-------------|-------|--------|------------|--------|--------|
| شماره 1 | با محدودیت | 1629 | 21/7 | 78/2 | 50 | A | 1 |
| شماره 2 | با محدودیت | 20/12 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 3 | با محدودیت | 15/32 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 4 | با محدودیت | 20/24 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 5 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 6 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 7 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 8 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 9 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 10 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 11 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 12 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 13 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 14 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 15 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 16 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 17 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 18 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 19 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 20 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 21 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 22 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 23 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 24 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 25 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 26 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 27 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 28 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 29 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 30 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 31 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 32 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 33 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 34 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 35 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 36 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 37 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 38 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 39 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
| شماره 40 | با محدودیت | 20/10 | 21/7 | 74/4 | 50 | B | 1 |
نمودار ۲: مقادیر عمق بهبودی با ارای میانگین‌های مختلف پخش آب از دستگاه در مدیریت‌های مختلف آبیاری روشن توانای

نمودار ۳: مقادیر عمق بهبودی با ارای میانگین‌های مختلف پخش آب از دستگاه در مدیریت‌های مختلف آبیاری، روش نرمال

مدیر یک مزرعه سرعت حرکت دستگاه آبیاری عقیده‌ای را می‌داند (میانگین پخش آب ۱۶/۳ میلی‌متر) تنظیم نموده است. در صورتی که نسبت افت‌صدای (C)، ابر/۵۸ و ضریب یکنواخت در رشد قهوی C و D برابر ۷۷/۳ و ۷۸/۸ باشد، عمق بهبودی و فاصله بین آبیاری‌ها چقدر خواهد بود.
۱. سیاست‌خواهان، م. ۱۳۷۷. رابطه تولید محصول و تبخیر و تعرق و برنامه‌بندی آبیاری گندم، چغندر قند، لوبیا و ذرت. گزارش طرح پژوهشی، دانشگاه کشاورزی، دانشگاه شیراز.

۲. عادی‌نژاد، ی. ۱۳۸۶. ارزیابی سیستم آبیاری یارانی لوله‌های چرخ دار در مزارع چغندر قند استان خراسان. پایان‌نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه کشاورزی، دانشگاه شیراز.

۳. فروغی، ف. ۱۳۸۱. ارزیابی هیدرولوژی سیستم آبیاری یقه‌رباه و تأثیر آن بر بهره‌وری بیولوژیک گندم در منطقه باگه‌زار، پایان‌نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه کشاورزی، دانشگاه شیراز.

۴. مینایی، س. م. ۱۳۷۸. تثبیت محادثه بهینه‌سازی یقه‌رباه در حوزه‌های مختلف مصرفی مجموعه مقالات هفتمین سمینار آبیاری و کاهش تبخیر، دانشگاه شهید باهنر کرمان.

۵. وزارت کشاورزی. ۱۳۷۳. گزارش عملکرد سال ۱۳۷۲. اداره کل توسعه روش‌های آبیاری تحت فشار، کرج.

۷. ASAE Standards. 1994. S436. Test procedures for determining the uniformity of water distribution of center pivot and moving lateral irrigation machines equipped with spray or sprinkler nozzles. ASAE Standards 754-755.

